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Abstract. We are going to discuss an object with a mass attached to a spring and
vibrating on the surface of a sphere (see Figure 1). To do this, we first introduce a
new equation on a sphere using the Schrödinger equation. In fact, the paper considers
the question of a quantum system obeying the Schrodinger equation on a Sphere. After
a brief introduction we set up the Hamiltonian of the system and the corresponding
Schrodinger equation, consider infinitesimal generators and their Lie algebra and its
Adjoint presentation. The paper also contains a section on symmetry reduction using
similarity variables which are used in our study of the 3D quantum harmonic oscillator
on a sphere as a special case of the new equation, and possible solutions are proposed.

1. Introduction

Studies in this area are in progress since such equations depict the states and properties
of nonlinear phenomena, broaden vision in terms of physical aspects, and then become
more practical in engineering and other sciences, so the search for accurate solutions is
important in Nonlinear is in several ways like plasma laser radiation [1, 9, 10]. To obtain
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Figure 1. The object oscillates on a sphere.
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an equation that can describe the oscillation of an object attached to a spring on a sphere,
in general, we first consider Schrödinger equation in three-dimensional space:

(1) − h2

2m
∆Ψ+ v(x, y, z)Ψ = ihΨt.

This equation reflects the wave nature of our quantum solutions Ψ(x, y, z). A significant
part of quantum mechanics is devoted to the study of solutions to the Schrödinger equation.
Equation (1) governs the time dependence of the wave-function of an object moving inside
a given potential, v(x, y, z). A unique role is played by solutions to (1) that have the simple
form: Ψ = ψ(x, y, z)exp(

−iEt
h

) where the function ψ satisfies the Schrödinger equation of
the Schrödinger eigenvalue equation:

(2)

 − h2

2m
∆ψ + v(x, y, z)ψ = Eψ,

∆ = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
,

which is time-independent. In both of these equations, h and m represent real constants.
E is a constant that emerges during the separation of variables procedure. Sometimes
quantum problems arise on a sphere. Therefore, it is necessary to examine Equation (2)
on a sphere. It is well known, the metric on S2 ×R is:
(3) ds2 = dz2 − dx2 − sin2xdy2 f ∈ C∞(G).

Adjusting the metric (3) on S2 × R and rewriting Equation (2), the differential equation
on the sphere would be:

uzz = uxx + (cotx)ux + (csc2x)uyy + (2m/h2)(E − v)u(4)
where u is the function ψ defined on S2 ×R.
The Schrodinger equation for a harmonic oscillator may be obtained by using the classical
spring potential

(5) v(x, y, z) = 1
2qxx

2 + 1
2qyy

2 + 1
2qzz

2,
ω2
x = qx

m , ω2
y =

qy
m , ω2

z = qz
m ,

where ω is angular frequency and qx, qy and qz are bond force constants. Adjusting the
metric (3) on S2×R and rewriting Equation (5), the spring potential on the sphere would
be:
(6) v(x, y, z) = 1

2qxx
2 + 1

2qysin
4(x)y2 + 1

2qzz
2,

The Schrodinger equation (4) with this form of potential is
uzz = uxx + (cotx)ux + (csc2x)uyy

+(2m/h2)(E − 1
2qxx

2 − 1
2qysin

4(x)y2 − 1
2qzz

2)u,
(7)

where the particle oscillates on a sphere.
Equation (4) is the general state of the Equation (7), which we try to solve by the

method of Lie symmetry groups. Equation (7) describes an oscillating object on the
surface of a sphere. This equation is reported in the last section, and possible solutions
are presented. Besides, the symmetry group approach or Lie’s approach itself, which is
a computational method to find invariant solutions, is crucially utilized in revealing the
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answer of PDEs and ODEs. Performing the Lie symmetry group procedure; the problem
of symmetry classification for different equations is widely considered in various spaces
[2, 5–8]. Utilizing this plan of action, one finds appropriate solutions via studied ones,
investigates the invariant solutions, and decreases the order of ODEs [3, 4, 11]. In this
article, utilizing Lie’s procedure, we get symmetries of the Schrödinger differential equation
on the sphere. Next, utilizing Ibragimov’s method an optimal sub-algebras structure
related to the symmetry Lie algebra is presented. The article is collected as follows:

• We describe the symmetry algebra infinitesimal generators of Equation (4), and
gain several outcomes.

• We build the optimal systems of sub-algebras.
• We give the Lie invariants, and some other concepts related to the infinitesimal

symmetries of Equation (4).
• Possible solutions of the 3D Harmonic Oscillator on the sphere are discussed.

2. Infinitesimal generators of Equation (4)

Commonly,  ∆~(x, u
(j)) = 0, ~ = 1, ..., n,

x = (x1, ..., xp),
u = (u1, ..., uq),

(8)

define a PDE structure of order jth, where u is dependent on x, and u(i) means ∂iu/(∂x)i.
Local infinitesimal generators of the above structure that as a Lie group acts on the
manifold X × U , is:

x̃i = xi + δς i(x, u) + ∅(δ2), i = 1, ..., p,(9)
ũj = uj + δϕj(x, u) + ∅(δ2), j = 1, ..., q,(10)

where ς i and ϕj represent the infinitesimal transformations for {x1, ..., xp} and {u1, ..., uq},
respectively. A given local infinitesimal generators related to the all transformations (9)
as a group, is

X =

p∑
i=1

ς i(x, u)∂xi +

q∑
j=1

ϕj(x, u)∂uj(11)

Now to utilize the mentioned technique for Equation (4), infinitesimal transformations
with one parameter as a Lie group is assumed: (x1, x2 and x3 are substituted by x, y and
z respectively to not use index,)

x̃ = x+ δς1(x, y, z, u, v) + ∅(δ2),
ỹ = y + δς2(x, y, z, u, v) + ∅(δ2),
z̃ = z + δς3(x, y, z, u, v) + ∅(δ2),
ũ = u+ δϕ1(x, y, z, u, v) + ∅(δ2),
ṽ = v + δϕ2(x, y, z, u, v) + ∅(δ2).
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The related symmetry generator will be:

(12) X = ς1(x, y, z, u, v)∂x + ς2(x, y, z, u, v)∂y + ς3(x, y, z, u, v)∂t+
ϕ1(x, y, z, u, v)∂u + ϕ2(x, y, z, u, v)∂v.

The status of existence of invariance is equivalent to the following explanation:

Pr(2)X[uxx + (cotx)ux + (csc2x)uyy − uzz + (2m/h2)(E − v(x, y, z))u] = 0,
whenever :
uxx + (cotx)ux + (csc2x)uyy − uzz + (2m/h2)(E − v(x, y, z))u = 0.

Since, ς1, ς2, ς3, ϕ1 and ϕ2 are functions with variables x, y, z, u and v, vanishing the sole
coefficients, we earn the following specific equations:

h2sin(x)ς2v = 0, h2sin(x)ς2uu = 0, h2sin(x)ς1v = 0,
h2sin(x)ς1uu = 0, h2sin(x)ς2vv = 0, h2sin(x)ς3v = 0,
. . . .

The number of these equations is 89. Examining these PDEs, we have a statement as:

Theorem 2.1. The point symmetry group of Equation (4) as a Lie group owns a Lie
sub-algebra consists of (12) which ξs and ϕs are the infinitesimals as follows:

ς1 = ((c6sin(y) + c7cos(y))cos(z) + sin(z)(c3sin(y) + c4cos(y)))cos(x)
+c1sin(y) + c2cos(y) + c5sin(z)sin(x) + c8cos(z)sin(x),

ς2 =
(c6cos(y)− c7sin(y))cos(z) + sin(z)(c3cos(y) + c4sin(y))

sin(x)

+
c1cos(y)− c2sin(y)

tan(x)
+ c10,

ς3 = (−(c6sin(y) + c7cos(y))sin(z) + cos(z)(c3sin(y) + c4cos(y)))sin(x)
−c5cos(z)cos(x) + c8cos(x)sin(z) + c9,

ϕ1 =
1

2
((c6sin(y) + c7cos(y))cos(z) + sin(z)(c3sin(y) + c4cos(y)))sin(x)u,

1

2
c5sin(z)cos(x)u+

1

2
c8cos(z)cos(x)u+ c11u+ α(u),

ϕ2 =
1

4sin2(x)mu
((((c6sin(y) + c7cos(y))cos(z) + sin(z)(c3sin(y) + c4cos(y)))

sin2(x)− (c5sin(z) + c8cos(z))cos(x)sin(x))(
h2

8
+mE +mv)

(−8)sin(x)u+ 2h2sin2(x)(αxx − αzz) + 2h2αyy

+(
1

4
h2cos(x)ux +

1

2
sin(x)m(E − v))8sin(x)).

where ci, i = 1, ..., 11 are real constant.
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Corollary 2.2. Every Lie group consists of symmetries with one-parameter of (4) has
eleven-dimensional Lie subalgebra obtained from the following generators:

X1 = ∂y,
X2 = ∂z,
X3 = sin(y)∂x + cos(y)cot(x)∂y,
X4 = cos(y)∂x − sin(y)cot(x)∂y,

X5 = sin(x)sin(z)∂x − cos(x)cos(z)∂z −
1

2
ucos(x)sin(z)∂u

+Ωcos(x)sin(z)∂v,

X6 = sin(x)cos(z)∂x + sin(z)cos(x)∂z −
1

2
ucos(x)cos(z)∂u

+Ωcos(x)cos(z)∂v,

X7 = cos(x)sin(z)sin(y)∂x +
cos(y)sin(z)

sin(x)
∂y + sin(x)sin(y)cos(z)∂z

+
1

2
usin(x)sin(y)sin(z)∂u − Ωsin(x)sin(y)sin(z)∂v,

X8 = cos(x)sin(z)cos(y)∂x −
sin(y)sin(z)

sin(x)
∂y + sin(x)cos(y)cos(z)∂z

+
1

2
usin(x)cos(y)sin(z)∂u − Ωsin(x)cos(y)sin(z)∂v,

X9 = cos(x)cos(z)sin(y)∂x +
cos(y)cos(z)

sin(x)
∂y − sin(x)sin(y)sin(z)∂z

+
1

2
usin(x)sin(y)cos(z)∂u − Ωsin(x)sin(y)cos(z)∂v,

X10 = cos(x)cos(z)cos(y)∂x −
sin(y)cos(z)

sin(x)
∂y − sin(x)cos(y)sin(z)∂z

+
1

2
usin(x)cos(y)cos(z)∂u − Ωsin(x)cos(y)cos(z)∂v,

X11 = u∂u,

Xα = α∂u +
(E − v)α∂v

u
,

where Ω =
8mE − 8mv + h2

4m
(and ∂x ≡ ∂

∂x
, · · · ).

We deliver Lie bracket for Eq.(4) by Table (1). The phrase [Xi,Xj ] = XiXj − XjXi

characterizes the Values in row ith and column jth, i, j = 1, ..., 11.

For instance, the flow of X2 in Corollary 2.2 is expressed by
Φϵ = (x, y, z + ϵ).

3. 1D subalgebras of Equation (4)

Utilizing the symmetry technique, one can specify the one parameter optimal struc-
ture of Equation (4). Providing special subgroups that offer different sorts of solutions
is essential. Thus, we want to look for an invariant solution that is not identical to a
transformation from the whole symmetry group. Such an issue causes to express the sense
of an optimal structure of sub-algebra. In the study of 1D sub-algebras, the classification
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Table 1. Lie algebra for Eq.(4).

[ , ] X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1 0 0 X4 −X3 0 0 X8 −X7 X10 −X9 0
X2 ∗ 0 0 0 X6 −X5 X9 X10 −X7 X8 0
X3 ∗ ∗ 0 X1 X7 X9 −X5 0 −X6 0 0
X4 ∗ ∗ ∗ 0 X8 X10 0 −X5 0 −X6 0
X5 ∗ ∗ ∗ ∗ 0 −X2 −X3 −X4 0 0 0
X6 ∗ ∗ ∗ ∗ ∗ 0 0 0 −X3 −X4 0
X7 ∗ ∗ ∗ ∗ ∗ ∗ 0 −X1 −X2 0 0
X8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 −X2 0
X9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −X1 0
X10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
X11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

question turns into arranging the adjoint representation orbits. �An optimal structure of
the sub-algebras question is replied by presuming a candidate of any set of related sub-
algebras [13] and [12]. Adjoint candidate of every Xi, for i = 1, ..., 11 is characterized
as:

(13) Ad(e(s.Xi).Xj) = Xj − s.[Xi,Xj ] +
s2

2
.[Xi, [Xi,Xj ]]− · · · ,

where s is a parameter and [Xi,Xj ] has characterized in Table (1) for 1 ≤ i, j ≤ 11 ([12],p
(199)). We show the Lie algebra of (13) by g, and we collect the adjoint action in Table (2).
An optimal system of one-dimensional subalgebras is constructed by utilizing Ibragimov’s
method.

Theorem 3.1. A 1D optimal structure of Eq.(4) is presented as:

1) X1 ±X11, 12) X1 ± X2 ±X11, 23) X6 ± X7 ±X11,
2) X2 ±X11, 13) X1 ± X5 ±X11, 24) X6 ± X8 ±X11,
3) X3 ±X11, 14) X1 ± X6 ±X11, 25) X7 ± X10 ±X11,
4) X4 ±X11, 15) X2 ± X3 ±X11, 26) X8 ± X9 ±X11,
5) X5 ±X11, 16) X2 ± X4 ±X11,
6) X6 ±X11, 17) X3 ± X8 ±X11,
7) X7 ±X11, 18) X3 ± X10 ±X11,
8) X8 ±X11, 19) X4 ± X7 ±X11,
9) X9 ±X11, 20) X4 ± X9 ±X11,
10) X10 ±X11, 21) X5 ± X9 ±X11,
11) X11, 22) X5 ± X10 ±X11,

where ci ∈ R are real numeral coefficients for i = 1, · · · , 4.
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Table 2. Adjoint presentation

Ad X1 X2 X3 X4

X1 X1 X2 cos(s)X3 − sin(s)X4 cos(s)X4 + sin(s)X3

X2 X1 X2 X3 X4

X3 cos(s)X1 + sin(s)X4 X2 X3 cos(s)X4 − sin(s)X1

X4 cos(s)X1 − sin(s)X3 X2 cos(s)X3 + sin(s)X1 X4

X5 X1 cosh(s)X2 − sinh(s)X6 cosh(s)X3 − sinh(s)X7 cosh(s)X4 − sinh(s)X8

X6 X1 cosh(s)X2 + sinh(s)X5 cosh(s)X3 − sinh(s)X9 cosh(s)X4 − sinh(s)X10

X7 cosh(s)X1 − sinh(s)X8 cosh(s)X2 − sinh(s)X9 cosh(s)X3 + sinh(s)X5 X4

X8 cosh(s)X1 + sinh(s)X7 cosh(s)X2 − sinh(s)X10 X3 cosh(s)X4 + sinh(s)X5

X9 cosh(s)X1 − sinh(s)X10 cosh(s)X2 + sinh(s)X7 cosh(s)X3 + sinh(s)X6 X4

X10 cosh(s)X1 + sinh(s)X9 cosh(s)X2 + sinh(s)X8 X3 cosh(s)X4 + sinh(s)X6

X11 X1 X2 X3 X4

Ad X5 X6 X7 X8

X1 X5 X6 cos(s)X7 − sin(s)X8 cos(s)X8 + sin(s)X7

X2 cos(s)X5 − sin(s)X6 cos(s)X6 + sin(s)X5 cos(s)X7 − sin(s)X9 cos(s)X8 − sin(s)X10

X3 cos(s)X5 − sin(s)X7 cos(s)X6 − sin(s)X9 cos(s)X7 + sin(s)X5 X8

X4 cos(s)X5 − sin(s)X8 cos(s)X6 − sin(s)X10 X7 cos(s)X8 + sin(s)X5

X5 X5 cosh(s)X6 − sinh(s)X2 cosh(s)X7 − sinh(s)X3 cosh(s)X8 − sinh(s)X4

X6 cosh(s)X7 + sinh(s)X2 X6 X7 X8

X7 cosh(s)X7 + sinh(s)X3 X6 X7 cosh(s)X8 − sinh(s)X1

X8 cosh(s)X7 + sinh(s)X4 X6 cosh(s)X7 + sinh(s)X1 X8

X9 X5 cosh(s)X6 + sinh(s)X3 cosh(s)X7 + sinh(s)X2 X8

X10 X5 cosh(s)X6 + sinh(s)X4 X7 cosh(s)X8 + sinh(s)X2

X11 X5 X6 X7 X8

Ad X9 X10 X11

X1 cos(s)X9 − sin(s)X10 cos(s)X10 + sin(s)X9 X1

X2 cos(s)X9 + sin(s)X7 cos(s)X10 + sin(s)X8 X2

X3 cos(s)X9 + sin(s)X6 X10 X3

X4 X9 cos(s)X10 + sin(s)X6 X4

X5 X9 X10 X5

X6 cosh(s)X9 − sinh(s)X3 cosh(s)X10 − sinh(s)X4 X6

X7 cosh(s)X9 − sinh(s)X2 X10 X7

X8 X9 cosh(s)X10 − sinh(s)X2 X8

X9 X9 cosh(s)X10 − sinh(s)X1 X9

X10 cosh(s)X9 + sinh(s)X1 X10 X10

X11 X9 X10 X11

Proof. Here, we use Ibragimov’s method. Due to the Table (1), 〈X11〉 is the center of g,
so we need to specify the sub-algebras of

〈X1,X2,X3,X4,X5,X6,X7,X8,X9,X10〉.

F s
i : g → g characterized as the linear map X 7→ Ad(exp(sXi).X), where 1 ≤ i, j ≤ 11.

Some matrices of F s
i , 1 ≤ i, j ≤ 11, namely M s

1 and M s
5 , according to basis {X1, · · · ,X11}
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are reported as:

M s
1=



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 cos(s) −sin(s) 0 0 0 0 0 0 0
0 0 sin(s) cos(s) 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 cos(s) −sin(s) 0 0 0
0 0 0 0 0 0 sin(s) cos(s) 0 0 0
0 0 0 0 0 0 0 0 cos(s) −sin(s) 0
0 0 0 0 0 0 0 0 sin(s) cos(s) 0
0 0 0 0 0 0 0 0 0 0 1


,

M s
5=



cosh(s) 0 0 0 0 0 0 −sinh(s) 0 0 0
0 cosh(s) 0 0 0 0 0 0 −sinh(s) 0 0
0 0 cosh(s) 0 sinh(s) 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 sinh(s) 0 cosh(s) 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0

−sinh(s) 0 0 0 0 0 0 cosh(s) 0 0 0
0 −sinh(s) 0 0 0 0 0 0 cosh(s) 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1


.

Acting the eleven matrices mentioned above on a generator X =
∑11

i=1 aiXi periodically
we specify X. In order to clarify the proof, the following two diagrams are given.

a10 6= 0

a3 6= 0a3 = 0

a4 = 0a4 6= 0
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a10 = 0

a9 = 0a9 6= 0

a4 = 0a4 6= 0 a8 = 0 a8 6= 0

a5 6= 0

a5 = 0

a3 6= 0

a3 = 0

a7 = 0 a7 6= 0

a4 6= 0

a4 = 0

a6 = 0 a6 6= 0

a5 = 0 a5 6= 0

a4 = 0 a4 6= 0

a3 6= 0

a3 = 0

a2 6= 0 a2 = 0

a1 = 0 a1 6= 0 a1 6= 0

Case I. Let a10 6= 0. Consider a vector
(14) (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) a10 6= 0.

the coefficients of X1,X2,X4,X6,X8 and X9 can be disappeared by setting s9 =
tan−1(a1/a10), s8 = tanh−1(a2/a10), s6 = tanh−1(a4/a10), s4 = tan−1(a6/a10),
s2 = tan−1(a8/a10) and s1 = tan−1(a9/a10) respectively. Thus, (14) is reduced to

(15) (0, 0, a3, 0, a5, 0, a7, 0, 0, a10).

• Let a10 = a3 6= 0, for vector (15), the coefficients of X5 and X7 would be disap-
peared by setting s7 = −tanh−1(a5/a3), and s5 = tanh−1(a7/a3) respectively. In
order to simplify the phrase, by scaling X, assume that a3 = 1 and a10 = ±1.Thus,
X gives rise to case (18).

• Let a10 6= 0, a3 = 0 and a5 6= 0, for vector (15), the coefficient of X7 would be
disappeared by setting s3 = −tan−1(a7/a5). In order to simplify the phrase, by
scaling X, assume that a5 = 1 and a10 = ±1. Thus, X gives rise to case (22).

• Let a10 6= 0 and a3 = a5 = 0. In order to simplify the phrase, for vector (15) by
scaling X, assume that a7 = 1 and a10 = ±1. Thus, X gives rise to cases (10) and
(25).

Case II. Let a10 = 0. Consider a vector
(16) (a1, a2, a3, a4, a5, a6, a7, a8, a9, 0).

• Let a10 = 0 and a9 6= 0, for vector (16), the coefficients of X1,X2,X3,X6 and
X7 can be disappeared by setting s10 = −tanh−1(a1/a9), s7 = tanh−1(a2/a9),
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s6 = tanh−1(a3/a9), s3 = tan−1(a6/a9) and s2 = tan−1(a7/a9) respectively. Thus,
(16) is reduced to

(17) (0, 0, 0, a4, a5, 0, 0, a8, a9, 0).

• Let a10 = 0 and a9 = a4 6= 0, for vector (17), the coefficient of X5 can be disap-
peared by setting s8 = −tanh−1(a5/a4). In order to simplify the phrase, by scaling
X, assume that a4 = 1 and a9 = ±1. Thus, X gives rise to case (20).

• Let a10 = a4 = 0 and a9 = a5 6= 0, for vector (17), the coefficient of X8 can be
disappeared by setting s4 = −tan−1(a8/a5). In order to simplify the phrase, by
scaling X, assume that a5 = 1 and a9 = ±1. Thus, X gives rise to case (21).

• Let a10 = a4 = a5 = 0 and a9 6= 0, in vector (17). In order to simplify the phrase,
by scaling X, assume that a8 = 1 and a9 = ±1. Thus, X gives rise to cases (9)
and (26).

• Let a10 = a9 = 0 and a8 6= 0, for vector (16), the coefficient of X1,X2,X4,X5

and X7 can be disappeared by setting s7 = tanh−1(a1/a8), s10 = −tanh−1(a2/a8),
s5 = tanh−1(a4/a8), s4 = tan−1(a5/a8) and s1 = tan−1(a7/a8) respectively. Thus,
(16) is reduced to

(18) (0, 0, a3, 0, 0, a6, 0, a8, 0, 0).

• Let a10 = a9 = 0 and a8 = a3 6= 0, for vector (18), the coefficient of X6 can be
disappeared by setting s9 = −tanh−1(a6/a3). In order to simplify the phrase, by
scaling X, assume that a3 = 1 and a8 = ±1. Thus, X gives rise to case (17).

• Let a10 = a9 = a3 = 0 and a8 6= 0, in vector (18). In order to simplify the phrase,
by scaling X, assume that a6 = 1 and a8 = ±1. Thus, X gives rise to cases (8)
and (24).

• Let a10 = a9 = a8 = 0 and a7 6= 0, for vector (16), the coefficient of X1,X2,X3 and
X5 can be disappeared by setting s8 = −tanh−1(a1/a7), s9 = −tanh−1(a2/a7),
s5 = tanh−1(a3/a7), and s3 = tan−1(a5/a7) respectively. Thus, (16) is reduced to

(19) (0, 0, 0, a4, 0, a6, a7, 0, 0, 0).

• Let a10 = a9 = a8 = 0 and a7 = a4 6= 0, for vector (19), the coefficient of X6 can
be disappeared by setting s10 = −tanh−1(a6/a4). In order to simplify the phrase,
by scaling X, assume that a4 = 1 and a7 = ±1. Thus, X gives rise to case (19).

• Let a10 = a9 = a8 = a4 = 0 and a7 6= 0, in vector (19). In order to simplify the
phrase, by scaling X, assume that a6 = 1 and a7 = ±1. Thus, X gives rise to cases
(7) and (23).

• Let a10 = a9 = a8 = a7 = 0 and a6 6= 0, for vector (16), the coefficient of X2,X3,X4

and X5 can be disappeared by setting s5 = tanh−1(a2/a6), s9 = −tanh−1(a3/a6),
s10 = −tanh−1(a4/a6), and s2 = tan−1(a5/a6) respectively. Thus, (16) is reduced
to

(20) (a1, 0, 0, 0, 0, a6, 0, 0, 0, 0).
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In order to simplify the phrase, by scaling X, assume that a1 = 1 and a6 = ±1.
Thus, X gives rise to cases (6) and (14).

• Let a10 = a9 = a8 = a7 = a6 = 0 and a5 6= 0, for vector (16), the coef-
ficient of X2,X3 and X4 can be disappeared by setting s6 = −tanh−1(a2/a5),
s7 = −tanh−1(a3/a5) and s8 = −tanh−1(a4/a5) respectively. Thus, (16) is re-
duced to

(21) (a1, 0, 0, 0, a5, 0, 0, 0, 0, 0).

In order to simplify the phrase, by scaling X, assume that a1 = 1 and a5 = ±1.
Thus, X gives rise to cases (5) and (13).

• Let a10 = a9 = a8 = a7 = a6 = a5 = 0 and a4 6= 0, for vector (16), the co-
efficient of X1 and X3 can be disappeared by setting s3 = −tan−1(a1/a4), and
s1 = tan−1(a3/a4) respectively. Thus, (16) is reduced to

(22) (0, a2, 0, a4, 0, 0, 0, 0, 0, 0).

In order to simplify the phrase, by scaling X, assume that a2 = 1 and a4 = ±1.
Thus, X gives rise to cases (4) and (16).

• Let a10 = a9 = a8 = a7 = a6 = a5 = a4 = 0 and a3 6= 0, for vector (16), the
coefficient of X1 can be disappeared by setting s4 = tan−1(a1/a3). Thus, (16) is
reduced to

(23) (0, a2, a3, 0, 0, 0, 0, 0, 0, 0).

In order to simplify the phrase, by scaling X, assume that a2 = 0, 1 and a3 = ±1.
Thus, X gives rise to cases (3) and (15).

• Let a10 = a9 = a8 = a7 = a6 = a5 = a4 = a3 = 0. Thus, (16) is reduced to

(24) (a1, a2, 0, 0, 0, 0, 0, 0, 0, 0).

In order to simplify the phrase, by scaling X, assume that a1 = 0, 1 and a2 = 0,±1.
Thus, X gives rise to cases (1), (2) and (12).

�

4. Some reduced equations of Eq.(4)

Now, we are going to offer a classified symmetry reduction of Eq.(4) regarding sub-
algebras of Theorem 3.1. For this purpose, we have to look for a new shape of Eq.(4)
in particular coordinates to reduce it. A coordinate like this would be built by realizing
independent invariant ς, η, k, h corresponds to the infinitesimal solution. Therefore, repre-
senting the problem in other coordinates, utilizing the derivative will reduce the order of
PDE. Every 1D sub-algebras in 3.1, the similarity variables ςi, ηi, ki, and hi are brought
in Table 3, where, in cases (16) and (18), one puts α = 1. Every similarity variable is
utilized to reduce Eq.(4) to a new PDE which, we bring in Table 4.
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Table 3. Lie group and similarity variable.

i Hi ςi ηi ti wi ui vi
1 X1 x z u v k(ς, η) f(ς, η)
2 X2 x y u v k(ς, η) f(ς, η)
3 X1 + aX2 x y − z

a u v k(ς, η) f(ς, η)

4 X1 + aX11 x z Ln(u)− ay v e(ay+k(ς,η)) f(ς, η)

5 X2 + aX11 x y Ln(u)− az v e(az+k(ς,η)) f(ς, η)

6 X1 + aX2 + bX11 x y − z
a Ln(u)− b

az v e(
b
a
z+k(ς,η)) f(ς, η)

7 X1 + aXα, α = u x z Ln(u)− ay Ln(E − v) + ay e(ay+k(ς,η)) E − e−ay+f(ς,η)

8 X2 + aXα, α = u x y Ln(u)− az Ln(E − v) + az e(az+k(ς,η)) E − e−az+f(ς,η)

9 X1 + aXα, α = 1 x z u− ay uLn(E − v) + ay ay + k(ς, η) E − e(−ay+f(ς,η))/u

10 X2 + aXα, α = 1 x y u− az uLn(E − v) + az az + k(ς, η) E − e(−az+f(ς,η))/u

11 X1 + aXα + bX11, α = u x z Ln(u)− (a+ b)y Ln(E − v) + ay e(a+b)y+k(ς,η) E − e−ay+f(ς,η)

12 X2 + aXα + bX11, α = u x y Ln(u)− (a+ b)z Ln(E − v) + az e(a+b)z+k(ς,η) E − e−az+f(ς,η)

13 X1 + aXα + bX11, α = 1 x z Ln(bu+ a)− by uLn(E − v) + ay (e(by+k(ς,η)) − a)/b E − e(−ay+f(ς,η))/u

14 X2 + aXα + bX11, α = 1 x y Ln(bu+ a)− bz uLn(E − v) + az (e(bz+k(ς,η)) − a)/b E − e(−az+f(ς,η))/u

15 X1 + aX2 + bXα + cX11, x y − z
a Ln(u)− (b+ c)y Ln(E − v) + by e(b+c)y+k(ς,η) E − e−by+f(ς,η)

α = u

16 X1 + aX2 + bXα + cX11, x y − z
a Ln(cu+ b)− cy uLn(E − v) + by (e(cy+k(ς,η)) − b)/c E − e(−by+f(ς,η))/u

α = 1
...

...
...

...
...

...
...

Table 4. Reduced equations based on similarity variable.

i Reduction of equations
1 kςς + cot(ς)kς − kηη + (2m/h2)(E − f)k = 0,
2 kςς + cot(ς)kς + csc2(ς)kηη + (2m/h2)(E − f)k = 0,
3 kςς + cot(ς)kς + csc2(ς)kηη − 1

a2
kηη + (2m/h2)(E − f)k = 0,

4 kςς + k2ς + cot(ς)kς + a2csc2(ς)− kηη − k2η + (2m/h2)(E − f)ek+ay = 0,

5 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− a2 + (2m/h2)(E − f)ek+az = 0,

6 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− 1
a2
kηη − ( 1akη + b)2 + (2m/h2)(E − f)ek+

b
a
y = 0,

7 kςς + k2ς + cot(ς)kς + a2csc2(ς)− kηη − k2η + (2m/h2)ef−ayek+ay = 0,

8 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− a2 + (2m/h2)ef−azek+az = 0,

9 kςς + cot(ς)kς − kηη + (2m/h2)e(f−ay)/u(k + ay) = 0,

10 kςς + cot(ς)kς + csc2(ς)kηη + (2m/h2)e(f−az)/u(k + az) = 0,

11 kςς + k2ς + cot(ς)kς + (a+ b)2csc2(ς)− kηη − k2η + (2m/h2)ef−ayek+(a+b)y = 0,

12 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− (a+ b)2 + (2m/h2)ef−azek+(a+b)z = 0,

13 kςς + k2ς + cot(ς)kς + b2csc2(ς)− kηη − k2η + (2m/h2)e(f−ay)/u(ek+by − a) = 0,

14 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− b2 + (2m/h2)e(f−az)/u(ek+bz − a) = 0,

15 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− 1
a2
kηη − ( 1akη +

b+c
a )2 + (2m/h2)ef−ayek+(b+c)y = 0,

16 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− 1
a2
kηη − ( 1akη +

c
a)

2 + (2m/h2)e(f−ay)/u(ek+cy − b)/c = 0.

As sample, we calculate the invariants related to H9 := X1 + aXα. We integrate the
following characteristic expression, assuming α(u) = 1.

dx

0
=
dy

1
=
dz

0
=
du

1
= u

dv

E − v
.

Thus, the variables are calculated as:

ς = x, η = z, t = u− ay, w = uLn(E − v) + ay,
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Putting the obtained variables in Eq.(4), and utilizing derivative yields that, the answer
of Eq.(4) is as:

u = ay + k(ς, η), v = E − e(−ay+f(ς,η))/u,

where k(ς, η) and h(ς, η) satisfies the following reduced equation with 2 variables

(25) kςς + cot(ς)kς − kηη + (2m/h2)e(f−ay)/u(k + ay) = 0.

Subalgebra X1+ aXα and the reduced Eq.(25) are brought in Tables 3 and 4, by case (9).

5. 3D quantum harmonic oscillator on a sphere

As we saw in the introduction, the Schrodinger equation for a harmonic oscillator on a
sphere was introduced by:

uzz = uxx + (cotx)ux + (csc2x)uyy
+(2m/h2)(E − 1

2qxx
2 − 1

2qysin
4(x)y2 − 1

2qzz
2)u,

(26)

where the particle oscillates on a sphere.
To interact with this equation, it is better to work on the reduction equation of the

general form of the Schrodinger equation from Table 4. For this purpose, We select
Equation 1 from Table 4 and try to solve it. Obviously, this equation is in terms of two
variables, and solving this equation seems simpler than the original Equation (7). So,
consider:

kςς + cot(ς)kς − kηη + (2m/h2)(E − f)k = 0,

where considering the metric (3) on S2 ×R and the function f will become

f(ς, η) =
1

2
q̂ς2 +

1

2
q̄η2,

where q̂ and q̄ are constants. Thus (7) turns into

kςς + cot(ς)kς − kηη + (2m/h2)(E − 1
2 q̂ς

2 − 1
2 q̄η

2)k = 0.(27)

Theorem 5.1. Assume that M(ς) and N(η) are functions. If they satisfy the following
two separate ODEs:{

Mςς + cot(ς)Mς − (1/h2)(c1 +mq̂ς2)M = 0,

Nηη − (1/h2)(c1 −m(q̄η2 − 2E))N = 0,
(28)

then k(ς, η) =M(ς)N(η) are the solutions of (27).

Proof. It is sufficient to show that k(ς, η) =M(ς)N(η) satisfies Equation (27). Evaluating
the derivative gives:  kςς =MςςN,

cot(ς)kς = cot(ς)MςN
kηη = NηηM,
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so
0 = kςς + cot(ς)kς − kηη + (2m/h2)(E − 1

2 q̂ς
2 − 1

2 q̄η
2)k

=MςςN + cot(ς)MςN −NηηM + (2m/h2)(E − 1
2 q̂ς

2 − 1
2 q̄η

2)MN
=MςςN + cot(ς)MςN −NηηM
+(1/h2)(2mE −mq̂ς2 −mq̄η2 + c1 − c1)MN

=

(
Mςς + cot(ς)Mς − (1/h2)(c1 +mq̂ς2)M

)
N

+

(
Nηη − (1/h2)(c1 −m(q̄η2 − 2E))N

)
M.

Because M and N are not zero, then the necessary result is obtained.
�

Now to solve Equation (27), we need to consider Equations (28). In this sense, for
c1 = −2mE, the solution of the second equation of (28), using Maple, is

N = C1
√
ηBesselJ(

1

4
,
1

2

√
q̄m

h2
η2) + C2

√
ηBesselY (

1

4
,
1

2

√
q̄m

h2
η2),

where C1, C2 ∈ R and BesselJ and BesselY are the Bessel functions of the first and second
kinds, respectively. The first equation of (28) with the assumption y =

Mς

ς
turns into

yς = −y2 − cot(ς)y +
q̂ς2m+ c1

h2
.

This ODE is called Riccati. Indeed, we started with Equation (7) and finally reached the
Riccati equation.

Conclusion

The paper considers the question of a quantum system obeying the Schrodinger equation
on a Sphere. After a brief introduction intended to set up the Hamiltonian of the system
and the corresponding Schrodinger equation So, we present new Equation (6). In this
regard, we tried to solve the new equation. Decreasing the order of the new equation,
we present several newer equations with only two variables in Table 4. Using one of the
equations in Table 4 for an oscillator object attached to a spring on a sphere, we converted
this two-variable PDE into two one-variable ODEs, one of which was solved and the other
was the Riccati equation, which can be discussed in exceptional cases. Maybe one will get
better results using another of the reduced equations in Table 4.
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