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Abstract. The goal of this research is to construct the extended ver-
sions of the original Maddox’s paranormed sequence spaces, denoted by
the notation ℓ(∇2

q, p) and ℓ∞(∇2
q, p). These spaces are linear isomorphic

to the spaces ℓ(p) and ℓ∞(p), respectively. The next step is to build the
Schauder basis for the ℓ(∇2

q, p) space. After that, the topological fea-
tures of the alpha, beta, and gamma duals of ℓ(∇2

q, p) and ℓ∞(∇2
q, p)

are investigated. Finally, some matrix classes are characterized.
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1 Introduction

The expression [h]q defines a q-number [18], as given by the equation:

[h]q =


h−1∑
s=0

qs, h = 1, 2, 3, ...,

0, h = 0.
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It is possible to hypothesize that if q → 1− then [h]q → h. The following
equation gives the definition of the q-binomial coefficient:

[
h

f

]
q

=


[h]q!

[f]q![h− f]q!
, 0 ≤ f ≤ h,

0, otherwise,

(1)

where q-factorial of h is given by the product of [h]q for h = 1, 2, 3, ...,
and is equal to 1 for h = 0. There is a wide range of work on studies
of the q-analogue of sequence spaces; you can refer to the references
[1, 3, 10, 22, 27, 28, 29, 30, 31, 32].

The traditional notation for the space of all real-valued sequences is
ω. A sequence space is any vector subspace of ω. The most prevalent
and often utilized spaces that are all null, convergent, and bounded
sequences, respectively, are c0, c, and ℓ∞.

The domain HA of the matrix A in the space H is a sequence space.
It is defined by

HA = {h ∈ ω : Ah ∈ H}

In the literature, the approach of constructing a new sequence spaces on
the paranormed spaces by means of the matrix domain of a particular
limitation method has recently been employed by several authors. For
example, see [4, 5, 6, 8, 9, 14, 16, 24, 26, 33].

The sequences c0(p), c(p), ℓ∞(p) and ℓ(p) were established by Mad-
dox [20], Simons [25] and Nakano [21] in the following order:

c0(p) = {h = (hs) ∈ ω : lim
s→∞

|hs|ps = 0},

c(p) = {h = (hs) ∈ ω : lim
s→∞

|hs − l|ps = 0 for some l ∈ R},

ℓ∞(p) = {h = (hs) ∈ ω : sup
s∈N

|hs|ps < ∞},

ℓ(p) =

{
h = (hs) ∈ ω :

∑
s

|hs|ps < ∞

}
,

which are the complete spaces paranormed by g1(h) = sups∈N |hs|ps/L

and g2(h) = (
∑

s |hs|ps)
1/L , respectively, where p = (ps) is a bounded
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sequence of strictly positive real numbers with S = sups ps and L =
max{1, S}.

Kızmaz [19] first proposed the difference sequence spaces

D(∆) = {h = (hs) : ∆h ∈ D}
for D = {ℓ∞, c0, c}. Then, several writers began to pay attention to the
difference sequence spaces in various ways, including [2, 7, 11, 12, 13, 23].

The definition of the difference operator ∇2
q [1], for a q-number is

(∇2
q)rs =

{
(−1)r−sq(

r−s
2 )[ 2

r−s

]
q

, 0 ≤ s ≤ r,

0 , s > r,

equivalently, we may write

∇2
q =


1 0 0 0 · · ·

−(1 + q) 1 0 0 · · ·
q −(1 + q) 1 0 · · ·
0 q −(1 + q) 1 · · ·
...

...
...

...
...

 .

The inverse of the operator ∇2
q is derived as ∇−2

q = ((∇−2
q )rs)

(∇−2
q )rs =

{ [
r−s+1
r−s

]
q

, 0 ≤ s ≤ r,

0 , s > r.

It is well known that paranormed spaces have more general properties
then normed spaces. In this article, we generalize the normed sequence
spaces defined by Yaying et al. [1].

2 Main Results

The theory of q-calculus frequently uses the formula for ∇2
q to define

new sequence spaces. Using the q-difference matrix ∇2
q of second order,

Yaying et al. [1, 27] recently studied the sequence spaces as follows:

c0(∇2
q) =

{
h = (hs) ∈ w : ∇2

qh ∈ c0
}
,

c(∇2
q) =

{
h = (hs) ∈ w : ∇2

qh ∈ c
}
,

ℓp(∇2
q) =

{
h = (hs) ∈ w : ∇2

qh ∈ ℓp
}
,

ℓ∞(∇2
q) =

{
h = (hs) ∈ w : ∇2

qh ∈ ℓ∞
}
.
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In this study, we now present the q-paranorm difference sequence
spaces of second order ℓ(∇2

q , p) and ℓ∞(∇2
q , p) by

ℓ(∇2
q , p) =

{
h = (hs) ∈ w :

∞∑
s=0

∣∣∣∣∣(−1)r−sq(
r−s
2 )
[

2

r − s

]
q

hs

∣∣∣∣∣
ps

< ∞

}
,

ℓ∞(∇2
q , p) =

{
h = (hs) ∈ w : sup

s∈N

∣∣∣∣∣(−1)r−sq(
r−s
2 )
[

2

r − s

]
q

hs

∣∣∣∣∣
ps

< ∞

}
.

Following that, the aforementioned spaces may be stated in this manner:

ℓ(∇2
q , p) = [ℓ(p)]∇2

q
and ℓ∞(∇2

q , p) = [ℓ∞(p)]∇2
q
.

Consequently, for p = (ps) = e, the foregoing sequences simplify to
ℓp(∇2

q) and ℓ∞(∇2
q), which were presented by Yaying et al. [1].

In order to define the sequence f = (fr), we must apply the ∇2
q-

transform of h = (hr).

fr =
r∑

s=0

(−1)r−sq(
r−s
2 )
[

2

r − s

]
q

hs for all r ∈ N. (2)

Then, it is possible to do a straightforward calculation (2) to establish
that

hr =

r∑
s=0

[
r − s+ 1

r − s

]
q

fs for all r ∈ N. (3)

The next theorem, which is important for the work, is where we may
now start.

Theorem 2.1. The sequence spaces ℓ∞(∇2
q , p) and ℓ(∇2

q , p) are each
defined as a complete linear metric spaces in the following functions:

g(h) = sup
r∈N

∣∣∣∣∣
r∑

s=0

(−1)r−sq(
r−s
2 )
[

2

r − s

]
q

hs

∣∣∣∣∣
pr/L

, (4)

g̃(h) =

( ∞∑
r=0

∣∣∣∣∣
r∑

s=0

(−1)r−sq(
r−s
2 )
[

2

r − s

]
q

xs

∣∣∣∣∣
pr)1/M

. (5)
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Proof. We simply present the proof for ℓ∞(∇2
q , p) to avoid repeating

the same statements. It is obvious that g(θ) = 0 holds true and for all
values of h ∈ ℓ∞(∇2

q , p), g(−h) = g(h). The next inequalities hold for
h, t ∈ ℓ∞(∇2

q , p) and α1, α2 ∈ R

g(α1h+ α2t) = sup
r

∣∣∣∣∣
r∑

s=0

(−1)r−sq(
r−s
2 )
[

2

r − s

]
q

(α1hs + α2ts)

∣∣∣∣∣
pr/L

≤ max{1, |α1|} sup
r

∣∣∣∣∣
r∑

s=0

(−1)r−sq(
r−s
2 )
[

2

r − s

]
q

hs

∣∣∣∣∣
pr/L

+

+max{1, |α2|} sup
r

∣∣∣∣∣
r∑

s=0

(−1)r−sq(
r−s
2 )
[

2

r − s

]
q

ts

∣∣∣∣∣
pr/L

= max{1, |α1|}g(h) + max{1, |α2|}g(t)

can be used to demonstrate the linearity of g with regard to scalar
multiplication and coordinatewise addition. This demonstrates that the
space ℓ∞(∇2

q , p) is linear.
Assume that {hr} is any sequence of points hr ∈ ℓ∞(∇2

q , p) such that
g(hr − h) → 0 and (αr) is any sequence of scalars such that αr → α.
Due to the subadditivity of g, the inequality

g(hr) ≤ g(h) + g(hr − h)

holds, and as a result {g(hr)} is bounded. Consequently, we have

g(αrh
r − αh) = sup

r∈N

∣∣∣∣∣
r∑

s=0

(−1)r−sq(
r−s
2 )
[

2

r − s

]
q

(αrh
r
s − αhs)

∣∣∣∣∣
pr/L

≤ |αr − α|pr/Lg(hr) + |α|pr/Lg(hr − h) (6)

which tends to zero as i → ∞. Accordingly, the scalar multiplication is
continuous. In light of this, g is a paranorm on the space ℓ∞(∇2

q , p).
It is still necessary to demonstrate that the space ℓ∞(∇2

q , p) is com-
plete. In the space ℓ∞(∇2

q , p), let {hr} be any Cauchy sequence , where

hr = {h(r)0 , h
(r)
1 , h

(r)
2 , . . .}. Then, for a given value of ϵ > 0, n0(ϵ) exists

such that
g(hr − hs) <

ϵ

2
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for all s, r > n0(ϵ). For each constant k ∈ N, we find using the definition
of g that

|(∇2
qh

r)k − (∇2
qh

s)k|pk/L ≤ sup
k∈N

|(∇2
qh

r)k − (∇2
qh

s)k|pk/L <
ϵ

2
(7)

for every s, r > n0(ϵ). As a result, for every fixed k ∈ N, {(∇2
qh

0)k,
(∇2

qh
1)k, (∇2

qh
2)k, . . .} is a Cauchy sequence of real numbers. It con-

verges because R is complete, which means that (∇2
qh

r)k → (∇2
qh)k as

k → ∞.
Now we define the sequence {(∇2

qh)0, (∇2
qh)1, . . .} using these in-

finitely many limits (∇2
qh)0, (∇2

qh)1, . . .. For every fixed k ∈ N, we have

|(∇2
qh

r)k − (∇2
qh)k|pk/L ≤ ϵ

2
(r > n0(ϵ)) (8)

from (7) with s → ∞. Since hr = {h(r)k } ∈ ℓ∞(∇2
q , p) for each k ∈ N,

|(∇2
qh

r)k|pk/L <
ϵ

2
(9)

for every r ≥ n0(ϵ) and for each fixed k ∈ N. For this reason, assuming
a constant r > n0(ϵ) we derive by (8) and (9) that

|(∇2
qh)k|pk/L ≤ |(∇2

qh)k − (∇2
qh

r)k|pk/L + |(∇2
qh

r)k|pk/L < ϵ

for every s > s0(ϵ). This demonstrates that h ∈ ℓ∞(∇2
q , p). The space

ℓ∞(∇2
q , p) is complete, and this closes the proof because {hr} was an

arbitrary Cauchy sequence. □
The sequence spaces ℓ∞(∇2

q , p) and ℓ(∇2
q , p) are in fact of the non-

absolute type since there exists at least one sequence in them such that
g(h) ̸= g(|h|), where |h| = (|hs|).

Theorem 2.2. The two spaces, ℓ∞(∇2
q , p) and ℓ(∇2

q , p), are linearly
isomorphic to ℓ∞(p) and ℓ(p), respectively, where 0 < ps ≤ H < ∞.

Proof. In order to avoid reiterating identical claims, we only provide
the evidence for ℓ∞(∇2

q , p). The space ℓ∞(∇2
q , p) should be shown as

linearly bijective. Defining the transformation T of ℓ∞(∇2
q , p) to ℓ∞(p)

by h 7→ f = Th use the notation (2). The linearity of T is trivial.
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Additionally, it is clear that T is injective because h = θ whenever
Th = θ.

Let f ∈ ℓ∞(p) with (3), we have

g(h) = sup
r

∣∣∣∣∣
r∑

s=0

(−1)r−sq(
r−s
2 )
[

2

r − s

]
q

hs

∣∣∣∣∣
pr/L

= sup
r

∣∣∣∣∣
r∑

s=0

(−1)r−sq(
r−s
2 )
[

2

r − s

]
q

j∑
s=0

[
j − s+ 1

j − s

]
fs

∣∣∣∣∣
pr/L

= sup
r

∣∣∣∣∣
r∑

s=0

δrsys

∣∣∣∣∣
pr/L

= sup
r

|yr|pr/L < ∞,

where

δrs =

{
1 , s = r,
0 , s ̸= r.

Therefore, we get h ∈ ℓ∞(∇2
q , p) and T is a surjective. As a result, T is a

linear bijection, indicating that there is the necessary linear isomorphism
between the spaces ℓ∞(∇2

q , p) and ℓ∞(p). □
We will now finish by giving the Schauder basis of space ℓ(∇2

q , p).
First, let us recall the definition of the Schauder basis. The description
of a paranormed space is (H, g), where H is a set and g is a paranorm.
There exist is a unique sequence of scalars (αs) such that

g

(
h−

r∑
s=0

αsβs

)
→ 0 as r → ∞

if and only if the sequence (βs) of the elements of H is called a basis for
H.

Let H is a sequence space and A is a triangle. Due to the fact (cf.
[17, Remark 2.4]) that HA has a basis when H has a basis, we get the
following theorem.
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Theorem 2.3. For all s ∈ N and 0 < ps ≤ H < ∞, let Hs = (∇2
qh)s.

The sequence b(s) = {b(s)}s∈N of the elements of the space ℓ(∇2
q , p) is

defined by

b(s)r =

{ [
r−s+1
r−s

]
q

, 0 ≤ s < r

0 , s ≥ r

for every fixed s ∈ N. Then, the sequence {b(s)}s∈N is a basis for the
space ℓ(∇2

q , p), and any h ∈ ℓ(∇2
q , p) has a unique representation of the

form

h =
∑
s

Hsb
(s).

3 The α−, β- and γ-Duals of the Spaces ℓ∞(∇2
q, p)

and ℓ(∇2
q, p)

Our most important theorems, which establish the α-, β- and γ-duals
of our new sequence spaces, are presented and demonstrated in this
section. The following will assume that p⋆ is the conjugate of p, that is,
1
p + 1

p⋆ = 1, and designate the collection of all finite subsets of N by N .

The α-, β- and γ-duals of a sequence space H are denoted by Hα,
Hβ and Hγ , respectively, and are defined by

Hα = {t = (ts) ∈ w : ht = (hsts) ∈ ℓ1 for all h = (hs) ∈ H}
Hβ = {t = (ts) ∈ w : ht = (hsts) ∈ cs for all h = (hs) ∈ H}
Hγ = {t = (ts) ∈ w : ht = (hsts) ∈ bs for all h = (hs) ∈ H}

Lemma 3.1. [15, tr = 1] The following statements hold for an infinite
matrix A = (ars):

(i) A ∈ (ℓ∞(p) : ℓ(t)) iff

∀M, sup
K

∑
r

∣∣∣∣∣∑
s∈K

arsM
1/ps

∣∣∣∣∣
tr

< ∞. (10)
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(ii) A ∈ (ℓ∞(p) : c(t)) iff

∀M, sup
r

∑
s

|ars|M1/ps < ∞, (11)

∃(αs) ⊂ R ∋ ∀M, lim
r

(∑
s

|ars − αs|M1/ps

)tr

= 0. (12)

(iii) A ∈ (ℓ∞(p) : ℓ∞(t)) iff

∀M, sup
r

(∑
s

|ars|M1/ps

)tr

< ∞. (13)

(iv) A ∈ (ℓ(p) : ℓ1) iff

(a) For each s ∈ N, set 0 < ps ≤ 1. Next

sup
N∈F

sup
s∈N

∣∣∣∣∣∑
r∈N

ars

∣∣∣∣∣
ps

< ∞. (14)

(b) For each s ∈ N, set 1 < ps ≤ S < ∞. Next, if M is an integer
greater than 1, then

sup
N∈F

∑
s

∣∣∣∣∣∑
r∈N

arsM
−1

∣∣∣∣∣
p⋆s

< ∞. (15)

Lemma 3.2. [15] The following statements hold for an infinite matrix
A = (ars):

(i) A ∈ (ℓ(p) : ℓ∞) iff

(a) For each s ∈ N, set 0 < ps ≤ 1. Next

sup
r,s∈N

|ars|ps < ∞. (16)

(b) For each s ∈ N, set 1 < ps ≤ S < ∞. Next, if M is an integer
greater than 1, then

sup
r∈N

∑
s

∣∣arsM−1
∣∣p⋆s < ∞. (17)
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(ii) For each s ∈ N, set 0 < ps ≤ H < ∞. Next, A = (ars) ∈ (ℓ(p) : c)
iff (16) and (17) hold, and

lim
r→∞

ars = βs, ∀s ∈ N. (18)

Theorem 3.3. Let J ∈ F and J∗ = {s ∈ N : r ≥ s} ∩ J for J ∈ F .
Define the sets c1, c2, c3, c4, c5, c6, c7 and c8 as follows:

c1 =
⋃
M>1

{
a = (as) ∈ w : sup

J

∑
r

∣∣∣∣∣∑
s∈J

[
r − s+ 1

r − s

]
q

arM
1/ps

∣∣∣∣∣ < ∞

}
,

c2 =
⋃
M>1

{
a = (as) ∈ w : sup

r

∑
s

∣∣∣∣∣
[
r − s+ 1

r − s

]
q

ar

∣∣∣∣∣M1/ps < ∞

}
,

c3 =
⋃
M>1

{a = (as) ∈ w : ∃(αs) ⊂ R ∋

lim
r

∑
s

∣∣∣∣∣
[
r − s+ 1

r − s

]
q

ar − αs

∣∣∣∣∣M1/ps = 0

}
,

c4 =
⋃
M>1

a = (as) ∈ w : sup
N∈F

∑
s

∣∣∣∣∣∑
r∈N

[
r − s+ 1

r − s

]
q

arM
−1

∣∣∣∣∣
p⋆s

< ∞,

 ,

c5 =

{
a = (as) ∈ w : sup

N∈F
sup
s∈N

∣∣∣∣∣∑
r∈N

[
r − s+ 1

r − s

]
q

ar

∣∣∣∣∣
ps

< ∞

}
,

c6 =
⋃
M>1

a = (as) ∈ w : sup
r∈N

∑
s

∣∣∣∣∣
r∑

z=s

[
s− z + 1

s− z

]
q

azM
−1

∣∣∣∣∣
p⋆s

< ∞

 ,

c7 =

{
a = (as) ∈ w : lim

r→∞

r∑
z=s

[
s− z + 1

s− z

]
q

az exists for each s ∈ N

}
,

c8 =

{
a = (as) ∈ w : sup

r,s∈N

∣∣∣∣∣
r∑

z=s

[
s− z + 1

s− z

]
q

az

∣∣∣∣∣
ps

< ∞

}
.

Then, [ℓ∞(∇2
q , p)]

α = [ℓ∞(∇2
q , p)]

γ = c1, [ℓ∞(∇2
q , p)]

β = c2 ∩ c3,

[ℓ(∇2
q , p)]

α =

{
c4 , 1 < ps ≤ H < ∞,∀s ∈ N,
c5 , 0 < ps ≤ 1, ∀s ∈ N.
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[ℓ(∇2
q , p)]

β =

{
c6 ∩ c7 , 1 < ps ≤ H < ∞,∀s ∈ N,
c7 ∩ c8 , 0 < ps ≤ 1,∀s ∈ N.

[ℓ(∇2
q , p)]

γ =

{
c6 , 1 < ps ≤ H < ∞, ∀s ∈ N,
c8 , 0 < ps ≤ 1,∀s ∈ N.

Proof. To prove α- dual, take the sequence a = (as) ∈ w and h = (hs)
as in defined in (3), then

arhr =

r∑
s=0

[
r − s+ 1

r − s

]
q

arfs = (Cf)r, (19)

for all r ∈ N, where the matrix C = (crs) defined by

crs =

{ [
r−s+1
r−s

]
q
ar , 0 ≤ s ≤ r,

0 , s > r.

It follows from (19) that ah = (arhr) ∈ ℓ1 whenever h ∈ ℓ∞(∇2
q , p) iff

Cf ∈ ℓ1 whenever f ∈ ℓ∞(p). This means that a = (ar) ∈ [ℓ∞(∇2
q , p)]

α

iff C ∈ (ℓ∞(p) : ℓ1). Then we derive by (10) with tr = 1 for all r ∈ N
that [ℓ∞(∇2

q , p)]
α = c1.

Also, using the (14),(15) and (19), we can prove

[ℓ(∇2
q , p)]

α =

{
c4 , 1 < ps ≤ H < ∞, ∀s ∈ N,
c5 , 0 < ps ≤ 1,∀s ∈ N,

can also be obtained in a similar way.
Now, consider the equation

r∑
s=0

ashs =

r∑
s=0

[
s∑

z=0

[
s− z + 1

s− z

]
q

fz

]
as

=
r∑

s=0

[
r∑

z=s

[
s− z + 1

s− z

]
q

az

]
fs = (Df)r, (20)

where D = (drs) is a matrix defined by

drs =

{ ∑r
z=s

[
s−z+1
s−z

]
q
az , (0 ≤ s ≤ r)

0 , (s > r)
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Thus, we conclude from (20) that ah = (ashs) ∈ cs whenever h = (hs) ∈
ℓ∞(∇2

q , p) iff Df ∈ ℓ∞ whenever f = (fs) ∈ ℓ∞(p). That is to say that

a = (as) ∈ [ℓ∞(∇2
q , p)]

β iff D ∈ (ℓ∞(p) : c). Therefore, we derive from

(11), (12) and (20) with tr = 1 for all r ∈ N that [ℓ∞(∇2
q , p)]

β = c2 ∩ c3.
Also, using the (16),(17), (18) and (20), the proofs of the

[ℓ(∇2
q , p)]

β =

{
c6 ∩ c7 , 1 < ps ≤ H < ∞,∀s ∈ N,
c7 ∩ c8 , 0 < ps ≤ 1, ∀s ∈ N

can also be obtained in a similar way. □

4 Certain Matrix Mappings on the Sequence
Spaces ℓ∞(∇2

q, p) and ℓ(∇2
q, p)

This section describes the matrix transformations from any given se-
quence space H into the spaces ℓ∞(∇2

q , p) and ℓ(∇2
q , p) as well as from a

given sequence space H into the two previously mentioned spaces: The
equivalence “h ∈ HA holds for every triangle A and any sequence space
H iff f = Ah ∈ H”. The reason for this is that HA ∼= H.

Theorem 4.1. Set H = {ℓ∞, c, ℓ1}. Then

(i) A = (ars) ∈ (ℓ∞(∇2
q , p) : H) iff

Ar ∈
{
ℓ∞(∇2

q , p)
}β

for all r ∈ N (21)

B ∈ (ℓ∞ : H), (22)

(ii) A = (ars) ∈ (ℓ(∇2
q , p) : H) iff

Ar ∈
{
ℓ(∇2

q , p)
}β

for all r ∈ N (23)

B ∈ (ℓp : H), (24)

where B = (brs) with brs =
∑∞

z=s

[
s−z+1
s−z

]
q
arz for all r, s ∈ N and

Ar denotes the rth row of the infinite matrix A.

Proof.We prove only part of (i). Let A = (ars) ∈ (ℓ∞(∇2
q , p) : H) and

h ∈ ℓ∞(∇2
q , p) be any given sequence space. Then Ar ∈

{
ℓ∞(∇2

q , p)
}β
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for all r ∈ N. Taking f = ∇2
qh, we conclude from Ar ∈

{
ℓ∞(∇2

q , p)
}β

that

(Ah)r = (Bf)r for all r ∈ N. (25)

Hence Bf ∈ H for all f ∈ ℓ∞. Thus B ∈ (ℓ∞ : H).

We have Ef = Ah which leads us to the consequence E ∈ (c0(p) : µ).
To obtain a contradiction, suppose that (21) and (22) hold. Then (25)
again holds. It follows that Ah ∈ H for all h ∈ ℓ∞(∇2

q , p). □

Corollary 4.2. The following statements hold for an infinite matrix
A = (ars):

(i) A ∈ (ℓ∞(∇2
q , p) : ℓ1(q)) iff

sup
r

∑
s

∣∣∣∣∣
[
r − s+ 1

r − s

]
q

ars

∣∣∣∣∣M1/ps < ∞, (26)

∃(αs) ⊂ R ∋ lim
r

∑
s

∣∣∣∣∣
[
r − s+ 1

r − s

]
q

ars − αs

∣∣∣∣∣M1/ps = 0(27)

sup
J

∑
r

∣∣∣∣∣∑
s∈J

brsM
1/ps

∣∣∣∣∣
p⋆r

< ∞,

(ii) A ∈ (ℓ∞(∇2
q , p) : ℓ∞(q)) iff (26) and (27) hold, and

sup
r

(∑
s

|brs|M1/ps

)p⋆r

< ∞,

(iii) A ∈ (ℓ∞(∇2
q , p) : c(q)) iff (26) and (27) hold, and

sup
r

∑
s

|brs|M1/ps < ∞,

lim
r

∑
s

|brs − αs|M1/ps = 0

where B = (brs) is defined as in Theorem 4.1.
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Corollary 4.3. The following statements hold for an infinite matrix
A = (ars):

(i) A ∈ (ℓ(∇2
q , p) : ℓ1) iff

(a) For 1 < ps ≤ S < ∞,

lim
r→∞

r∑
z=s

[
s− z + 1

s− z

]
q

arz for all r ∈ N, (28)

sup
r∈N

∑
s

∣∣∣∣∣
r∑

z=s

[
s− z + 1

s− z

]
q

arzM
−1

∣∣∣∣∣
p⋆s

< ∞ (29)

sup
N∈F

∑
s

∣∣∣∣∣∑
r∈N

brsM
−1

∣∣∣∣∣
p⋆s

< ∞. (30)

(b) For 0 < ps < 1, (28) holds and

sup
t,s∈N

∣∣∣∣∣
r∑

z=s

[
s− z + 1

s− z

]
q

arz

∣∣∣∣∣
ps

< ∞ (31)

sup
N∈F

sup
s∈N

∣∣∣∣∣∑
r∈N

brs

∣∣∣∣∣
ps

< ∞ (32)

(ii) A ∈ (ℓ(∇2
q , p) : ℓ∞) iff

(a) For 1 < ps ≤ S < ∞, (28) and (29) hold, and

sup
r∈N

∑
s

∣∣brsM−1
∣∣p⋆s < ∞. (33)

(b) For 0 < ps < 1, (28) and (31) hold, and

sup
r,s∈N

|brs|ps < ∞. (34)

(iii) A ∈ (ℓ(∇2
q , p) : c) iff

(a) For 1 < ps ≤ S < ∞, (28), (29), (33) and (34) hold, and

lim
r→∞

brs = βs, ∀s ∈ N. (35)

(b) For 0 < ps < 1, (28), (31), (33), (34) and (35) hold.
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5 Conclusions

A q-analogue is a mathematical notion that adds a parameter q to clas-
sical mathematical structures or functions to make them more broad.
Existing mathematical and physical theories are expanded upon or al-
tered using q-analogues to make them relevant to a larger variety of
circumstances.

In this study, we use the q-analogue version of the second differ-
ence matrix, thus providing new results. For example, we defined new
paranormed sequence spaces and examined some of the algebraical and
topological properties of these sequence spaces.
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