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Abstract. The goal of this research is to construct the extended ver-
sions of the original Maddox’s paranormed sequence spaces, denoted by
the notation £(V2,p) and £s (V2,p). These spaces are linear isomorphic
to the spaces £(p) and £ (p), respectively. The next step is to build the
Schauder basis for the K(Vg,p) space. After that, the topological fea-
tures of the alpha, beta, and gamma duals of £(V2,p) and £s(V2,p)
are investigated. Finally, some matrix classes are characterized.
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1 Introduction

The expression [h], defines a g-number [18], as given by the equation:
h—1
- qs7 h:]‘72737"'7
[h]q o s=0
, h=0.
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It is possible to hypothesize that if ¢ — 17 then [h], — b. The following
equation gives the definition of the g-binomial coefficient:

ST (LI P,
H — L — 11! 1)

0, otherwise,

where g-factorial of b is given by the product of [h], for h = 1,2,3, ...,
and is equal to 1 for h = 0. There is a wide range of work on studies
of the g-analogue of sequence spaces; you can refer to the references
[ > ) 29 ) ) ) ’ ) ]

The traditional notation for the space of all real-valued sequences is
w. A sequence space is any vector subspace of w. The most prevalent
and often utilized spaces that are all null, convergent, and bounded
sequences, respectively, are ¢, ¢, and £o.

The domain H 4 of the matrix A in the space H is a sequence space.
It is defined by

Ha=1{hecw: AhecH}

In the literature, the approach of constructing a new sequence spaces on
the paranormed spaces by means of the matrix domain of a particular
limitation method has recently been employed by several authors. For
example, see [1, 5, 6, 8, 9, 14, 16, 24, 26, 33].

The sequences co(p), ¢(p), loo(p) and ¢(p) were established by Mad-
dox [20], Simons [25] and Nakano [21] in the following order:

colp) = {b = (b.) € 0+ lim [p, P> =0},
clp)={h=(hs) Ew: sligolo [hs — I|P* = 0 for some [ € R},

lo(p) = {b = (hs) € w :sup|[bhs|P* < oo},
seN

(p) = {h = (h) €w: Y [hal* < oo},

which are the complete spaces paranormed by g1(h) = sup,eyn lhs|Ps/E
and ga2(h) = (3_, |hs|p5)1/L, respectively, where p = (ps) is a bounded
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sequence of strictly positive real numbers with S = sup,ps and L =
max{1, S}.
Kizmaz [19] first proposed the difference sequence spaces
D(A)={b=(bs) : Ab € D}
for ® = {{, co, c}. Then, several writers began to pay attention to the
difference sequence spaces in various ways, including [2, 7, 11, 12, 13, 23].

The definition of the difference operator Vg [1], for a g-number is
_ r—s )
(Vs = { (LA, 0sesy
0 , s>,
equivalently, we may write
i 1 0 0 0 ]
—(1+9q) 1 0 0
V2= q —(1+49) 1 0
0 q —(1+4q) 1

The inverse of the operator V3 is derived as V2 = ((V_?)rs)
r—s+1
, 0<s<m,
(Vq_2)rs — { [ r—s ]q -7 =
0 , s>

It is well known that paranormed spaces have more general properties
then normed spaces. In this article, we generalize the normed sequence
spaces defined by Yaying et al. [1].

2 Main Results

The theory of g-calculus frequently uses the formula for Vg to define
new sequence spaces. Using the ¢-difference matrix Vg of second order,
Yaying et al. [I, 27] recently studied the sequence spaces as follows:

V) = {b=(0s) ew:Vih e},
)szvghEC},
s) Ew:Vih €Ly},
)Ew:Veh €l
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In this study, we now present the g-paranorm difference sequence
spaces of second order K(Vg, p) and ew(vg, p) by
Ds
i oo} ,

Ps
<oo}.

Following that, the aforementioned spaces may be stated in this manner:
(V3. p) = [lp)lvz and £oo(V3,p) = [loc(p)]v2-

Consequently, for p = (ps) = e, the foregoing sequences simplify to
,(V2) and {5 (V2), which were presented by Yaying et al. [1].

In order to define the sequence f = (f.), we must apply the Vg—
transform of b = ().

UVip) = {h =(hs)Ew: Y

s=0

SRl R >

los(V2,p) = {b = (hs) € w: sup

seN

(-1 q"2") [r ’ J s

=S (—1) sl [ 2 ] b, for all r € N. (2)

r—s
s=0

Then, it is possible to do a straightforward calculation (2) to establish
that

hT:Z[’"_SHLfs for all 7 € N. (3)

r—s
s=0

The next theorem, which is important for the work, is where we may
now start.

Theorem 2.1. The sequence spaces {(Va,p) and ((VZ,p) are each
defined as a complete linear metric spaces in the following functions:

i(—l)r‘sq(r?) [T ? J bs

pr/L

g(h) = sup
reN
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Proof. We simply present the proof for Eoo(Vg,p) to avoid repeating
the same statements. It is obvious that g(f) = 0 holds true and for all
values of h € (oo(V2,p), g(—h) = g(h). The next inequalities hold for
h,te €oo(Vg,p) and ag,as € R

T pr/L

Sy ] e e

g(a1h + aot) = sup
r s=0

< max{1, |a1|} sup
,

+max{1, ag|} sup S (C1yrgl(7) { ’ ] .

s=0
= max{1, |a1|}g(h) + max{1, las[}g(t)

can be used to demonstrate the linearity of g with regard to scalar
multiplication and coordinatewise addition. This demonstrates that the
space Em(vg,p) is linear.

Assume that {h"} is any sequence of points h" € EOO(VE, p) such that
g(h" — h) — 0 and («,) is any sequence of scalars such that o, — a.
Due to the subadditivity of g, the inequality

g9(h") <g(b) +9(h" —b)
holds, and as a result {g(h")} is bounded. Consequently, we have

r pr/L
g(ah" —abh) = ilelg Sz:;(—l)“sq(r;s) [r E J q(arhﬁ —aby)
< oy —a"Pg(0") + | Fg(h" — ) (6)

which tends to zero as i — 0o. Accordingly, the scalar multiplication is
continuous. In light of this, g is a paranorm on the space Koo(Vg, D).

It is still necessary to demonstrate that the space EOO(VS, p) is com-
plete. In the space Eoo(Vg, p), let {b"} be any Cauchy sequence , where
b = {f)[()r), hgr), g), ...}. Then, for a given value of € > 0, ng(e) exists
such that

g(h" —p*) <

N
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for all s, > ng(e). For each constant k& € N, we find using the definition
of g that

€

|(V2h7”)k _ (Vghs)k’pk/L < ilelg ‘(vghr)k _ (vng)k’pk/L < 5 (7)

for every s,r > np(e). As a result, for every fixed k € N, {(Vgho)k,
(ng)l)k, (Vghz)k, ...} is a Cauchy sequence of real numbers. It con-
verges because R is complete, which means that (Vgh’")k — (V?]h)k as
k — oo.

Now we define the sequence {(Vzh)o,(VZh)1,...} using these in-
finitely many limits (ng))o, (Vgh)l, .... For every fixed k € N, we have

€
(V256 — (V0™ < & (> mo(0) Q
from (7) with s — 0o. Since h" = {f),(:)} € EOO(Vg,p) for each k € N,
207 L _ ¢
(Va0 < 5 9)

for every r > np(€) and for each fixed k € N. For this reason, assuming
a constant r > ng(e) we derive by (8) and (9) that

(Va0 2 < [(V50)k — (Vgb el™ + [(VGh7 el < e

for every s > so(e). This demonstrates that b € oo(V2,p). The space
EOO(V?I,p) is complete, and this closes the proof because {h"} was an
arbitrary Cauchy sequence. O

The sequence spaces Zoo(Vg,p) and K(Vg,p) are in fact of the non-
absolute type since there exists at least one sequence in them such that

g(h) # g(Ib[), where [b] = (|bs])-

Theorem 2.2. The two spaces, foo(Vg,p) and E(Vg,p), are linearly
isomorphic to s (p) and £(p), respectively, where 0 < ps < H < 00.

Proof. In order to avoid reiterating identical claims, we only provide
the evidence for Eoo(Vz,p). The space Koo(Vg,p) should be shown as
linearly bijective. Defining the transformation T of £ (V2,p) t0 foo(p)
by h — § = Th use the notation (2). The linearity of ¥ is trivial.
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Additionally, it is clear that ¥ is injective because h = 6 whenever
ThH=90.
Let § € loo(p) with (3), we have
r s 9 pr/L
o) = s S0 2 b
r 9 J . +1 pr/L
r—s ("5° J— S
- fSgere] 2] S0
1 §< ) q; e ]
r p”‘/L
= Sup Zérsys
" Js=0
= sup |y, [P'F < o0,
where
1, s=mr
Ors = { 0 , s#r.

Therefore, we get hh € Eoo(Vg,p) and T is a surjective. As a result, T is a
linear bijection, indicating that there is the necessary linear isomorphism
between the spaces (oo (V2,p) and loo(p). O

We will now finish by giving the Schauder basis of space E(Vg, D).
First, let us recall the definition of the Schauder basis. The description
of a paranormed space is (H, g), where H is a set and g is a paranorm.
There exist is a unique sequence of scalars («y) such that

9<U—Zasﬁs>—>0asr—>oo

s=0

if and only if the sequence (35) of the elements of H is called a basis for
H.

Let H is a sequence space and A is a triangle. Due to the fact (cf.
[17, Remark 2.4]) that H 4 has a basis when H has a basis, we get the
following theorem.
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Theorem 2.3. For alls € N and 0 < ps, < H < oo, let Hs = (ng))s.

The sequence b'®) = {b®)},cn of the elements of the space E(Vg,p) is
defined by

—s+1
b(s) _ [Trii }q ; 0<s<r
" 0 , S=>r

for every fized s € N. Then, the sequence {b(s)}seN is a basis for the
space E(Vg,p), and any b € Z(Vg,p) has a unigque representation of the
form

h=> M.

3 The a—, - and y-Duals of the Spaces (,.(V7, p)
and E(Vg,p)

Our most important theorems, which establish the a-, 5- and ~-duals
of our new sequence spaces, are presented and demonstrated in this
section. The following will assume that p* is the conjugate of p, that is,
% + 1% = 1, and designate the collection of all finite subsets of N by V.

The a-, 5- and y-duals of a sequence space H are denoted by H¢,
HP and H", respectively, and are defined by

HY ={t = (t;) € w: ht = (hsts) € ¢4 for all h = (hs) € H}
HP = {t=(t;) € w: ht = (hsts) € cs for all h = (bs) € H}
HY ={t=(t;) € w: bt = (hsts) € bs for all h = (hs) € H}

Lemma 3.1. [15, t, = 1] The following statements hold for an infinite
matriz A = (ars):

(1) A€ (boo(p) : (1)) iff

tr
< 0. (10)

Z aTle/pS

VM, sup Z
K seK

r
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(i) A€ (loo(p) : c(t)) iff
VM, supz |aps| MYPs < o0, (11)

28
J(as) C R > VM, lim (Z |ars — o] Ml/Ps> =0. (12)

s

(iii) A € (loo(p) : loo(t)) iff

tr
VM, sup <Z |ars|M1/pS> < 0. (13)
(iv) Ae (tp): f) uf

(a) For each s € N, set 0 < ps < 1. Next
Ps

sup sup < 0. (14)

NeF seN

Qrs
reN

(b) Foreachs €N, set1 < ps < S < oo. Next, if M is an integer
greater than 1, then

sup Z

NeF <

*

Pl
ZarsM_l < 0. (15)

reN

Lemma 3.2. [15] The following statements hold for an infinite matriz

A= (ars):
(i) A€ (p): loo) iff
(a) For each s € N, set 0 < ps <1. Next

sup |aps|P* < oo. (16)
r,s€N

(b) Foreachs €N, set1 < ps < S < oo. Next, if M is an integer
greater than 1, then

sup Z ‘amM_1

reN s

P}

< 0. (17)
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(ii) For each s € N, set 0 < ps < H < oo. Next, A= (ars) € ({(p) : ¢)
iff (16) and (17) hold, and

lim a,s = Bs, Vs € N, (18)
r—00

Theorem 3.3. Let J € F and J* = {s e N:r > s}NJ for J € F.
Define the sets ¢y, ca, c3, ¢4, C5, cg, 7 and cg as follows:
. oo} ,

¢ = U {a—(as)Ew:sng Z[r;i—zllaer/ps

M>1 rlseg
r—s+1
oy = U {a—(as)Ew supz [ - }a <oo},
M>1 q
c3 = U{a: (as) €w:3I(as) CR>
M>1
— 1
limz {T S ] ar—aS|M1/Ps:0},
r r—s
s q
r—s+1 _1p8
cy = U a=(as) €w: supz arM < 00, p,
Mol NeF r—=35 1y
r—s+1 b
cs = a:(as)ew:supsupz ar| < ooy,
NeFseN ‘L 75 1,
r s Z+1 Py
cg = U a=(as) Ew: supZZ[ ]ale <00,
s—2z
q

M>1 reN

— 1
Ta— {a = (as) € w: lim Z [8 i } a, exists for each s € N} ,
T—00 . V4 q

r DPs
[s — o+ 1] }
Z ay| <oop.
r,s€N s—z q
Then, [loo(V3,D)]* = [loo(V2,p)]" = c1, loo(V2,p))P = c2Ne3,

zZ=s

g = {a—(as)Ew: sup

2 a C4 1<ps§H<OO,VS€N,
qu’p)] B {05 , 0<ps<1,VseN.
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2 VB _ cgNer , 1<ps<H<o00,Vs €N,
(Ve p)l {67008 , 0<ps <1,VseN.

cg , 1<ps<H<o0,VseN,
cg , 0<ps<1,VseN.

(i = |

Proof. To prove a- dual, take the sequence a = (as) € w and h = (h)
as in defined in (3), then

ash, = Z [r oo 1Larfs = (C)r, (19)

— r—s
for all r € N, where the matrix C = (¢,5) defined by

—s+1
. e o 0<s<,
s —

0 , S§>T.

It follows from (19) that ab = (a,h,) € £, whenever b € £o(VZ, p) iff
Cf € {1 whenever f € £o(p). This means that a = (a,) € [(o(V2,p)]*
iff C € (lxo(p) : £1). Then we derive by (10) with ¢, = 1 for all r € N
that [(oo(V2,p)]* = c1.

Also, using the (14),(15) and (19), we can prove

2 a Cq4 1<ps§H<OO,V8€N,
[f(vq,p)] _{ cs , 0<ps<1,VseN,

can also be obtained in a similar way.
Now, consider the equation

;)ashs - Z[Z [s;fil}qn] a.

s=0 Lz=0
. L [s—z+1
919! Kb PH ISR
s—z
s=0 Lz=s q
where D = (d,s) is a matrix defined by

r s—z+1
drs = Zz:s [ s—z ]qaz , (0<s<r)
0 ) (3 > 7')

11
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Thus, we conclude from (20) that ah = (ashs) € c¢s whenever h = (h;) €

loo(V2,p) iff Df € loo whenever f = (f,) € £oo(p). That is to say that

a = (as) € lss(V2,p)]? iff D € (£oo(p) : ¢). Therefore, we derive from

(11), (12) and (20) with ¢, = 1 for all » € N that [Zoo(vg,p)]ﬁ = coNecs.
Also, using the (16),(17), (18) and (20), the proofs of the

cgNer , 1<ps < H<o0,Vs €N,
ctNeg , 0<ps<1,VseN

v = {

can also be obtained in a similar way. O

4 Certain Matrix Mappings on the Sequence
2 2
Spaces ((Vy,p) and ((V,p)
This section describes the matrix transformations from any given se-
quence space H into the spaces KOO(VS, p) and E(Vg, p) as well as from a
given sequence space H into the two previously mentioned spaces: The

equivalence “h € H 4 holds for every triangle A and any sequence space
H iff f = Ah € H”. The reason for this is that H4 = H.

Theorem 4.1. Set H = {loo,c,¢1}. Then
(i) A=(ars) € (Eoo(vg,p) 1) iff

A, € {Eoo(vg,p)}ﬁ for allr € N (21)
Be (b :H), (22)

(ii) A= (a5) € (E(Vg,p) 2 H) iff
A, € {B(Vg,p)}ﬁ for allT € N (23)
Be (4,:H), (24)

where B = (bys) with by = v [S_Z'H}qam for all r,s € N and

Z=S S—z
A, denotes the r'" row of the infinite matriz A.

Proof.We prove only part of (i). Let A = (ars) € (loo(V2,p) : H) and
h e Eoo(Vg,p) be any given sequence space. Then A, € {Eoo(vg,p)}ﬁ
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for all » € N. Taking f = ng, we conclude from A, € {Em(vg,p)}ﬂ
that

(Ab), = (Bf), for all r € N. (25)

Hence Bf € H for all f € lo. Thus B € ({ : H).

We have Ef = Ah which leads us to the consequence E € (co(p) : p).
To obtain a contradiction, suppose that (21) and (22) hold. Then (25)
again holds. It follows that Ah € H for all h € Em(vg,p). O

Corollary 4.2. The following statements hold for an infinite matrix

A= (ars):

(i) A€ (leo(V3,p) - t1(q)) iff

r—s+1
MYPs < 26
sgpzsz [ o Lars o0, (26)
. r—s+1
I(as) CR > llrmg [ - Lars — Oés' M/Ps — 0(27)
fs
supz Zbrle/ps < 0,
I sed

(ii) A€ (loo(VZ,p) : loo(q)) iff (26) and (27) hold, and

*

Py
sup (Z \brs]Ml/’“) < 00,
T
S

(iil) A€ (loo(V2,p) : clq)) iff (26) and (27) hold, and
supz ‘brs|M1/ps < 00,

liTmZ |bys — ag| MYPs =0
S

where B = (bys) is defined as in Theorem /.1.
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Corollary 4.3. The following statements hold for an infinite matrix

A = (as):
(i) A€ (U(V],p):t) iff
(a) Forl<ps <S8 <oo,

. " s—z+1
lim. Z[ Larz for all r € N,

S—Zz

Py

— 1
supz [S #t } a,ﬂZAM*1 < 00
TEN q
Ps
sup Z Z by M7 < .
NeFr reN
(b) For 0 < ps <1, (28) holds and
r Ps
s—z+1
sup Z [ } GQpy < 00
t,SEN 2=s s§—Zz q
Ps
sup sup brs| <
NeF seN reN

(i) A€ (U(V2,p): L) iff
(a) Forl<ps<S <oo, (28) and (29) hold, and

supz |bTSM

reN

1|P%
f < 0.

(b) For0<ps <1, (28) and (31) hold, and

sup |brs|P* < o0.
r,seN

(iii) A e (E(Vg,p) e) iff

(34)

(a) Forl<ps<S<oo, (28), (29), (33) and (34) hold, and

lim b,s = Bs, Vs € N.
7—00

(b) For0<ps <1, (28), (31), (33), (34) and (35) hold.

(35)
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5 Conclusions

A g-analogue is a mathematical notion that adds a parameter ¢ to clas-
sical mathematical structures or functions to make them more broad.
Existing mathematical and physical theories are expanded upon or al-
tered using g-analogues to make them relevant to a larger variety of
circumstances.

In this study, we use the g-analogue version of the second differ-
ence matrix, thus providing new results. For example, we defined new
paranormed sequence spaces and examined some of the algebraical and
topological properties of these sequence spaces.
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