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1 Introduction

In the present paper we consider a multiobjective generalized semi-
infinite programming problem (MGSIP in brief), defined as follows:

(P ) : min
x∈S

(
f1(x), . . . , fp(x)

)
,
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with the feasible set S,

S := {x ∈ Rn | g(x, y) ≥ 0, y ∈ Y (x)},

and the index set,

Y (x) := {y ∈ Rm | ht(x, y) ≤ 0, t ∈ T},

where the appearing functions fi : Rn → R as i ∈ I := {1, . . . , p} and
g, ht : Rn × Rm → R as t ∈ T are convex, the index set T is finite, and
the set-valued mapping x 7→ Y (x) is uniformly bounded, i.e., for each
x0 ∈ S there exists a neighborhood U of x0 such that the set

⋃
x∈U Y (x)

is bounded. The latter assumption implies that the mapping x 7→ Y (x)
is compact valued and upper semi-continuous at each x0 ∈ S (cf. [15]).

If the index set Y (x) is constant and independent of x, MGSIP co-
incides with “multiobjective semi-infinite programming problem”, de-
noted by MSIP. Necessary conditions for optimality of linear, convex,
and non-convex MSIPs have been studied in several articles; see, e.g.,
[1, 2, 8, 9, 10] and the references therein.

If p = 1, MGSIP coincides with the “generalized semi-infinite pror-
gramming problem (GSIP)” which is an active field in optimization the-
ory. In almost all existing literature on GSIP theory, in order to establish
optimality conditions for problem (P ), several kinds of lower-level con-
straint qualifications (CQ, briefly) are introduced. Extensive references
to these CQs and optimality conditions, as well as their applications and
historical notes, in the case that all appearing functions are continuously
differentiable (while not necessarily convex), can be found in the book by
Stein [18]. These CQs and optimality conditions have been extended to
the GSIPs with locally Lipschitz and DC (difference of convex functions)
data by Kanzi and Nobakhtian [11] and by Kanzi [6, 12], respectively.

More recently, Soroush [19] considered GSIPs with nondifferentiable
convex functions, and introduced a Mangasarian-Fromovitz type CQ
and some optimality conditions for the considered problems. The first
aim of this paper is to extension of [19] to multiobjective case. In the
case when all appearing functions of MGSIP are continuously differen-
tiable, some necessary first-order conditions have been given in [3], but
according to our latest information for the nonsmooth case nothing has
been done so far. The second aim of this paper is to fill this gap as



UPPER LEVEL QUALIFICATIONS AND OPTIMALITY IN
MULTIOBJECTIVE CONVEX GSIP 3

the first task. It should be noted that in [3] only one constraint qualifi-
cation of the Mangasarian-Fromovitz type is considered and under this
some necessary conditions are present at weakly efficient solutions and
properly efficient solutions of smooth MGSIPs. In this paper, we intro-
duce several (constraint and data) qualification conditions of the Abadie
and Guignard types (that are weaker than Mangasarian-Fromovitz type)
and express some optimality conditions in weakly efficient solutions and
efficient solutions of nonsmooth MGSIPs.

The structure of subsequent sections of this paper is as follows: In
Sec. 2, we establish the definitions and preliminary results which are
required thereafter. Section 3, which is devoted to the main results,
introduces some qualification conditions, expressing the relationships
between these qualification conditions, and setting several necessary op-
timality conditions for nondifferentiable convex MGSIPs.

2 Preliminaries

In this section, we briefly address some notations, basic definitions, and
standard preliminaries which are used in the sequel, from [4, 16].

The standard inner product of x, y ∈ Rn and the zero vector of
Rn are denoted by ⟨x, y⟩ and 0n, respectively. We will use symbols
R+ (respectively R++) to represent the set of non-negative (respectively
positive real) real numbers.

Let ϑ : Rn → R be a convex function, i.e.,

ϑ
(
λx+ (1− λ)y

)
≤ λϑ(x) + (1− λ)ϑ(y), ∀x, y ∈ Rn, λ ∈ [0, 1].

The subdifferential of ϑ at x0 ∈ Rn is defined by

∂ϑ(x0) := {ξ ∈ Rn | ϑ(x)− ϑ(x0) ≥ ⟨ξ, x− x0⟩, ∀x ∈ Rn}.

As we know from [4] that if ϑ : Rn → R is convex, its classic directional
differential ϑ′(x0; d), defined by

ϑ′(x0; d) := lim
ε→0

ϑ(x0 + εd)− ϑ(x0)

ε
,

exists, and we have

∂ϑ(x0) = {ξ ∈ Rn | ϑ′(x0; d) ≥ ⟨ξ, d⟩, ∀d ∈ Rn}. (1)
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Also, we know that ∂ϑ(x0) is always a non-empty compact convex set
in Rn, and if ϑ is differentiable at x0, then ∂ϑ(x0) = {∇ϑ(x0)}, in which
∇ϑ(x0) denotes the gradient of ϑ at x0. The following equality will be
used in sequel:

ϑ′(x0; d) = max{⟨ξ, d⟩ | ξ ∈ ∂ϑ(x0)}.

For a convex function ψ : Rn+m → R and a point (x0, y0) ∈ Rn+m,
let ∂xψ(x0, y0) ⊆ Rn and ∂yψ(x0, y0) ⊆ Rm denote the partial subd-
ifferentials of ψ(·, ·) at (x0, y0), which are defined as ∂ψ(·, y0)(x0) and
∂ψ(x0, ·)(y0), respectively.

Given a nonempty set D ⊆ Rn, the notations D, int(D), conv(D),
cone(D), conv(D), cone(D), and span(D) denote the closure of D, the
interior of D, the convex hull of D, the convex cone generated by D
(containing the origin), the closed convex hull of D, the closed convex
cone generated by D and the linear space spanned by D, respectively.
Also, the positive polar cone, the strictly positive polar set, the negative
polar cone, and the strictly negative polar set of D are respectively
defined as

D≥ :=
{
x ∈ Rn | ⟨x, d⟩ ≥ 0, ∀d ∈ D

}
,

D> :=
{
x ∈ Rn | ⟨x, d⟩ > 0, ∀d ∈ D

}
,

D≤ := −D≥, and D< := −D>.

Recall that if D = ∅, then each of the above four sets will be equal to
Rn by definition.

It should be mentioned [16, Theorem 6.9] that if Π := {Cω | ω ∈ Ω}
is a collection of convex sets in Rn, then:

cone
( ⋃
ω∈Ω

Cω

)
=

⋃
{Cω1 ,...,Cωn}⊆Π

⋃
(λ1,...,λn)∈Rn

+

n∑
ν=1

λνCων , (2)

conv
( ⋃
ω∈Ω

Cω

)
=

⋃
{Cω1 ,...,Cωn+1}⊆Π

⋃
(λ1,...,λn+1)∈△n+1

+

n+1∑
ν=1

λνCων , (3)

ri
(
conv

( ⋃
ω∈Ω

Cω

))
⊆

⋃
{Cω1 ,...,Cωn+1}⊆Π

⋃
(λ1,...,λn+1)∈△n+1

++

n+1∑
ν=1

λνCων ,(4)
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in which ri(C) denotes the relative interior of convex set C ⊆ Rn, and
△n+1

+ and △n+1
++ are defined as

△n+1
+ :=

{
(λ1, . . . , λn+1) ∈ Rn+1

+ |
n+1∑
ν=1

λν = 1
}
,

△n+1
++ :=

{
(λ1, . . . , λn+1) ∈ Rn+1

++ |
n+1∑
ν=1

λν = 1
}
.

Theorem 2.1. [4, Theorem 1.4.3] Let D ⊆ Rn be a compact set. Then,
conv(D) is compact.

We recall that for D ⊆ Rn and x0 ∈ D, the contingent cone (or
Bouligand tangent cone) of D at x0, denoted by Γ(D,x0), is defined as
the set of all vectors u ∈ Rn that can find two sequences {εℓ} ↓ 0 and
{uℓ} → u in such a way x0+ε

ℓuℓ ∈ D for all ℓ ∈ N. Notice that Γ(D,x0)
is always a closed cone (generally non-convex) in Rn.

3 Necessary Conditions

As the beginning of this section, we recall the following definition.

Definition 3.1. Let x̂ ∈ S be a feasible point for (P ).

(i) x̂ is said to be a weakly efficient solution for (P ) whenever there is
no x ∈ S satisfying fi(x) < fi(x̂) for all i ∈ I.

(ii) x̂ is said to be an efficient solution for (P ) whenever there is no
x ∈ S satisfying fi(x) ≤ fi(x̂) for all i ∈ I, and fk(x) < fk(x̂) for
some k ∈ I.

For each x0 ∈ S, we define the index set of active constraints and
the lower level problem at x0, respectively as

Y0(x0) := {y ∈ Y (x0) | g(x0, y) = 0},

LL(x0) : min g(x0, y), s.t. y ∈ Y (x0).
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Also, the set (probably empty) of active inequalities of LL(x0) at each
y0 ∈ Y (x0) is denoted by T0(x0, y0),

T0(x0, y0) := {t ∈ T | ht(x0, y0) = 0}.

If y0 ∈ Y0(x0), then the Fritz-John (FJ) multipliers set of LL(x0) at
y0 ∈ Y0(x0) is denoted by

F (x0, y0) :=

{
(α, β) ∈ R+ × R|T0(x0,y0)|

+

∣∣∣∣∣∣∣∣
α+

∑
t∈T0(x0,y0)

βt = 1

0m ∈ ∂yLx0
y0 (x0, y0, α, β)

}
,

where Lx0
y0 refers to Lagrangian function, defined as

Lx0
y0 (x, y, α, β) := αg(x, y) +

∑
t∈T0(x0,y0)

βtht(x, y).

For each k ∈ I and x0 ∈ S, put

F(x0) :=

p⋃
i=1

∂fi(x0), Fk(x0) :=
⋃

i∈I\{k}

∂fi(x0),

D(x0) :=
⋃

y∈Y0(x0)

( ⋃
(α,β)∈F (x0,y)

∂xLx0
y (x0, y, α, β)

)
.

We should mention that D(x0) is nonsmooth counterpart of V (x0) that
is defined in [5, 3].

Let x0 ∈ S be a feasible point for (P ). For each k ∈ I set,

Qk(x0) := S ∩
{
x ∈ Rn | fi(x) ≤ fi(x0), ∀i ∈ I \ {k}

}
,

with the convention that Q1(x0) = S when p = 1.
The following lemma from [13] will be used below.

Lemma 3.2. The following assertions are always true

(i): If x̂ is a weakly efficient solution for (P ), then

F<(x̂) ∩ Γ (S, x̂) = ∅.
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(ii): If x̂ is an efficient solution for (P ), then(
∂fi(x̂)

)< ∩ Γ
(
Qi(x̂), x̂

)
= ∅, ∀i ∈ I.

Now, we define four data qualifications in the Abadie type for (P ).

Definition 3.3. We say that (P ) satisfies

� the first Abadie data qualification, denoted by FADQ, at
x0 ∈ S if

F<(x0) ∩D≥(x0) ⊆ Γ(S, x0).

� the second Abadie data qualification, denoted by SADQ, at
x0 ∈ S if

F≤(x0) ∩D≥(x0) ⊆
p⋂

i=1

Γ
(
Qi(x0), x0

)
.

� the first Guignard data qualification, denoted by FGDQ,
at x0 ∈ S if

F<(x0) ∩D≥(x0) ⊆ conv
(
Γ(S, x0)

)
.

� the second Guignard data qualification, denoted by SGDQ,
at x0 ∈ S if

F≤(x0) ∩D≥(x0) ⊆
p⋂

i=1

conv
(
Γ
(
Qi(x0), x0

))
.

Obviously, FADQ (resp. SADQ) is stronger than FGDQ (resp.
SGDQ) at each feasible point. Also, the inclusions F<(x0) ⊆ F≤(x0)

and
⋂p

i=1 Γ
(
Qi(x0), x0

)
⊆ Γ(S, x0) and

⋂p
i=1 conv

(
Γ
(
Qi(x0), x0

))
⊆

conv
(
Γ(S, x0)

)
imply that FADQ (resp. FGDQ) is weaker than SADQ

(resp. SGDQ)at x0, i.e.,

SADQ −→ FADQ
↓ ↓

SGDQ −→ FGDQ
.
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Theorem 3.4. (KKT Necessary Condition Under FADQ): Sup-
pose that x̂ is a weakly efficient solution for (P ), and that FADQ holds
at x̂.

(i): Then, there exist some non-negative scalars λi ∈ R+ as i ∈ I,
satisfying

∑p
i=1 λi = 1 and

0n ∈
p∑

i=1

λi∂fi(x̂)− cone
(
D(x̂)

)
.

(i): If in addition, cone
(
D(x̂)

)
is closed, there exist some yν ∈ Y0(x̂),

(αν , βν) ∈ F (x̂, yν), and µν ∈ R+ as ν = 1, . . . , q, as well as some
non-negative numbers λi ∈ R+ as i ∈ I, satisfying

∑p
i=1 λi = 1

and

0n ∈
p∑

i=1

λi∂fi(x̂)−
q∑

ν=1

µν∂xLx̂
yν (x̂, y

ν , αν , βν).

Proof.
(i): If conv

(
F(x̂)

)
∩cone

(
D(x̂)

)
= ∅, then the compactness of conv

(
F(x̂)

)
(by Theorem 2.1) and the closedness of cone

(
D(x̂)

)
, allows us to use the

strong separation theorem [16, Corollary 11.4.1]. Thus,(
conv

(
F(x̂)

))<
∩
(
cone

(
D(x̂)

))≥
̸= ∅.

Since
(
conv

(
F(x̂)

))<
= F<(x̂) and

(
cone

(
D(x̂)

))≥
= D≥(x̂), the above

inclusion and the FADQ assumption imply that

∅ ≠ F<(x̂) ∩D≥(x̂) ⊆ F<(x̂) ∩ Γ(S, x̂), (5)

which contradicts Lemma 3.2(i). Thus,

conv
(
F(x̂)

)
∩ cone

(
D(x̂)

)
̸= ∅,

and so
0n ∈ conv

(
F(x̂)

)
− cone

(
D(x̂)

)
.

This inclusion and (3) prove the result.
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(ii): The result is a direct consequence of part (i) and the structure
of convex cones (2). □

The following two theorems are required for presenting the KKT
necessary condition under FGDQ.

Theorem 3.5. Let φ : Rn → R be a convex function and x0 ∈ Rn.
Then, φ′(x0; ·) is a linear function (respect to direction) if and only if
φ(·) is differentiable at x0.

Proof. If φ(·) is differentiable at x0, we know φ′(x0; d) = ⟨∇φ(x0), d⟩ for
all d ∈ Rn, and so φ′(x0; ·) is linear. Conversely, If φ′(x0; ·) is linear func-
tion, then it is convex and differentiable at 0n, and so ∂φ′(x0; ·)(0n) =
{u} for some u ∈ Rn. Hence, by the definition of convex subdifferential
we have

{u} =
{
ξ ∈ Rn | φ′(x0; ·)(z)−

=0︷ ︸︸ ︷
φ′(x0; ·)(0n) ≥ ⟨ξ, z − 0n⟩, ∀z ∈ Rn

}
=

{
ξ ∈ Rn | φ′(x0; z) ≥ ⟨ξ, z⟩, ∀z ∈ Rn

}
= ∂φ(x0),

where the last equality holds by (1). Consequently, ∂φ(x0) is singleton,
and so, φ(·) is differentiable at x0. □

Theorem 3.6. Suppose that the fi functions as i ∈ I are differentiable.
Then, the following assertions are always true:

(i): If x̂ is a weakly efficient solution for (P ), then{
∇fi(x̂) | i ∈ I

}< ∩ conv
(
Γ (S, x̂)

)
= ∅.

(ii): If x̂ is an efficient solution for (P ), then{
∇fi(x̂)

}< ∩ conv
(
Γ
(
Qi(x̂), x̂

))
= ∅, ∀i ∈ I.

Proof.
(i): Suppose, on the contrary, that there exists a vector d ∈ Rn such
that

d ∈
{
∇fi(x̂) | i ∈ I

}< ∩ conv
(
Γ (S, x̂)

)
. (6)

Then, there exists a sequence {dℓ}∞ℓ=1 in conv
(
Γ (S, x̂)

)
converging to

d. Also, for each ℓ ∈ N we can find some vectors dνℓ ∈ Γ (S, x̂) as



10 G. EDALAT, N. KANZI AND M. ADIB

ν = 1, . . . , nℓ and some non-negative numbers αν
ℓ as ν = 1, . . . , nℓ such

that

dℓ =

nℓ∑
ν=1

αν
ℓ d

ν
ℓ ,

nℓ∑
ν=1

αν
ℓ = 1.

Owing to Lemma 3.2(i), dνℓ ∈ Γ (S, x̂) as ν = 1, . . . , nℓ, and the fact
that F(x̂) =

{
∇fi(x̂) | i ∈ I

}
, we conclude that ⟨∇fi(x̂), dνℓ ⟩ ≥ 0 for all

ν = 1, . . . , nℓ, for all ℓ ∈ N, and for all i ∈ I. Thus, for all ℓ ∈ N and for
all i ∈ I, we have

⟨∇fi(x̂), dℓ⟩ = ⟨∇fi(x̂),
nℓ∑
ν=1

αν
ℓ d

ν
ℓ ⟩ =

nℓ∑
ν=1

αν
ℓ ⟨∇fi(x̂), dνℓ ⟩ ≥ 0.

Consequently, for all i ∈ I, we obtain that

⟨∇fi(x̂), d⟩ = ⟨∇fi(x̂), lim
ℓ→∞

dℓ⟩ = lim
ℓ→∞

⟨∇fi(x̂), dℓ⟩ ≥ 0,

which contradicts (6). The proof is complete.

(ii): Based on Lemma 3.2(ii), the proof is same as above. □

Now, we can state the KKT necessary condition under FGDQ.

Theorem 3.7. (KKT Necessary Condition Under FGDQ): Sup-
pose that x̂ is a weakly efficient solution for (P ), that FADQ holds at x̂,
and that the fi functions are differentiable as i ∈ I.

(i) Then, there exist some non-negative scalars λi ∈ R+ as i ∈ I, satis-
fying

∑p
i=1 λi = 1 and

p∑
i=1

λi∇fi(x̂) ∈ cone
(
D(x̂)

)
.

(ii) If in addition, cone
(
D(x̂)

)
is closed, there exist some yν ∈ Y0(x̂),

(αν , βν) ∈ F (x̂, yν), and µν ∈ R+ as ν = 1, . . . , q, as well as some
non-negative numbers λi ∈ R+ as i ∈ I, satisfying

∑p
i=1 λi = 1

and
p∑

i=1

λi∇fi(x̂) ∈
q∑

ν=1

µν∂xLx̂
yν (x̂, y

ν , αν , βν).
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Proof.
(i): If

{
∇fi(x̂) | i ∈ I

}
∩ cone

(
D(x̂)

)
= ∅, by repeating the proof of

relation (5) in proof of Theorems 3.4 and 3.6(i), we get

∅ ≠
{
∇fi(x̂) | i ∈ I

}<
(x̂) ∩D≥(x̂) ⊆ F<(x̂) ∩ conv

(
Γ(S, x̂)

)
,

which contradicts Theorem 3.6(i). Thus, same as the proof of Theorem
3.4(i), we obtain that

0n ∈ conv
({

∇fi(x̂) | i ∈ I
})

− cone
(
D(x̂)

)
.

The result is obtained from (3) and the above inclusion.

(ii): Based on Theorem 3.6(ii), the proof is stated similar to previous
part. □

Now, we define the optimal value function of LL(x) as follows:

Ψ(x) :=

{
inf

{
g(x, y) | y ∈ Y (x)

}
if Y (x) ̸= ∅,

+∞ if Y (x) = ∅.

It should be noted that due to the importance of function Ψ(·), which
is called “marginal function”, many researches have worked on its prop-
erties and the upper estimate of its nonconvex subdifferentials see, e.g.,
[14, 17] and the references therein. Soroush [19] proved Ψ(·) is a convex
function, and so, ∂Ψ(x0) is well-defined.

In many situations, we obtain positive KKT multiplier associated
with vector-valued objective function

(
f1(x), . . . , fp(x)

)
, some of the

multipliers may be equal to zero. We say that strong KKT condition
holds for (P ), when the KKT multipliers are positive for all components
of the objective function. The aim of next theorems is to derive the
strong KKT types necessary optimality conditions for the (P ).

As we noted in Section 1, if the index set Y (x) is independent of
x, the problem (P ) increases to an MSIP. It is noteworthy that the
following definition is a direct generalization of the PLV property that
is provided for MSIPs (see [2, 7]).

Definition 3.8. We say that the generalized PLV (GPLV) property
holds at x0 ∈ S when ∂Ψ(x0) ⊆ conv

(
D(x0)

)
.
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Now, the following theorem states a strong KKT necessary condition
at an efficient (not at a weakly efficient) solution of (P ) under SADQ.

Theorem 3.9. (Strong KKT Necessary Condition Under SADQ):
Suppose that x̂ is an efficient solution for (P ), that the GPLV property
and SADQ hold at x̂. If the condition

F≤(x̂) ⊆ {0n} ∪
p⋃

i=1

(
∂cfi(x̂)

)<
, (7)

is met, then there exist some yν ∈ Y0(x̂), (α
ν , βν) ∈ F (x̂, yν), and µν ∈

R+ as ν = 1, . . . , q, as well as some positive numbers λi ∈ R++ as i ∈ I,
satisfying

∑p
i=1 λi = 1 and

0n ∈
p∑

i=1

λi∂fi(x̂)−
q∑

ν=1

µν∂xLx̂
yν (x̂, y

ν , αν , βν).

Proof. We claim that

ri
(
conv

(
F(x̂)

))
∩ cone

(
D(x̂)

)
̸= ∅. (8)

By contradiction, we suppose that (8) does not hold. Thus, by [16,
Theorem 11.7] and the proper separation theorem [16, Theorem 11.3]
and noting that cone

(
D(x̂)

)
is a convex cone, it follows that there is

a hyperplane Hu := {x ∈ Rn | ⟨x, u⟩ = 0} for some u ∈ Rn \ {0n}
separating conv

(
F(x̂)

)
and cone

(
D(x̂)

)
properly. In other words, there

exists a vector u ∈ Rn satisfying

0n ̸= u ∈
(
conv

(
F(x̂)

))≥
∩
(
cone

(
D(x̂)

))≥
= F≥(x̂) ∩D≥(x̂).

Thus, owning to SADQ and condition (7), we conclude that( p⋃
i=1

(
∂fi(x̂)

)<) ∩
( p⋂

i=1

Γ
(
Qi(x̂), x̂

))
̸= ∅.

This relation together with( p⋃
i=1

(
∂fi(x̂)

)<)∩( p⋂
i=1

Γ
(
Qi(x̂), x̂

))
=

p⋃
i=1

[(
∂fi(x̂)

)<∩( p⋂
j=1

Γ
(
Qj(x̂), x̂

))]
,
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obtains a k ∈ I such that(
∂fk(x̂)

)< ∩
( p⋂

j=1

Γ
(
Qj(x̂), x̂

))
̸= ∅.

Thus, for some k ∈ I we have(
∂fk(x̂)

)< ∩ Γ
(
Qk(x̂), x̂

)
̸= ∅, (9)

which contracts Lemma (3.2)(ii). This contradiction proves the claimed
(8), and hence

0n ∈ ri
(
conv

(
F(x̂)

))
− cone

(
D(x̂)

)
.

The above inclusion together with (2) and (4) justifies the result. □

Theorem 3.10. (Strong KKT Necessary Condition Under SGDQ):
Suppose that x̂ is an efficient solution for (P ), that the GPLV property
and SADQ hold at x̂, and the fi functions are differentiable at x̂ as i ∈ I.
If the condition

span
({

∇fi(x̂) | i ∈ I
})

= Rn, (10)

is met, then there exist some yν ∈ Y0(x̂), (α
ν , βν) ∈ F (x̂, yν), and µν ∈

R+ as ν = 1, . . . , q, as well as some positive numbers λi ∈ R++ as i ∈ I,
satisfying

∑p
i=1 λi = 1 and

p∑
i=1

λi∇fi(x̂) ∈
q∑

ν=1

µν∂xLx̂
yν (x̂, y

ν , αν , βν).

Proof. At the first step of proof, we claim that the condition (10)
implies the condition (7). It is easy to see that

span
({

∇fi(x̂) | i ∈ I
})

= Rn ⇐⇒
cone

({
∇fi(x̂),−∇fi(x̂) | i ∈ I

})
= Rn =⇒(

cone
({

∇fi(x̂),−∇fi(x̂) | i ∈ I
}))≤

= {0n}.

Thus,

{0n} =
{
∇fi(x̂),−∇fi(x̂) | i ∈ I

}≤

=
{
∇fi(x̂) | i ∈ I

}≤ ∩
{
∇fi(x̂) | i ∈ I

}≥
.
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Consequently,

F≤(x̂) ⊆ Rn \
(
F≥(x̂) \ {0n}

)
= {0n} ∪

(
Rn \ F≥(x̂)

)
=

{0n}∪{∇f1(x̂)}<∪. . .∪{∇fp(x̂)}< = {0n}∪
p⋃

i=1

(
∂fi(x̂)

)<
,

and hence, (7) holds. Now, we claim that (8) holds. Otherwise, by same
as proofs of relation (9) and Theorem 3.6 we conclude that{

∇fi(x̂)
}< ∩ conv

(
Γ
(
Qi(x̂), x̂

))
= ∅, for all i ∈ I,

in which contradicts Theorem 3.6(ii). Thus, (8) holds. The rest of the
proof is same as the proof of Theorem 3.9. □

The following example shows both the truth of Theorem 3.4 and the
impossibility of removing condition (7) from Theorem 3.9.

Example 3.11. Put in problem (P ), h1(x, y) = |x1| + |x2| + |y| − 1,
h2(x, y) = −y, g(x, y) = x1 + y, f1(x) = −x1, and

f2(x) = sup
{
x1u1 + x2u2 | u21 + u22 + 2u2 ≤ 0

}
.

In fact, f2(·) is the support function of convex set

U =
{
(u1, u2) ∈ R2 | u21 + (u2 + 1)2 ≤ 1

}
.

It is easy to see that x̂ = 02 is an efficient point of the problem.
Also, a short calculation shows that Y0(02) = {0}, T0(02, 0) = {2},
F (02, 0) = {(1

2
,
1

2
)}, D≥(02) = {(1

2
, 0)}≥ = R+ × R, F≤(02) = {0}×R+,

Q1(02) = {0}×R, and Q2(02) = R+×R. It should be observed that the
condition (7) fails whereas SADQ (and hence, FADQ) holds at x̂. The
GPLV property is satisfied at x̂, clearly. It is not hard to see that there
are not λ1, λ2 ∈ R++ and µ1, α, β2 ∈ R+ satisfying

02 ∈ λ1{(−1, 0)}+ λ2U − µ1
(
α{(1, 0)}+ β2{02}

)
.

Also, we can see the above inclusion holds with λ1 = 0, λ2 = 1, µ1 = 0,
and α = β2 = 1.
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