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Abstract. A subset A of a topological space X is called locally closed
if A = G∩B, where G is an open subset and B is a closed subset of X;
X is called submaximal if every subset of X is locally closed. In this
paper, we show that if βX, the Stone-Čech compactification of X, is a
submaximal space, then X is a compact space and hence βX = X. We
observe that every submaximal Hausdorff space is an ncd-space (a space
in which does not have a nonempty compact and dense in itself subset).
It turns out that every dense in itself Hausdorff space is pseudo-finite
if and only if it is a (cei, f)-space (a space in which every compact
subspace of X with empty interior is finite). A new characterization
for submaximal spaces is given. Given a topological space (X, T ), the
collection of all locally closed subsets of X forms a base for a topology
on X which is denoted by Tl. We study some relations between (X, T )
and (X, Tl). For example, we show that (X, T ) is a locally indiscrete
space if and only if T = Tl.
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1 Introduction

Throughout this paper, we consider topological spaces on which no sep-
aration axioms are assumed unless explicitly stated. The topology of a
space is denoted by T and (X, T ) will be replaced by X if there is no
chance for confusion. For a subset A of (X, T ), the closure, the interior,
the boundary and the set of accumulation points of A are denoted by
clT (A) or clX(A), intT (A) or intX(A), FrT (A) or FrX(A) and lX(A),
respectively. In places where there is no chance for confusion A, A◦, ∂A
and A′ stands for clT (A), intT (A), FrX(A) and lX(A), respectively. A
subset A of a topological space X is called locally closed if A = G ∩B,
where G is an open subset and B is a closed subset of X. This concept
was introduced in Bourbaki [11] and then studied in [17]. Of course,
according to the word local, the following definition seems more accu-
rate. We say that A is locally closed at x ∈ A if for every open subset
U which containing x, there exists an open subset V , containing x, such
that V ∩ A is closed in V . It is easily seen that the set A is locally
closed at a point x ∈ A, if there exists an open subset U , containing
x, such that U ∩ A is closed in U . We say A is locally closed if it is
locally closed at every point x ∈ A. We will denote the collections of all
locally closed sets of (X, τ) by LC(X, τ) or briefly LC(X). If A ⊆ X
is open, closed or locally closed respect to the topology T on X, then
we write sometimes to avoid confusion, T -open, T -closed or T -locally
closed, respectively. The space X is called a submaximal space if every
subset of X is locally closed, see [4]. Since the intersection of two locally
closed sets is locally closed, the family of T -locally closed sets forms a
base for a finer topology Tl on X. For a Tychonoff (completely regular
Hausdorff) space X, βX is the Stone-Čech compactification and υX is
the Hewitt realcompactification of X. It is well-known that X is com-
pact, pseudocompact or realcompact if and only if βX = X, βX = υX
or υX = X, respectively. For a Tychonoff space the symbol C(X) (resp.
C∗(X)) denotes the ring of all continuous real valued (resp. all bounded
continuous real valued) functions defined on X.

A space X is said to be

a) a door space if every set is either open or closed;

b) a T 1
2
-space if every singleton is either open or closed;
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c) a TD-space if every singleton is locally closed, see [10] and [15];

d) an Alexandroff space, if every intersection of open sets is open.
Equivalently, X is Alexandroff if and only if every x ∈ X has a least
open neighborhood;

e) a locally indiscrete if every open set is closed.

For details about Tychonoff P -spacs, see [Exercise 4J, 18]. A door
space is submaximal and a submaximal space is T 1

2
. Every T1-space

with finite number of nonisolated points is submaximal. A nonempty
resolvable space never submaximal.

For more information about the locally closed sets, see [4,12, 17],
about the submaximal spaces, see [20, 10, 1, 4, 12, 9, 3], about the door
spaces, see [9, 14], about the T 1

2
-spaces, see [5] and about Alexandroff

space, see [1, 28]. For details about βX and υX, see [18, 29, 19, 24] and
about other concepts of general topology, see [16, 31].

Section 2 of this paper is devoted to investigating some separation
properties between (X, T ) and (X, Tl). For example, we show that
(X, Tl) is discrete if and only if (X, T ) is a TD-space. In Section 3,
we show that if βX is submaximal, then X is compact and therefore, in
this case, we conclude that X = βX. We observe that every submaximal
Hausdorff space is an ncd-space (a space which does not have a nonempty
compact and dense in itself subset). In this section, a new character-
ization for submaximal spaces is given. In Section 4, we study and
investigate the behavior of locally indiscrete spaces. Furthermore, we
introduce some lc-properties such as lc-regular and lc-completely regu-
lar and compare them with the concepts regular and completely regular.
We prove that every clopen subset of an lc-compact space is lc-compact.

2 Locally Closed Sets and Tl-Topology

Every submaximal space is a TD-space, see [Corollary 3.5, 10]. Recall
that the space X is submaximal if and only if every subset of X is locally
closed, see [Theorem 4.2, 12] and also every subspace of a submaximal
space is submaximal, see [Theorem 1.1, 12].

The proof of the following proposition is straightforward.
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Proposition 2.1. The following statements are equivalent, for a subset
A of the space X.
a) A is a locally closed subset in X.
b) For every x ∈ A there is an open set U ⊆ X such that x ∈ U and
A ∩ U is closed in U .
c) A = H ∩A, where H is an open subset of X.
d) A = E − F , where E and F are closed subsets of X.
e) A−A is a closed subset in X.
f) A ⊆ (A ∪ (X −A))◦.
g) A ∪ (X −A) is an open subset of X.
h) A is an open subset in A.

Remark 2.2. a) The complement of a locally closed (called co-locally
closed) set is not necessarily locally closed. For example, A = { 1

n :
n = 1, · · · } is a locally closed set in R while by Proposition 2.1, R − A
is not locally closed. For another example we consider the topology
T = {(a,∞) : a ∈ R} ∪ {∅,R} on R. Now A = (1, 2] is a locally closed
set in R while R−A is not locally closed.
b) Let A and B be subsets of a space X. We say that A and B are
separated if A ∩ B = B ∩ A = ∅. The union of two separated locally
closed sets is locally closed, see [Proposition 4, 17].
c) If A is preopen, (that is, A ⊆ int(cl(A))) then it is open if and only if
it is locally closed.
d) Let X be a topological space and Y a subspace of X. A set A ⊆ Y
is locally closed in Y if and only if A = Y ∩B, where B is locally closed
in X.
e) In a locally compact Hausdorff space, a subset is locally closed if and
only if it is a locally compact subset, see [Theorem 18.4, 31] or [Corollary
3.3.10, 16].

Given a topological space (X, T ), the collection of all locally closed
subsets of X forms a base for a topology on X which is denotes by Tl. It
is clear that T ⊆ Tl and in locally indiscrete spaces we have T = Tl, see
Proposition 4.3. Also, (X, T ) is a indiscrete space if and only if (X, Tl)
is a indiscrete space if and only if (X, Tl) is a connected space. In the
sequel, we study some relations between (X, T ) and (X, Tl).



LOCALLY CLOSED SETS, SUBMAXIMAL SPACES ... 5

Proposition 2.3. Let X be a topological space. The following state-
ments hold.

a) (X, T ) is a T0-space if and only if (X, Tl) is a T0-space.

b) (X, T ) is a TD-space if and only if (X, Tl) is discrete.

Proof. (a ⇒) It is trivial.
(a ⇐) Let x, y ∈ X and x ̸= y. Hence there is G ∈ Tl, say x ∈ G and
y /∈ G. Suppose that G = U ∩ C, where U,X − C ∈ T . Now, if y /∈ U ,
then we are done; otherwise, y ∈ X − C and x /∈ X − C.

(b ⇒) Suppose that x ∈ X. By hypothesis, {x} is locally closed and
so {x} ∈ Tl. Therefore, (X, Tl) is discrete.

(b ⇐) Assume that x ∈ X. By hypothesis, {x} ∈ (X, Tl) and so {x}
is a union of locally closed sets in X. It follows that {x} is locally closed.
□

Clearly, if (X, T ) is a T1-space then (X, Tl) is discrete. Hence, in
Proposition 2.3, we cannot put T1 instead of T0.

Remark 2.4. Every TD-space is T0. The converse is false. For example,
we consider the topology T = {(a,∞) : a ∈ R} ∪ {∅,R} on R.

Recall that if T be the Alexandroff topology on X, then every ele-
ment x ∈ X has a minimal open neighborhoodMx =

⋂
{G ∈ T : x ∈ G}.

Lemma 2.5. Every Alexandroff T0-space is TD.

Proof. It follows from the fact that {x} = Mx ∩ {x}, for every x ∈ X.
□

Remark 2.6. a) Let (X, T ) be an Alexandroff space. It is clear that
every intersection of locally closed sets is locally closed.
b) If (X, T ) is an Alexandroff space, then (X, Tl) is Alexandroff. The
converse is false. For example, (R, Tl) is Alexandroff but (R, Tu), where
Tu denotes usual topology on R, is not Alexandroff.

Example 2.7. A continuous image of a TD-space need not be TD-space.
Let X be a space with cardinality ≥ 2 equipped with the indiscrete
topology and f : R → X be a surjective map.
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If
∏

α∈I Xα is a TD-space, then Xα is a TD-space for each α ∈ I.
The converse is true if I is finite. In the next example we see that an
arbitrary product of TD-spaces need not be TD.

Example 2.8. Let Xn = {a, b} and Tn = {∅, {a}, X}, for any n ∈ N
and let X =

∏
n∈NXn. Suppose that x = (xn) ∈ X, where xn = a for

every n ∈ N. It is clear that x belongs to every nonempty open set in
X. We claim that {x} is not a locally closed set. Otherwise, there is
an open set G and a closed set F such that {x} = G ∩ F . If F ̸= X,
then x ∈ F ∩ (X − F ) which is not true. If F = X, then {x} = G. But
G =

∏
n∈NGn, where Gn = Xn, for every n /∈ I, which I ⊆ N is finite

and this is impossible. It consequence that {x} is not locally closed.

Every T 1
2
-space is TD. The converse is not true. See the next exam-

ple.

Example 2.9. Let X = {a, b, c} and T = {∅, {a}, {a, b}, X}. Clearly,
X is a TD-space while the set {b} neither open nor closed. For another
example, let X = N and T = {En : n = 1, · · · } ∪ {∅}, where En =
{n, n + 1, · · · }, for any n ∈ N. Since {n} = En ∩ (N − En+1), we infer
that N is a TD-space. It is clear that the set {2} neither open nor closed,
so N is not a T 1

2
-space.

In the next example, we see that even if we add one cluster point
to a locally closed set, the resulting set may not be locally closed. In
other words, if A is locally closed and x ∈ A − A, then A ∪ {x} is not
necessarily locally closed.

Example 2.10. Let 0 /∈ A ⊆ R be such that A′ = {0} and B =
(0,+∞)−A. Clearly, B is an open subset and so is locally closed. But
0 ∈ B′ and B ∪ {0} is not locally closed.

3 Submaximal and Pseudo-finite Spaces

A space X is called a pseudo-finite (resp. pseudo-discrete) space if every
compact subspace of X is finite (resp. has finite interior). The term cf
space for this topological space were introduced in [25] and the term
pseudo-finite has also been used to describe such spaces, see [30]. In
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this work, we prefer to use the terms “(c, f)-space” and “(c, fi)-space”
instead of the terms “pseudo-finite” and “pseudo-discrete”, respectively.
Every (c, f)-space is (c, fi)-sapce, but not conversely. For example, we
consider the spaceQ of rational numbers. To see a nontrivial example see
the following example. Recall that C(X) endowed with the m-topology
is denoted by Cm(X).

Example 3.1. Let X be an infinite space. Then [Corollary 4.2, 7]
conclude that Cm(X) is a (c, fi)-space. On the other hand the subset
A = {0, 1, 12 , · · · , } as a set of constant functions is an infinite compact
subset of Cm(X). This shows that Cm(X) is not a (c, f)-space. Also,
C(X) under the uniform topology, is a (c, fi)-space which is not a (c, f)-
space.

Recall that a space X is said to be dense in itself or crowded if it has
no isolated points, see [16] and [13]. Also, a topological space is said to
be an MI-space if it crowded and submaximal space, see [20, 23]. In the
main theorem of [23], it is shown that each MI-space is a (c, f)-space.
We also recall that a space X is said to be scattered if every subset of
X has an isolated point.

Definition 3.2. A space X is called
a) a (cd, f)-space, if every compact dense in itself subspace of X is finite.
b) a (cei, f)-space, if every compact subspace of X with empty interior
is finite.
c) an ncd-space, if it does not have a nonempty compact and dense in
itself subset.
d) a (cl, f)-space, if every compact subset A of X with condition A ⊆ X ′

is finite.
e) a (c, ei)-space, if every compact subset of X has an empty interior.
f) an (s, nd)-space, if every singleton subset of X is nowhere dense.

Remark 3.3. a) Every (c, f)-space is (cd, f)-space, (cei, f)-space and
(cl, f)-space.
b) Every (cl, f)-space is a (cd, f)-space.
c) Q is an ncd-space. To see this let A be a dense in itself compact
subset of Q. Then A is a dense in itself subset of R and hence it is an
uncountable set which is not true.
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d) Q is neither a (cl, f)-space nor a (cei, f)-space.
e) Every T0-space is an ncd-space if and only if it is a (cd, f)-space. For
the reverse, we mention that, every finite T0-space has an isolated point.
f) The space Q is a (c, ei)-space.
g) Every (c, ei)-space is a (c, fi)-space. The converse is true if the space
is a dense in itself T1-space.
h) Any space that is both (c, ei)-space and (cei, f)-space is (c, f)-space.
i) Every dense in itself T1-space is an (s, nd)-space.
j) Every (s, nd)-space is dense in itself.
k) The space R equipped with the topology introduce in Remark 2.4 is
an (s, nd)-space.

Proposition 3.4. A compact space is scattered if and only if it is an
ncd-space.

Proof. It is clear that every scattered space is a ncd-space. For the
converse suppose that X is an ncd-space and A ⊆ A′ where A is a
subset of X. Then A′ is closed and hence it is a compact set. Also A′

is a dense in itself and so we conclude that A′ = ∅. This implies that
A = ∅, that is X is scattered. □

The least cardinal number of a nonempty open subset of a topological
space X is said to be the dispersion character of X. For details see [20].

Proposition 3.5. [Page 321 of 20] Every T0-space is dense in itself if
and only if its dispersion character is infinite.

Proof. Let X be a T0-space and Y be a nonempty open set of X
with least cardinal number. Clearly, Y is a T0-space and Y ⊆ Y ′. On
the contrary assume that Y = {x1, · · · , xn}. Suppose that Uxi be the
smallest open set of Y which containing xi. Since Y ⊆ Y ′, there is
xi ̸= xj ∈ Uxi . Since Y is a T0-space, we infer that Uxj ⊊ Uxi . By
continuing this process, we come to the conclusion that there is a xk ∈ Y
such that (Uxk

− {xk}) ∩ Y = ∅ which is contradicts to xk ∈ Y ′. The
converse is trivial. □

Question: Is every (cei, f)-space an ncd-space?

We give an affirmative answer to this question, in case the space is
Hausdorff.
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Proposition 3.6. Every Hausdorff (cei, f)-space is an ncd-space.

Proof. Let X be a Hausdorff (cei, f)-space and let K be a dense in
itself compact subset of X. On the contrary assume that K ̸= ∅, then
by Proposition 3.5 K is infinite. Hence, K contains a copy of N, namely
N . Therefore, N is an infinite compact subset of K. We claim that
N

◦
= ∅, to reach a contradiction. Suppose that x0 ∈ N

◦
. Hence there

is an open set G ⊆ X such that x0 ∈ G ⊆ N . Now there exists an open
set H in X such that H ⊆ G and H ∩ N = {t0}, where t0 ∈ X. We
claim that H ∩ K = {t0}. Otherwise, assume that t0 ̸= t1 ∈ H ∩ K.
Hence, there are two open subsets U and V in X such that t0 ∈ U ,
t1 ∈ V and U ∩ V = ∅. Put W = H ∩ V . Then t1 ∈ W ⊆ N and
so W ∩ N ̸= ∅. On the other hand we have W ∩ N ⊆ H ∩ N = {t0}.
This implies that W ∩N = {t0}. Hence, t0 ∈ W ⊆ V which is not true.
Therefore H ∩K = {t0}, that is, t0 is an isolated point of K which is a
contradiction. □

Every (c, f)-space is both (cei, f)-space and ncd-space. The con-
verse is not true, in general. For example we consider the space X =
{0, 1, 12 ,

1
3 , · · · }. In the following proposition we show that the converse

is valid if the space is a dense in itself T1-space.

Proposition 3.7. Let X be a dense in itself T1-space, (cei, f)-space and
ncd-space. Then X is a (c, f)-space.

Proof. Let K be a compact subset of X. Then K − K◦ is compact
with empty interior. Hence by hypothesis is finite. Let I be the set of
isolated points of K. Since X is dense in itself, then I ⊆ K −K◦ and
hence I is finite. Also K−I is compact. We claim that K−I is dense in
itself. On the contrary, suppose that there exists x0 ∈ K − I such that
x0 /∈ (K − I)′. Therefore, there is an open set H ⊆ X such that x0 ∈ H
and H ∩ (K − I) = {x0} and thus (H ∩K)∪ I = I ∪ {x0}. This implies
that H ∩K is finite and since X is a T1-space, we infer that H ∩K ⊆ I.
This conclude that x0 ∈ I which is a contradiction. Now by hypothesis
K − I = ∅ and so K is finite. This complete the proof. □

By Propositions 3.6 and 3.7, the following is immediate.

Corollary 3.8. Let X be a dense in itself Hausdorff space. Then X is
a (c, f)-space if and only if it is a (cei, f)-space.
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Proposition 3.9. Each MI-space which is also a T0-space contains a
copy of N which is closed.

Proof. Let X be an MI-space which is also a T0-space. By Proposition
3.5 we conclude that X is infinite. Then X contains an infinite subset A
such that A◦ = ∅, see [Lemma 1, 23]. Suppose that E ⊆ A is countably
infinite. Therefore E◦ = ∅. Now Lemma 2 in [23] implies that E is a
closed and discrete. □

The following lemma is the same as [Lemma 4, 23] with slight cor-
rection.

Lemma 3.10. Each nonempty MI-space is noncompact.

Proposition 3.11. Each MI-space is an ncd-space.

Proof. It is trivial by Lemma 3.10. □

Proposition 3.12. Each MI-space is an (s, nd)-space.

Proof. Suppose that X is an MI-space and x ∈ X. Then Fr({x}) =
{x} is discrete. Therefore, there exists an open subset H in X such

that x ∈ H and {x} = H ∩ {x}. On the contrary that t ∈ {x}◦ exists,
then there exists an open subset G in X such that t ∈ G and G ⊆ {x}.
Clearly, x ∈ G and G ∩H = {x} which is a contradiction. □

Corollary 3.13. For a submaximal topological space X, the following
statements are equivalent:
a) X is an MI-space.
b) X is an (s, nd)-space.

In the next result we show that every submaximal Hausdorff space
is a ncd-space.

Theorem 3.14. Every submaximal Hausdorff space is an ncd-space.

Proof. Let X be a submaximal Hausdorff space and let K be a dense
in itself compact subspace of X. By [Proposition 3.2 of 1], K ′ is finite.
Now if K ̸= ∅, then by Proposition 3.5 K is infinite and so K ′ is infinite
which is contradiction. □
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The converse of the above theorem is not true, in general. For ex-
ample, Q is an ncd-space but it is not a submaximal space. Note that
if Q is an MI-space, then must be (c, f)-space which is a contradiction.

An arbitrary product of Tychonoff, compact and submaximal spaces
need not be submaximal. For example, assume that X∗

n = Xn∪{σn} be
the one-point compactification of a discrete space Xn, for every n ∈ N.
Suppose that X =

∏
n∈NX∗

n and A =
∏

n∈NXn, then A is dense in X
which is not open.

In the next proposition we obtain a new characterization for sub-
maximal spaces.

Proposition 3.15. A topological space X is submaximal if and only if
for any A,B ⊆ X with A ∩B = ∅ it follows that A ∩B is discrete.

Proof. ⇒) Suppose that x ∈ A∩B. Hence, A∪ {x} is locally closed in
X. Therefore, there exists an open set U in X such that A∪{x} = U∩A.
Similarly, there is an open set V in X such that B ∪ {x} = V ∩B. Now
{x} = (A ∪ {x}) ∩ (B ∪ {x}) = (U ∩A) ∩ (V ∩B) = (U ∩ V ) ∩ (A ∩B).
This consequence that x is an isolated point of A ∩B.

⇐) By [Theorem 3.3, 12], it is clear. □

If X is a submaximal space and A ⊆ X, then Fr(A) is a discrete
subset of X. The converse of this fact is also true, see [Theorem 3.3,
12]. Also if X is a submaximal space and A is a discrete subset of X,
then A′ is discrete and if in addition X is a T1-space, then A′ is discrete.
In [Theorem 3.2, 1], proved that a compact Hausdorff space X is a
submaximal space if and only if X has a finite number of accumulation
points. In case of βX we have the following result.

Lemma 3.16. If βX is the one-point compactification of a discrete
space, then X is compact, that is βX = X.

Proof. Suppose that βX = D∗ where D∗ is the one-point compactifica-
tion of discrete spaceD, i.e., D∗ = D∪{σ}. SinceX = βX, we infer that
D ⊆ X. If σ /∈ X, then X = D and hence βX = βD. But |βX| = |D|
and |βD| = 22

|D|
(see [Theorem 9.2, 18]) which is a contradiction. This

implies that σ ∈ X and we are done. □
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Theorem 3.17. If βX is a submaximal space, then X is compact. In
this case βX = X. Furthermore X is not a dense in itself space.

Proof. Since βX is countably compact, by [Theorem 4.20, 3], βX is
a finite disjoint union of one-point compactification of some discrete
spaces. Suppose that βX =

⋃n
i=1X

∗
i , where X∗

i is the one-point com-
pactification of discrete space Xi, for every i = 1, · · · , n. Assume that
X∗

i = Xi ∪ {σi} and let X ∩ X∗
i = Yi, for every i = 1, · · · , n. Then

X =
⋃n

i=1 Yi and hence βX =
⋃n

i=1 βYi. Therefore, βYi = X∗
i , for any

i = 1, · · · , n. Now by the above lemma we conclude that Yi = X∗
i , for

any i = 1, · · · , n and so X = βX. Finally, since X is a submaximal
compact space, then it is not dense in itself. □

We say that a subspace S of X is C-embedded (resp. C∗-embedded)
in X if every function in C(S) (resp. C∗(S)) can be extended to a
function in C(X) (resp.C∗(X)). Every C-embedded is C∗-embedded and
every compact set in a Tychonoff space is C-embedded, see [3.11(c), 18].
It is well-known that S is C∗-embedded in X if and only if clβXS = βS,
see [6.9(a), 18].

Corollary 3.18. Let X be a compact and Hausdorff space. If X is
submaximal, then every C∗-embedded subset of X is compact.

Proof. Suppose that S is C∗-embedded in X. Then clβXS = βS ⊆
βX = X. Hence, βS is submaximal and so by Theorem 3.17 we conclude
that βS = S. This means that S is compact. □

Lemma 3.19. Let T be a Hausdorff submaximal space. If X is a count-
ably compact subspace and a dense subset of T , then X = T .

Proof. Since X is a submaximal space, then by [Theorem 4.21, 3], X
is compact and since T is Hausdorff, we infer that X is closed in T .
Therefore, by density of X we have X = T . □

Remark 3.20. We denote the set of all isolated points of space X with
I(X). If X is open in T , then I(X) ⊆ I(T ) and if X is dense in T , then
I(T ) ⊆ I(X). Hence, if X is an open dense set in T , then I(X) = I(T ).
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Proposition 3.21. Suppose that T is a first countable, Hausdorff and
submaximal space and X is a dense set in T with I(X) = ∅. Then
X = T .

Proof. Let p ∈ T − X. Hence, there is an infinite sequence (xn)
contained in X which converges to p. Put A = {xn : n = 1, · · · }. Indeed
it is clear that A◦ = ∅ and thus T − A is dense and also it is clear that
A = A∪{p} and thus T −A is not open which is a contradiction. □

Corollary 3.22. Let X be a compact submaximal space. Then |I(X)|
is finite if and only if X is finite.

A (c, f)-space may not be submaximal even it is a Tychonoff and
countably compact or dense in itself and T4-space. See the next three
examples.

Example 3.23. a) Consider the space X in [Example 2, 27]. This
example shows that the Tychonoff space X is an infinite countably com-
pact subset of βN which is also a (c, f)-space. We claim that X is not
submaximal. Otherwise, by [Theorem 4.20, 3], X must be a compact
space. In this case, since X is a (c, f)-space, it must be finite, which is
not true.
b) For any n ∈ N, suppose that Sn = {2n − 1, 2n}. The collection
S = {Sn : n ∈ N} is a subbase for a topology on N which is called
odd-even topology. One can easily check that N, with this topology, is
a (c, f)-space dense in itself space, but it is not a submaximal. Also, N
is second countable, separable and Lindelöf.
c) This example is based on the structure introduced in [2]. Let T0 = Σ,
where Σ be the space introduced in [4M.2, 18]. At each x ∈ I(T0),
we attach a copy of Σ, namely Σx, to T0 in x such that x is the only
nonisolated point of Σx and Σx ∩ T0 = {x}. We do this in such a way
that Σx ∩ Σy = ∅, for any two distinct points x, y in I(T0). The re-
sulting quotient space is denoted by T1. We repeat this process for T1

and resulting quotient space is denoted by T2. In this way, by induction
method, we find the space Tn, for any n = 0, 1, · · · , such that Tn ⊆ Tn+1.
We put T =

⋃∞
n=0 Tn and τ = {

⋃∞
n=0Gn : Gn ∈ τn}, where τn is the

topology on Tn. In [2], it is shown that τ is a topology on T . Clearly,
T0 = Σ is a (c, f)-space. By induction, we can show that the space
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Tn is a (c, f)-space, for any n ∈ N. We claim that T is a (c, f)-space.
To see this let K be an infinite compact subset of T . It is enough to
show that there is an n0 ∈ N such that K ⊆ Tn0 . Otherwise, there
exists an an ∈ K ∩ (Tn − Tm), for any n,m ∈ N and m ≥ n. Now
put A = {an : n ∈ N}. One can easily see that A′ = ∅ and this is a
contradicts to compactness of K. Finally, it is not hard to check that T
is a dense in itself and T4-space.

The space R is a realcompact space which is not submaximal. See
the following examples for two examples of a spaces that are submaximal
but not realcompact.

Example 3.24. a) We consider the space Ψ in [5I, 18]. By 5I. 5, the
space Ψ is pseudocompact which it is not a realcompact space. It is not
hard to see that Ψ is submaximal. Furthermore, since Ψ is not compact,
by Theorem 3.17, βΨ is not submaximal. Now υΨ = βΨ shows that
υΨ is not a submaximal space.

b) We consider the space W = W (ω1) = {σ : σ < ω1} of all count-
able ordinals andW∗ = W (ω1+1) = {σ : σ ≤ ω1}, where ω1 denotes the
first uncountable ordinal. It is well known that W is a pseudocompact
locally compact space which neither compact nor realcompact. Clearly,
υW = βW = W∗. Since W is not compact, then by Theorem 3.17,
υW is not submaximal.

4 Locally Indiscrete Spaces and lc-Properties

Recall that a spaceX is called locally indiscrete if every open set is closed
or equivalently if every closed set is open. Every discrete space and every
partition topology (each partition of any set X into disjoint subsets,
together with ∅, is a basis for a topology on X, known as partition
topology) is locally indiscrete. For another nontrivial example, let R
be a principal ideal ring. Then the space Min(R) with Zariski topology
is a locally indiscrete space. Also, every locally indiscrete space is an
Alexandroff space. The converse is not true in general. For example, let
X = N and T = {En : n = 1, · · · } ∪ {∅}, where En = {n, n + 1, · · · },
for any n ∈ N. It is easy to check that every Alexandroff T1-space is
indiscrete.
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Proposition 4.1. For a topological space X the following conditions
are equivalent.
a) X is locally indiscrete.
b) Every subset of X is preopen.
c) Every singleton in X is preopen.
d) Every closed subset of X is preopen.
e) Every locally closed subset of X is open.
f) Every locally closed subset of X is closed.
g) The closure of every locally closed set is open.
h) X is the only dense subset of itself.

Proof. All implications are straightforward. We only show (h ⇒ a).
Suppose that A is an open set in X and consider B = A ∪ (X − A)◦.

Then B = A ∪ (X −A)◦ = A ∪ (X −A) = A ∪ (X − A
◦
) = X. Hence,

by hypothesis B = X and so A ∩ (X − A) = ∅. This consequence that
A is closed and we are done. □

Proposition 4.2. For a topological T1-space X the following conditions
are equivalent.
a) X is discrete.
b) X is locally indiscrete.
c) X is Alexandroff.
d) Every open set is regular open.

Proof. It is straightforward. □

If X is a T 1
2
-space, then it is locally indiscrete if and only if it is dis-

crete. A locally indiscrete space need not be submaximal. For instance,
let X = {a, b, c} and T = {∅, {a}, {b, c}, X}. A submaximal space need
not be a locally indiscrete space. For example, we consider the space Σ
of 4M in [18].

Proposition 4.3. The space (X, T ) is a locally indiscrete space if and
only if T = Tl.

Proof. (⇒) Let G ∈ Tl. Then G =
⋃

α∈ΛAα, where Aα is T -locally
closed, for any α ∈ Λ. By hypothesis, Aα is T -open, hence G ∈ T and
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we are done.
(⇐) Let A is a T -locally closed subset of X. Hence A ∈ Tl and therefore
A ∈ T . This shows that X is a locally indiscrete space. □

Proposition 4.4. Let X be a locally indiscrete space. The following
conditions are equivalent.
a) X is a T1-space.
b) X is a T 1

2
-space.

c) X is a TD-space.
d) X is a T0-space.
e) X is a submaximal space.
f) X is a discrete space.

Proof. All implications are obvious. We only show (d ⇒ a). Let x ∈ X
and on the contrary suppose that y ∈ {x} and y ̸= x. Since X is T0, it
follows that there is an open set H such that x ∈ H and y /∈ H. Thus,
y ∈ X −H and since X −H is open we infer that (X −H) ∩ {x} ̸= ∅
and this is a contradiction. □

Here, by using the locally closed sets, we introduce some separation
axioms. We begin with the following definition.

Definition 4.5. A space X is called
a) lc-regular if for each locally closed set A and for each point x /∈ A,
there are disjoint open sets U and V with x ∈ U and A ⊆ V .
b) lc-completely regular if for each locally closed set A and for each
point x /∈ A, there exists a continuous function f : X → [0, 1] such that
f(x) = 0 and f(A) = {1}.
c) lc-normal if for every two disjoint locally closed sets A and B, there
are disjoint open sets U and V with A ⊆ U and B ⊆ V .

Every lc-regular (resp. lc-completely regular, lc-normal) space is a
regular (resp. completely regular, normal) space. The converse is hold
in locally indiscrete spaces, but is not true, in general. See the following
example.

Example 4.6. The space R with usual topology is not a lc-regular
space. To see this let A = [0, 1). Then A is locally closed and 1 /∈ A.
But A cannot be separated from 1 by disjoint open sets.
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Remark 4.7. a) Every lc-completely regular TD-space is lc-normal.
b) Every lc-regular TD-space is Hausdorff.

Definition 4.8. A space X is called lc-compact if each locally closed
cover of X has a finite subcover.

Every lc-compact space is compact. An infinite compact T1-space is
never lc-compact. In locally indiscrete spaces, the two concepts of lc-
compactness and compactness coincide. One can easily see that (X, T )
is lc-compact if and only if (X, Tl) is compact. See the next example to
see an lc-compact.

Example 4.9. Let τX be the co-finite topology on X and σ /∈ X. Sup-
pose that Y = X∪{σ}. Then τY = {A∪{σ} : A ∈ τX}∪{∅} is a topology
on Y . It is clear that LC(Y ) = {U ∈ τY } ∪ {F ⊆ X : F isfinite}. We
claim that Y is lc-compact. To see this let Y =

⋃
α∈I(Gα ∩ Fα), where

Gα, X − Fα ∈ τY , for every α. Therefore, there exists an α0 ∈ I such
that σ ∈ Gα0 ∩ Fα0 . Hence, Y − Gα0 = {x1, x2, · · · , xn} and since the
only closed subset Y which contain σ is itself Y we infer that Fα0 = Y .
On the other hand there is an αi ∈ I such that xi ∈ Gαi ∩ Fαi , for
i = 1, 2, · · · , n. This mean that Y =

⋃n
i=0(Gαi ∩ Fαi), that is Y is

lc-compact.

Proposition 4.10. Every clopen subset of an lc-compact space is lc-
compact.

Proof. Suppose that Y ⊆
⋃

α∈ΛAα ∈ Λ, where Aα is a locally closed
set in Y , for each α ∈ Λ. Hence, Aα = Bα ∩ Y , which Bα is a locally
closed set in X, for each α ∈ Λ. Therefore there is an open set Gα

and a closed set Fα in X which Bα = Gα ∩ Fα. Now it is clear that
X =

⋃
α∈Λ((Gα ∪ (X −Y ))∩ (Fα ∪ (X −Y ))). Since X is an lc-compact

space we infer that X =
⋃n

k=1((Gαk
∪ (X − Y )) ∩ (Fαk

∪ (X − Y ))),
for a natural number n and αi ∈ Λ for i = 1, · · · , n . It implies that
Y ⊆

⋃n
k=1Aαk

, that is, Y is an lc-compact space. □

In the above proposition, the condition clopen cannot be replaced by
locally closed subset. For example, in any TD-space, lc-compact subsets
are necessarily finite, while locally closed subsets are not necessarily
finite.
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Definition 4.11. A function f : X → Y is called lc-continuous if the
converse image of any open set in Y is locally closed in X.

Every continuous function is lc-continuous. The converse is not
true. For example, let X = {a, b} and T1 = {∅, {a}, X} and T2 =
{∅, {a}, {b}, X} are two topology on X. We define f : (X, T1) → (X, T2)
by f(x) = x. Then f is lc-continuous but it is not a continuous function.
For more details about lc-continuous functions, see [17].

Remark 4.12. Let f : X → Y be an onto and X be an lc-compact
space. Then
a) if f is continuous then Y is lc-compact;
b) if f is lc-continuous then Y is compact.

Remark 4.13. Suppose that f : R → Y = {0, 1} with f(Q) = {0}
and f(R−Q) = {1}, where Y is equipped with discrete topology. If we
consider R equipped with usual topology T , then f is not lc-continuous.
But if we consider R equipped with Tl, then f is continuous.

Remark 4.14. Let f : X → Y be continuous. The following statement
are hold.
a) If B ⊆ Y is locally closed then f−1(B) ⊆ X is locally closed.
b) If A ⊆ X is locally closed then f(A) is not necessarily locally closed.
For example, let X = {a, b}, T1 be discrete topology and T2 be indiscrete
topology on X. We define f : (X, T1) → (X, T2) by f(x) = x. Then
A = {a} is a locally closed set in (X, T1) but f(A) = {a} is not a locally
closed set in (X, T2).
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