Journal of Mathematical Extension
Vol. 8, No. 1, (2014), 11-27
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Abstract. In this paper, we interpret a two-point initial value problem
for a second order fuzzy differential equation. We investigate a problem
of finding a numerical approximation of the solution by using fuzzy
neural network. Here neural network is considered as a part of a larger
field called neural computing or soft computing. Finally, we illustrate
our approach on an applied example in engineering.
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1. Introduction

The study of fuzzy differential equations (FDEs) forms a suitable setting
for mathematical modeling of real-world problems in which uncertain-
ties or vagueness pervade. There are several approaches to the study of
FDEs [4, 5, 23]. The concept of fuzzy derivative was first introduced
by Chang and Zadeh [7], it was followed up by Dubois and Prade [8]
who used the extension principle in their approach. Other methods have
been discussed by Puri and Ralescu [26] and by Goetschel and Voxman
[9]. FDEs were first formulated by Kaleva [12] and Seikkala [28] in time
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dependent form. Kaleva had formulated FDEs, in terms of Hukuhara
derivative [9].

In 1990 Lee and Kang [14] used parallel processor computers to solve
a first order differential equation with Hopfield neural network mod-
els. Meade, Fernandez and Malek [15, 16] solved linear and nonlinear
ordinary differential equations using feed forward neural networks ar-
chitecture and Bj-splines. Recently, fuzzy neural networks have been
successfully used for solving fuzzy polynomial equations and systems
of fuzzy polynomial equations [1, 2], approximate fuzzy coefficients of
fuzzy regression models [19, 20, 21|, approximate solution of fuzzy linear
systems and fully fuzzy linear systems [24, 25]. In year 2012 Mosleh and
Otadi [22] used fuzzy neural network to solve a first order FDE, system
of FDEs [17] and fuzzy linear Fredholm integro-differential equation [18].
In this paper we propose a method for approximate solution of a second
order FDE using innovative mathematical tools and neural-like systems
of computation. This hybrid method can result in improved numeri-
cal methods for solving fuzzy initial value problems. In this proposed
method, fuzzy neural network model (FNNM) is applied as a universal
approximator. The main aim of this paper is to illustrate how fuzzy con-
nection weights are adjusted in the learning of fuzzy neural networks by
the back-propagation-type learning algorithms [11] for the approximate
solution of a second FDE.

2. Preliminaries

In this section the most basic notations used in fuzzy calculus are intro-
duced. We start by defining the fuzzy number.

Definition 2.1. A fuzzy number u is a fuzzy subset of the real line
with a normal, convexr and upper semicontinuous membership function
of bounded support.

The set of all the fuzzy numbers (as given by Definition. 1) is denoted
by E.

Definition 2.2 (See [9]) Let u,v € E'. If there exists w € E' such that
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u = v+ w then w is called the H-difference of u,v and it is denoted by
u—v.

Definition 2.3. A function f : (a,b) — E' is called H-differentiable
at t € (a,b) if, for h > 0 sufficiently small, there exist the H-differences
fE+ 1) — f(£), f(£) = f(t = h), and an element f'(f) € E' such that:

fE+h) — f(D) f) = fE—h)
h

h 7f/(£)) = Mmh—>0+D(

() = 0.

limh_‘0+ D(

Then f'(t) is called the fuzzy derivative of f at t.

In this paper, we denote real numbers and fuzzy numbers by lowercase
letters (e.g.,a,b,c,...) and uppercase letters (e.g., A, B,C,...), respec-
tively. We briefly mention fuzzy number operations defined by the ex-
tension principle [30]:

payp(z) = mar{pa(x) A ps(y)lz =z +y},

[ (Net) (2) = maz{pnet(7)|z = f(2)},

where A, B, Net are fuzzy numbers, p.(.) denotes the membership
function of each fuzzy number, A is the minimum operator and f(.) is a
continuous activation function (like sigmoidal activation function) inside
hidden neurons

fle) = 1 —i—le—z'

The above operations of fuzzy numbers are numerically performed on

level sets (i.e.,a-cuts). The h-level set of a fuzzy number A is defined as
[A]lp = {z € Rlpa(x) = h} for 0<h<1, (1)

and [A]o = Upe(o,1)[Aln- Since level sets of fuzzy numbers are closed
intervals, we denote [A]}, as

[Aln = [[A]F, [AJ}], (2)

where [A]L and [A]Y are the lower limit and the upper limit of the h-
level set [A]y, respectively.
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From interval arithmetic [3], the above operations of fuzzy numbers are
written for h-level sets as follows:

F([Net]n) = f([[Netly, [Net]]]) = [f([Netly), f([Net];)],  (5)

where f is a sigmoidal activation function.

3. Second Order Fuzzy Differential Equations

Now, we consider the following second order fuzzy differential equation

{ Y" = f(z,Y,Y), x € |a, b, (6)
Y(a) = Al, Y/((I) = AQ,

such that the functions

Y:la,b) = Eand f:[a,b]x EXE — E

where Y is a function with fuzzy derivative Y’ [26] also A; and Ay are
fuzzy numbers in F with h-level sets

[Ad]n = [[A1]E, [A1]Y), [Asln = [[A2)E, [As)]], 0<h <1

Let us assume that a general approximate solution to Eq.(6) is in the
form Yr(x, P) for Yr depending to x and P, where P is an adjustable
parameter involving weights and biases in the structure of the three-
layered feed forward FNN (see Fig. 1). The fuzzy trial solution Y7 is an
approximation solution to Y for the optimized value of unknown weights
and biases. Thus the problem of finding the approximated fuzzy solution
for Eq. 6) over some collocation points in [a, b] by a set of discrete equally
spaced grid points

a=r1<xT9<...<xTy=0">
g )

is equivalent to calculating the functional Y (x, P).
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Hidden units

Output
[ .
2 V] unit
X : N

Bias
unit

Fig. 1. Three layer fuzzy neural network

In order to obtain fuzzy approximate solution Y (z, P), we solve uncon-
strained optimization problem that is simpler to deal with. So we define
the fuzzy trial function to be in the following form:

Yr(z, P) = a(x) + B[z, N(z, P)], (7)

where the first term in the right hand side does not involve the adjustable
parameters and satisfies the fuzzy initial conditions while the second
term is a feed forward fuzzy neural network consisting of an input « and
the output N(z, P).

One drawback of fully fuzzy neural networks in connection with fuzzy
weights is the long computation time. Another drawback is that the
learning algorithm is complicated. For reducing the complexity of the
learning algorithm, we propose a partially fuzzy neural network (PFNN)
with three-layer architecture where connection weights to output unit
are fuzzy numbers while connection weights and biases to hidden units
are real numbers [22]. Since we had good simulation results even from
partially fuzzy three-layer neural networks, we do not think that the
extension of our learning algorithm to neural networks with more than
three layer is an attractive research direction.

Let us consider a three-layered PENNM (see Fig. 1) with one unit en-
try x, one hidden layer consisting of m activation functions and one
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unit output N(zx, P). Here, the dimension of PENNM is denoted by the
number of neurons in each layer, that is 1 x m x 1. For every entry x the
input neuron makes no changes in its input, so the input to the hidden
neurons is

net; =x.w; +b;, j=1,...,m, (8)

where w; is a weight parameter from input layer to the jth unit in the
hidden layer, b; is the jth unit in the hidden layer. The output, in the
hidden neurons is

zj = s(netj), j=1,...,m, 9)

where s is the activation function which is normally a nonlinear func-
tion, the usual choices for which [10] are the sigmoid transfer function,
and the output neuron make no change on its input, so the input to the
output neuron is equal to output

N:‘/121+--.+‘/jzj+---+vmzma (10)

where V} is a weight parameter from jth unit in the hidden layer to the
output layer.

From Egs.(3)-(5), we can see that the h-level sets of the functions (8)-
(10) can be calculated from those of the weights and biases. For our
PFNN, we can derive the learning algorithm :

Input unit:
0=u. (11)
Hidden units:
zj = s(ow; +b;), j=1,...,m. (12)
Output unit:
[NTn = (NI INTET = D Vilk250 ) IViIR 25l (13)
j=1 j=1

A FN Ny (fuzzy neural network with crisp set input signals, fuzzy num-
ber weights and fuzzy number output) solution to Eq.(6) is given in Fig-
ure 1. How is the FFIN N, going to solve the fuzzy differential equations?
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The training data are a = x1 < 2 < ... < x4 = b for input. We propose
a learning algorithm from the cost function for adjusting weights.
Consider the following fuzzy initial value problem for a second order
differential equation (6), the related trial function will be in the form

Yr(z, P) = Ay + As(z — a) + (z — a)>N(z, P), (14)

this solution by intention satisfies the initial condition in (6). In [11],
the learning of our fuzzy neural network is to minimize the difference
between the fuzzy target vector B = (B, ..., Bs) and the actual fuzzy
output vector O = (O1,...,0;). The following cost function was used
in [11, 1] for measuring the difference between B and O:

e=Y en=y h{> (Bl —| /2+Z [Bilf, — [OK]F)?/2},
h h k=1

(15)

where ey, is the cost function for the h-level sets of B and O. The squared
errors between the h-level sets of B and O are weighted by the value of
hin (15).
In [11], it is shown by computer simulations that, the fitting of fuzzy
outputs to fuzzy targets is not good for the h-level sets with small values
of h when we use the cost function in (15). This is because the squared
errors for the h-level sets are weighted by h in (15). Krishnamraju et
al. [13] used the cost function without the weighting scheme:

e:Zeh:Z{Z([Bk]ﬁ /2+Z Bk 11)?/2}. (16)
h ho k=1

In the computer simulations included in this paper, we mainly use the
cost function in (16) without the weighting scheme.
The error function that must be minimized for problem (6) is in the

form
g

€= Zel Z Z €ih = Z Z{ezh + ezh} (17)
i=1 h

i=1 h
where

o, = CFEPIE VY1 DL GEPIEE



18 M. MOSLEH AND M. OTADI

o = (V7 (i P = [f (i, Y (i, P), Yi(ai, P)IS)?
(3 2 )

where {z;}7_, are discrete collocation points belonging to the interval

(19)

[a,b] and in the cost function (17), ek and el can be viewed as the
square errors for the lower limits and the upper limits of the h-level sets,
respectively.

It is easy to express the first partial derivative of N(z, P) in terms of
the partial derivative of the sigmoid function, i.e.

= 0z; Onet; "
= Wilkg 2ot = Y Wilkz (1= )y, (20)

i 8net] '
Jj=1 =1
NIy - Oz; Onet; m
h _ U J j U ' ‘
B Z i Onet; Oz - Z[Vﬂ]h 2j.(1 = zj).wj. (21)
j=1 =
82[N]£ - L 3 2 2
2 = ;[Vj]h-@zj —3z7 + zj).wj, (22)
82[]\[]% m u 2
o2 Z[V]h (227 — 327 + zj) w5, (23)

<.
Il
—

Now differentiating trial function Y7 (z, P), we obtain

Yhte P = (Al + 2 - )N (e, P + (o - a2 S0P
Vi, P)E = [lf + 20 — )N, P + (o - a2 2V
YH G P = 20, P e DN g2 SN P
Y P = 2 P ey P LI o TING D

thus the expressions in equations (20)-(23) are applicable here. A learn-
ing algorithm is derived in Appendix A.
Let us consider the vibrating mass in engineering.
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Example 3.1. [6]. An example in engineering application

Consider the vibrating mass in Fig. 2. The mass m = 1 slug, the spring
constant k = 4 lbs/ft and there is no, or negligible, damping. The forcing
function is 2cos(fz), for 0 < § < 2. The differential equation of motion

1S
5

—_—

_ I I I I I I I
[¢] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 2. Vibrating Mass in application

Y” +4Y = 2cos(Bx),

subject to initial conditions Y (0) = A1, Y'(0) = As. The unique solution
is
As .
Y = Ajcos(2z) + 78271(21‘) + @(x),

where

() [cos(Bx) — cos(2x)].

-2
The uncertain initial conditions are [A1], = [2h,4 — 2h], [As], = [-2+
2h,2 — 2h]. The graph of Y(z), h =0 and h = 1 cuts, for 8 = 1.9, is in
Figure 3 (the outside curves are the h = 0 cut and the center curve the
h =1 cut).



20 M. MOSLEH AND M. OTADI

Y <0

Y >0

Fig. 3. Extension principle solution in the Vibrating Mass application

The fuzzy trial function for this problem is
[Yr(x, P)]j = [2h, 4 — 2h] + 2[—2 + 2h,2 — 2h] + 22.[N(z, P)].

Here, the dimension of PFNNM is 1 x 5 x 1. The error function for the
m = 5 sigmoid units in the hidden layer and for g = 4 equally spaced

s
>
this section, we use the following specifications of the learning algorithm.

points inside the interval [0, 7] is trained. In the computer simulation of

(1) Number of hidden units: five units.
(2) Stopping condition: 200 iterations of the learning algorithm.

(3) Learning constant: n = 0.2.

(4) Momentum constant: « = 0.1.

(5) Initial value of the weights and biases of PFNNM are shown in Table
1, and we suppose V; = (1)1(1),1)1(2)7%(3)) fori=1,...,5.

We apply the proposed method to the approximate realization of the
solution of example 1. Weights from the trained FNN are shown in
Table 2. The exact and obtained solution of second order FDE in this

example at x = g are shown in Figure 4.

— — — —



SOLVING THE SECOND ORDER FUZZY DIFFERENTIAL ... 21

1 T T
— —— Exact solution
O Approximate soluti
0.9 B

0.8 A

O.7 A

0.6~ A

0.5~ A

0.4 A

0.3 A

L L L L L
-1 o 1 2 3 4 5

Fig. 4. Compares the exact solution and obtained solution

i | 1 ]2 ]3] 4]5
v [ 05 ]-05]-05]-05]-05
vl o oo 0| o0

v® 1 05| 05| 05| 05| 05

7

w; 0 0 0 0 0
bi 0 0 0 0 0

Table 1. The initial values of weights

4. Summary and Conclusions

We investigated the second order FDEs. Solving the second order FDEs
(FDEs) by using universal approximators (UA), that is, FNNM is pre-
sented in this paper. In this paper, we derived a learning algorithm of
fuzzy weights of three-layer feedforward FNN whose input-output rela-
tions were defined by extension principle. The use of more general net-
work architectures, however, makes the back-propagation-type learning
algorithm much more complicated. Since we had good simulation result
even from partially fuzzy three-layer neural networks, we do not think
that the extension of our learning algorithm to neural networks with
more than three layers is an attractive research direction. Good simula-
tion result was obtained by this neural network in shorter computation
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times than fully fuzzy neural networks in our computer simulations. The
effectiveness of the derived learning algorithm was demonstrated by com-
puter simulation on numerical examples and we proposed applied exam-
ples in engineering.

Appendix
Derivation of a learning algorithm in PFNN

Let us denote the fuzzy connection weight V; to the output unit by its

(1) (9) (r)

parameter values as V; = (vj pees Uy, Yy ). The amount of modi-

fication of each parameter value is written as [?, 27]
ol (t+1) = 0l (8) + 20l (2),

g
Oein
Dul(t) = —n > e A W (t - 1),

i=1 9V

where t indexes the number of adjustments, 7 is a learning rate (a pos-
itive real number) and « is a momentum constant term (positive real

number).

Thus our problem is to calculate the derivatives seg'g). Let us rewrite
N
J

% as follows:

J

8v§q) 8[‘/}]5 8v(q) G[VJ],[{ av(q

J J

Oen  Oean OVjly  Oeawn OVil})
-

L U
In this formulation, 86[‘/{351 d 6[\/3]? are easily calculated from the
N

(¢
J vj
membership functions of the fuzzy connection weight V;. For exam-
ple, when the fuzzy connection weight V; is trapezoidal (i.e., V; =

(,U(l) 2) 3 ,U(4))) aVily and oVl
’ )

vy v are calculated as follows:

g% Y Y 900 @
J J
o)k av;y
Lok Do
ov; ov
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oWk oWl
51}}2) ’ 51;"52) ’
oWk, vl _,
a3 3 —
d’uj 3Uj
ok, ol
6’1:§4) 31;;4)

These derivatives are calculated from the following relation between the
h-level set of the fuzzy connection weight V; and its parameter values:

[VJ].F% = (1 — h)‘uj.l) < huv?)’

[VJ]E = h.v‘?) +(1- fa).v§-4).

When the fuzzy connection weight Vj is a symmetric triangular fuzzy
number and the following relations hold for its h-level set [V;], = [[V;]F, [Vi]}']

, h 1 h 3
Wilk = (1= By 4 2 o9,

h h. (3
Vil = E.v} g 1- —).vd,(If ),

2
Therefore, r
oVIE b Ol
3U§1} 2 3’0}” 2
oWilk _h  OVily _, b
31:;3) 2’ 31}?” 2’
and v}m(t + 1) is updated by the following rule:

(1) (3)
v+ 1) Fui 4+ 1
R S LLL D)

On the other hand, the derivatives ﬁ:—“f; and —Q"—’g are independent
d["’}j]h d[VJ]h

of the shape of the fuzzy connection weight. They can be calculated
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from the cost function e;;, using the input-output relations of our fuzzy

neural network for the h-level setq When we use the cost function with

€ih Eih

) d[V} d{V [ are calculated as follows:

the weighting scheme in (17) r and

[Calculation of )[T?—]

AN (x; P iz

%f‘if e (2WL—E+4( | — a). 52 +(zi — a).(223 — 327 + zj).w?

_Olf(x,Yr(2i,P), Y (i, P))] SIYT(S'-':',P))]{;) _ Of(aYr (i, P).Y (i, ) O[Y%(Isfp))]f;)
AYr(z:i, P} ©oavilE Y] (i, P)If ©avlE t

where

8L = (V¥ (i, P)E — [f(xi, Yo (i, P), Yi(2i, P))IE),

OWr@s PNy _ (2, ONG@uPly_
alVili Tooawvily
AYh(xi, P))E
% = 2(zi — a).zj + (zi — a)*.2;(1 — z;).wj,

[Calculation of W‘i’n]
h

e ; I[N (z;,P Oz ; F
ey = &V (2%& +4(zi — a). 2 + (2; — a)2.(223 — 322 + 7)) w?

_ Ol (@Y (@i, P). Yy (@i, P OVr(z:,P))]; ;’) _ Olf (@ Yr(e:,P).Yr (@i P 0Yp(e:, Pnl,.)
aYr(a,,P)Y TVl aYf(xi,P)[Y oavily b

where

= (Y4 (=i, P)I — [f (@i, Yr(zi, P), Yi(zi, P))]}),

ovily * % vV j
a[Y+h i P U
%w = 2(-‘33‘ = a).zJ- + (LL'.,; = a)z_Zj(]. — zj)-sz

In our PFNN, the connection weights and biases to the hidden units are
real numbers. The non-fuzzy connection weight w; to the jth hidden
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unit and the non-fuzzy bias b; to the jth hidden unit is updated in the
same manner as the parameter values of the fuzzy connection weight

Vi1

1]

[2]
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