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Abstract. In this paper, we interpret a two-point initial value problem
for a second order fuzzy differential equation. We investigate a problem
of finding a numerical approximation of the solution by using fuzzy
neural network. Here neural network is considered as a part of a larger
field called neural computing or soft computing. Finally, we illustrate
our approach on an applied example in engineering.
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1. Introduction

The study of fuzzy differential equations (FDEs) forms a suitable setting
for mathematical modeling of real-world problems in which uncertain-
ties or vagueness pervade. There are several approaches to the study of
FDEs [4, 5, 23]. The concept of fuzzy derivative was first introduced
by Chang and Zadeh [7], it was followed up by Dubois and Prade [8]
who used the extension principle in their approach. Other methods have
been discussed by Puri and Ralescu [26] and by Goetschel and Voxman
[9]. FDEs were first formulated by Kaleva [12] and Seikkala [28] in time
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dependent form. Kaleva had formulated FDEs, in terms of Hukuhara
derivative [9].
In 1990 Lee and Kang [14] used parallel processor computers to solve
a first order differential equation with Hopfield neural network mod-
els. Meade, Fernandez and Malek [15, 16] solved linear and nonlinear
ordinary differential equations using feed forward neural networks ar-
chitecture and B1-splines. Recently, fuzzy neural networks have been
successfully used for solving fuzzy polynomial equations and systems
of fuzzy polynomial equations [1, 2], approximate fuzzy coefficients of
fuzzy regression models [19, 20, 21], approximate solution of fuzzy linear
systems and fully fuzzy linear systems [24, 25]. In year 2012 Mosleh and
Otadi [22] used fuzzy neural network to solve a first order FDE, system
of FDEs [17] and fuzzy linear Fredholm integro-differential equation [18].
In this paper we propose a method for approximate solution of a second
order FDE using innovative mathematical tools and neural-like systems
of computation. This hybrid method can result in improved numeri-
cal methods for solving fuzzy initial value problems. In this proposed
method, fuzzy neural network model (FNNM) is applied as a universal
approximator. The main aim of this paper is to illustrate how fuzzy con-
nection weights are adjusted in the learning of fuzzy neural networks by
the back-propagation-type learning algorithms [11] for the approximate
solution of a second FDE.

2. Preliminaries

In this section the most basic notations used in fuzzy calculus are intro-
duced. We start by defining the fuzzy number.

Definition 2.1. A fuzzy number u is a fuzzy subset of the real line
with a normal, convex and upper semicontinuous membership function
of bounded support.
The set of all the fuzzy numbers (as given by Definition. 1) is denoted
by E1.

Definition 2.2 (See [9]) Let u, v ∈ E1. If there exists w ∈ E1 such that
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u = v + w then w is called the H-difference of u, v and it is denoted by
u − v.

Definition 2.3. A function f : (a, b) −→ E1 is called H-differentiable
at t̂ ∈ (a, b) if, for h > 0 sufficiently small, there exist the H-differences
f(t̂ + h) − f(t̂), f(t̂) − f(t̂ − h), and an element f ′(t̂) ∈ E1 such that:

limh−→0+D(
f(t̂ + h) − f(t̂)

h
, f ′(t̂)) = limh−→0+D(

f(t̂) − f(t̂ − h)
h

, f ′(t̂)) = 0.

Then f ′(t̂) is called the fuzzy derivative of f at t̂.

In this paper, we denote real numbers and fuzzy numbers by lowercase
letters (e.g., a, b, c, . . .) and uppercase letters (e.g., A,B,C, . . .), respec-
tively. We briefly mention fuzzy number operations defined by the ex-
tension principle [30]:

µA+B(z) = max{µA(x) ∧ µB(y)|z = x + y},

µf(Net)(z) = max{µNet(x)|z = f(x)},
where A, B, Net are fuzzy numbers, µ∗(.) denotes the membership
function of each fuzzy number, ∧ is the minimum operator and f(.) is a
continuous activation function (like sigmoidal activation function) inside
hidden neurons

f(x) =
1

1 + e−x
.

The above operations of fuzzy numbers are numerically performed on
level sets (i.e.,α-cuts). The h-level set of a fuzzy number A is defined as

[A]h = {x ∈ R|µA(x) � h} for 0 < h � 1, (1)

and [A]0 =
⋃

h∈(0,1][A]h. Since level sets of fuzzy numbers are closed
intervals, we denote [A]h as

[A]h = [[A]Lh , [A]Uh ], (2)

where [A]Lh and [A]Uh are the lower limit and the upper limit of the h-
level set [A]h, respectively.
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From interval arithmetic [3], the above operations of fuzzy numbers are
written for h-level sets as follows:

[A]h + [B]h = [[A]Lh + [B]Lh , [A]Uh + [B]Uh ], (3)

k.[A]h =
{

[k[A]Lh , k[A]Uh ], k � 0,
[k[A]Uh , k[A]Lh ], k < 0,

(4)

f([Net]h) = f([[Net]Lh , [Net]Uh ]) = [f([Net]Lh ), f([Net]Uh )], (5)

where f is a sigmoidal activation function.

3. Second Order Fuzzy Differential Equations

Now, we consider the following second order fuzzy differential equation{
Y ′′ = f(x, Y, Y ′), x ∈ [a, b],
Y (a) = A1, Y ′(a) = A2,

(6)

such that the functions
Y : [a, b] → E and f : [a, b] × E × E → E

where Y is a function with fuzzy derivative Y ′ [26] also A1 and A2 are
fuzzy numbers in E with h-level sets

[A1]h = [[A1]Lh , [A1]Uh ], [A2]h = [[A2]Lh , [A2]Uh ], 0 < h � 1.

Let us assume that a general approximate solution to Eq.(6) is in the
form YT (x, P ) for YT depending to x and P , where P is an adjustable
parameter involving weights and biases in the structure of the three-
layered feed forward FNN (see Fig. 1). The fuzzy trial solution YT is an
approximation solution to Y for the optimized value of unknown weights
and biases. Thus the problem of finding the approximated fuzzy solution
for Eq. 6) over some collocation points in [a, b] by a set of discrete equally
spaced grid points

a = x1 < x2 < . . . < xg = b,

is equivalent to calculating the functional YT (x, P ).
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unit output N(x, P ). Here, the dimension of PFNNM is denoted by the
number of neurons in each layer, that is 1×m×1. For every entry x the
input neuron makes no changes in its input, so the input to the hidden
neurons is

netj = x.wj + bj , j = 1, . . . ,m, (8)

where wj is a weight parameter from input layer to the jth unit in the
hidden layer, bj is the jth unit in the hidden layer. The output, in the
hidden neurons is

zj = s(netj), j = 1, . . . ,m, (9)

where s is the activation function which is normally a nonlinear func-
tion, the usual choices for which [10] are the sigmoid transfer function,
and the output neuron make no change on its input, so the input to the
output neuron is equal to output

N = V1z1 + . . . + Vjzj + . . . + Vmzm, (10)

where Vj is a weight parameter from jth unit in the hidden layer to the
output layer.
From Eqs.(3)-(5), we can see that the h-level sets of the functions (8)-
(10) can be calculated from those of the weights and biases. For our
PFNN, we can derive the learning algorithm :
Input unit:

o = x. (11)

Hidden units:

zj = s(o.wj + bj), j = 1, . . . ,m. (12)

Output unit:

[N ]h = [[N ]Lh , [N ]Uh ] = [
m∑

j=1

[Vj ]Lh .zj ,

m∑
j=1

[Vj ]Uh .zj ]. (13)

A FNN4 (fuzzy neural network with crisp set input signals, fuzzy num-
ber weights and fuzzy number output) solution to Eq.(6) is given in Fig-
ure 1. How is the FNN4 going to solve the fuzzy differential equations?
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The training data are a = x1 < x2 < . . . < xg = b for input. We propose
a learning algorithm from the cost function for adjusting weights.
Consider the following fuzzy initial value problem for a second order
differential equation (6), the related trial function will be in the form

YT (x, P ) = A1 + A2(x − a) + (x − a)2N(x, P ), (14)

this solution by intention satisfies the initial condition in (6). In [11],
the learning of our fuzzy neural network is to minimize the difference
between the fuzzy target vector B = (B1, . . . , Bs) and the actual fuzzy
output vector O = (O1, . . . , Os). The following cost function was used
in [11, 1] for measuring the difference between B and O:

e =
∑

h

eh =
∑

h

h.{
s∑

k=1

([Bk]Lh − [Ok]Lh )2/2 +
s∑

k=1

([Bk]Uh − [Ok]Uh )2/2},
(15)

where eh is the cost function for the h-level sets of B and O. The squared
errors between the h-level sets of B and O are weighted by the value of
h in (15).
In [11], it is shown by computer simulations that, the fitting of fuzzy
outputs to fuzzy targets is not good for the h-level sets with small values
of h when we use the cost function in (15). This is because the squared
errors for the h-level sets are weighted by h in (15). Krishnamraju et
al. [13] used the cost function without the weighting scheme:

e =
∑

h

eh =
∑

h

{
s∑

k=1

([Bk]Lh − [Ok]Lh )2/2+
s∑

k=1

([Bk]Uh − [Ok]Uh )2/2}. (16)

In the computer simulations included in this paper, we mainly use the
cost function in (16) without the weighting scheme.
The error function that must be minimized for problem (6) is in the
form

e =
g∑

i=1

ei =
g∑

i=1

∑
h

eih =
g∑

i=1

∑
h

{eL
ih + eU

ih}, (17)

where

eL
ih =

([Y ′′
T (xi, P )]Lh − [f(xi, YT (xi, P ), Y ′

T (xi, P ))]Lh )2

2
, (18)
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eU
ih =

([Y ′′
T (xi, P )]Uh − [f(xi, YT (xi, P ), Y ′

T (xi, P ))]Uh )2

2
, (19)

where {xi}g
i=1 are discrete collocation points belonging to the interval

[a, b] and in the cost function (17), eL
ih and eU

ih can be viewed as the
square errors for the lower limits and the upper limits of the h-level sets,
respectively.
It is easy to express the first partial derivative of N(x, P ) in terms of
the partial derivative of the sigmoid function, i.e.

∂[N ]Lh
∂x

=
m∑

j=1

[Vj ]Lh .
∂zj

∂netj
.
∂netj
∂x

=
m∑

j=1

[Vj ]Lh .zj .(1 − zj).wj , (20)

∂[N ]Uh
∂x

=
m∑

j=1

[Vj ]Uh .
∂zj

∂netj
.
∂netj
∂x

=
m∑

j=1

[Vj ]Uh .zj .(1 − zj).wj . (21)

∂2[N ]Lh
∂x2

=
m∑

j=1

[Vj ]Lh .(2z3
j − 3z2

i + zj).w2
j , (22)

∂2[N ]Uh
∂x2

=
m∑

j=1

[Vj ]Uh .(2z3
j − 3z2

i + zj).w2
j . (23)

Now differentiating trial function YT (x, P ), we obtain

[Y ′
T (x, P )]Lh = [A2]Lh + 2(x − a)[N(x, P )]Lh + (x − a)2.

∂[N(x, P )]Lh
∂x

,

[Y ′
T (x, P )]Lh = [A2]Uh + 2(x − a)[N(x, P )]Uh + (x − a)2.

∂[N(x, P )]Uh
∂x

,

[Y ′′
T (x, P )]Lh = 2[N(x, P )]Lh+4(x−a)

∂[N(x, P )]Lh
∂x

+(x−a)2.
∂2[N(x, P )]Lh

∂x2
,

[Y ′′
T (x, P )]Uh = 2[N(x, P )]Uh +4(x−a)

∂[N(x, P )]Uh
∂x

+(x−a)2.
∂2[N(x, P )]Uh

∂x2
,

thus the expressions in equations (20)-(23) are applicable here. A learn-
ing algorithm is derived in Appendix A.
Let us consider the vibrating mass in engineering.
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times than fully fuzzy neural networks in our computer simulations. The
effectiveness of the derived learning algorithm was demonstrated by com-
puter simulation on numerical examples and we proposed applied exam-
ples in engineering.

Appendix

Derivation of a learning algorithm in PFNN

Let us denote the fuzzy connection weight Vj to the output unit by its
parameter values as Vj = (v(1)

j , . . . , v
(q)
j , . . . , v

(r)
j ). The amount of modi-

fication of each parameter value is written as [?, 27]

v
(q)
j (t + 1) = v

(q)
j (t) + �v

(q)
j (t),

�vq
j (t) = −η

g∑
i=1

∂eih

∂v
(q)
j

+ α. � v
(q)
j (t − 1),

where t indexes the number of adjustments, η is a learning rate (a pos-
itive real number) and α is a momentum constant term (positive real
number).
Thus our problem is to calculate the derivatives ∂eih

∂v
(q)
j

. Let us rewrite

∂eih

∂v
(q)
j

as follows:

∂eih

∂v
(q)
j

=
∂eih

∂[Vj ]Lh
.
∂[Vj ]Lh
∂v

(q)
j

+
∂eih

∂[Vj ]Uh
.
∂[Vj ]Uh
∂v

(q)
j

.

In this formulation, ∂[Vj ]
L
h

∂v
(q)
j

and ∂[Vj ]
U
h

∂v
(q)
j

are easily calculated from the

membership functions of the fuzzy connection weight Vj . For exam-
ple, when the fuzzy connection weight Vj is trapezoidal (i.e., Vj =

(v(1)
j , v

(2)
j , v

(3)
j , v

(4)
j )), ∂[Vj ]

L
h

∂v
(q)
j

and ∂[Vj ]
U
h

∂v
(q)
j

are calculated as follows:

∂[Vj ]Lh
∂v

(1)
j

= 1 − h,
∂[Vj ]Uh
∂v

(1)
j

= 0,
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unit and the non-fuzzy bias bj to the jth hidden unit is updated in the
same manner as the parameter values of the fuzzy connection weight
[Vj ]1.
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