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1 Introduction

The study of integro-differential equations has gained significant at-
tention in recent years, primarily due to their wide range of applica-
tions in fields such as electrical engineering, mechanics, and medical
biology. In the past few decades, numerous researchers have focused
on exploring the existence, uniqueness, stability, controllability, and
other qualitative and quantitative characteristics of solutions to these
equations. They have achieved this by employing the fixed point tech-
nique and relying on the theory of the resolvent operator, which holds
significant significance in solving integro-differential equations; see for
example [1, 8–12, 33, 35, 46]. More generalized results can be found
in [23–25,29].

In recent times, numerous researchers have been investigating vari-
ous phenomena in nature, biology, finance, and environmental sciences
by employing differential, integro-differential, and fractional equations.
In [47], the authors investigated a class of the singular fractional integro-
differential quantum equations with multi-step methods. Baleanu et
al. [5] studied the existence of solutions for a three step crisis integro-
differential equation. In [43], a nonlinear quantum boundary value prob-
lem formulated in the sense of quantum Caputo derivative, with frac-
tional q-integro-difference conditions along with its fractional quantum-
difference inclusion are investigated. For more recent studies on these
type of equations, we suggest the publications [2–4,6, 32,44].

The concept of almost automorphy is an important generalization
of the classic almost periodicity by Bohr, which was first introduced by
Bochner in [13] in relation to some aspects of differential geometry. Since
then, several advancements and practical implementations have emerged
in the realm of various mathematical equations. These include ordinary
differential equations, partial differential equations, functional differen-
tial equations, integro-differential equations, fractional differential equa-
tions, and stochastic differential equations. To explore these topics, one
can refer to sources such as [14–16, 20, 22, 26, 36, 37, 40, 41, 48], as well
as the references provided therein. Moreover, the concept of asymptoti-
cally almost automorphic functions was introduced by N’Guérékata [39],
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which has led to several intriguing, natural, and robust generalizations.
These functions have found numerous applications in the field of differ-
ential equations. For further insights and results on this topic, read-
ers can explore references such as [16, 21, 30, 31, 34, 45], along with the
monographs by N’Guérékata [42], which delve into the recent theory and
applications of asymptotically almost automorphic functions.

In this paper, we consider the uniqueness of mild solutions on a semi-
infinite positive real interval [0,+∞) for a class of integro-differential
equations in the abstract form


v′(t) = Av(t) +

∫ t

0
B(t− ζ)v(ζ)dζ

+f

(
t, v(t),

∫ t

0
g(t, ζ, v(ζ))dζ

)
, t ≥ 0,

v(0) = v0.

(1)

In this text, V is a Banach space endowed with a norm | · |, A : D(A) ⊂
V → V is the infinitesimal generator of a C0-semigroup (Ψ(t))t≥0 ∈ V.
Here B(t) is a closed linear operator on V, with domain D(A) ⊂ D(B(t))
which is independent of t. The nonlinear function f : R+ × V × V → V,
and g : D × V → V, D = {(t, ȷ) ∈ R+ ×R+ : ȷ ≤ t}, are given functions
to be specified later. It is noteworthy that our study can be viewed as a
natural extension and continuation of the research outlined in the pub-
lications [16,21,30,31,34,39,42,45]. This contribute to the advancement
of theories related to integro-differential equations through the incorpo-
ration of the concept of almost automorphy.

We will now proceed to a description of the work. In Section 2,
we recall some basic concepts and properties of continuous evolution
family and measure of noncompactness. In addition, notations about
almost automorphic functions and asymptotically almost automorphic
functions are also introduced in this section. The results are based
on Monch’s fixed point theorem under some appropriate assumptions,
which we give in Section 3. In Section 4, we provide an example to
illustrate the validity of our primary findings.
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2 Preliminary Notions

In this section, we review some basic concepts, notations, and properties
needed to establish our main results.
Throughout the paper, we assume that (V, | · |), (U , | · |) are two real
Banach spaces.
To enhance the subsequent discussion, we introduce the following :
▶ C(R+,V) : the space of all continuous V-valued functions on interval
R+.
▶ BC(R+ ×U ×U ,V)) : the Banach space of bounded continuous func-
tions from R+ × U × U to V equipped with the norm

∥v∥BC = sup
t∈R+

|v(t)|.

▶ C0(R+,V) : the space of all continuous functions h : R+ → V such
that lim

t→∞
h(t) = 0.

▶ C0(R+×U×U ,V); the space of all continuous functions from R+×U×
U to V satisfying lim

t→∞
h(t, v, ϑ) = 0 in t and uniformly for all (v, ϑ) ∈ K,

where K is any bounded subset of U × U .
▶ Lp(R+,V) denotes the space of V-valued Bochner functions on R+

with the norm

∥v∥Lp =

(∫ +∞

0
|v(t)|pdt

) 1
p

, p ≥ 1.

▶ B(V,U) the Banach space of bounded linear operators from V into U ,
equipped with the usual operator norm ∥ · ∥B(V). In particular, we write
B(V) when V = U .
First, let’s recall some basic definitions and results on the strong con-
tinuous evolution family which will be used later.

We consider the following Cauchy problem v′(t) = A(t)v(t) +

∫ t

0
B(t− ζ)v(ζ)dζ t ≥ 0,

v(t) = v0.
(2)

Definition 2.1 ( [19,27]). A resolvent for Equation (2) is a bounded lin-
ear operator valued function Φ(t) ∈ B(V) for t ≥ 0, having the following
properties:
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(a) For any t ∈ R+, Φ(t) = 0 and ∥Φ(t)∥B(V) ≤ ηe−λ(t−ȷ) for some
constants η and λ.

(b) For each v ∈ V,Φ(t)v is strongly continuous for t ≥ 0.

(c) For v ∈ V, Φ(·)v ∈ C1([0,+∞),V) ∩ C([0,+∞),U) and

Φ′(t)v = AΦ(t)v +

∫ t

0
B(t− ζ)Φ(ζ)vdζ

= Φ(t)Av +
∫ t

0
Φ(t− ζ)B(ζ)vdζ.

Theorem 2.2 ( [19,27]). Assume that:

(a) A is the infinitesimal generator of a strongly continuous semigroup
(Φ(t))t≥0 on V.

(b) For all t ≥ 0, B(t) is closed linear operator from D(A) to V and
B(t) ∈ B(U ,V). For any v ∈ V, the map t → B(t)v is bounded,
differentiable and the derivative t → B′(t)v is bounded uniformly
continuous on R+.

Then there exists a unique resolvent operator for the Cauchy problem
(2).

Definition 2.3 ( [13, 41]). A continuous function f : R → V is almost
automorphic if for every sequence of real numbers {κ′

n}, there exists a
subsequence {κn} where

f̂(t) = lim
n→∞

f(t+ κn)

is well defined for each t ∈ R and

lim
n→∞

f̂(t− κn) = f(t) for each t ∈ R.

Denote by AA(R,V) the set of all these functions.

Example 2.4. The following is a typical example of almost automorphic
function:

f(t) = sin

(
1

2 + cos t+ cos
√
2t

)
, t ∈ R.
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Lemma 2.5 ( [40]). AA(R,V) is a Banach space with the norm

∥f∥∞ = sup
t∈R

|f(t)|.

Definition 2.6 ( [41]). A continuous function f : R×U ×U → V is said
to be almost automorphic in t ∈ R uniformly for all (v, ϑ) ∈ k, where K
is any bounded subset of U × U , if for every sequence of real numbers
{κ′

n}, there exists a subsequence {κn} such that

lim
n→∞

f(t+ κn, v, ϑ) = f̂(t, v, ϑ)

is well defined for each t ∈ R and each (v, ϑ) ∈ K and

lim
n→∞

f̂(t− κn, v, ϑ) = f(t, v, ϑ)

for each t ∈ R and each (v, ϑ) ∈ K.
The set of those functions is denoted by AA(R× U × U ,V).

Example 2.7. The function f : R× V × V → V given by

f(t, v, ϑ) = sin

(
1

2 + cos t+ cos
√
2t

)
(sin v + ϑ)

is almost automorphic in t ∈ R uniformly for all (v, ϑ) ∈ K, where K is
any bounded subset of V × V; V = L2([0, 1]).

Lemma 2.8 ( [16]). f : R × V × V → V is almost automorphic, and
assume that f(t, ·, ·) is uniformly continuous on each bounded subset
K ⊂ V uniformly for t ∈ R, that is for any ε > 0, there exists ϱ >
0 such that v1, v2, ϑ1, ϑ2 ∈ K and |v2(t)− v1(t)| + |ϑ2(t)− ϑ1(t)| < ϱ
imply that |f(t, v1(t); v2(t))− f(t, ϑ1(t), ϑ2(t))| < ε for all t ∈ R. Let
ϕ, ψ : R → V be almost automorphic. Then the function Π : R → V
defined by Π(t) = f(t, ϕ(t), ψ(t)) is almost automorphic.

Remark 2.9. If f(t, v, ϑ) satisfies a local Lipschitz condition with re-
spect to v and ϑ uniformly in t ∈ R, i.e., for each pair v1, v2, ϑ1, ϑ2 ∈ V,
t ∈ R

|f(t, v1(t), v2(t))− f(t, ϑ1(t), ϑ2(t))| ≤ γ(t) |v2(t)− v1(t)|+|ϑ2(t)− ϑ1(t)| .

where γ(t) ∈ BC(R,R), then f(t, ϑ(t), ϑ(t)) is uniformly continuous on
K uniformly for t ∈ R, where K is any bounded subset of V × V.
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Definition 2.10 ( [41]). A continuous function f : R+ → V is asymp-
totically almost automorphic if it can be decomposed as

f(t) = f̂(t) +∇(t),

where
f̂(t) ∈ AA(R,V), ∇(t) ∈ C0(R+,V).

Denote by AAA(R+,V) the set of all such functions.

Lemma 2.11 ( [40]). AA(R+,V) is also a Banach space with the supre-
mum norm ∥f∥∞.

Example 2.12. The function f : R+ → R defined by

f(t) = sin

(
1

2 + cos t+ cos
√
2t

)
+ e−t

is an asymptotically almost automorphic function.

Definition 2.13 ( [41]). A continuous function f : R+ × U × U → V is
asymptotically almost automorphic if it can be decomposed as

f(t, v, ϑ) = f̂(t, v, ϑ) +∇(t, v, ϑ),

where

f̂(·, ·, ·) ∈ AA(R× U × U ,V), ∇(·, ·, ·) ∈ C0(R+ × U × U ,V).

Denote by AAA(R+ × U × U ,V) the set of all such functions.

Example 2.14. The function f : R+ × V × V → V given by

f(t, v, ϑ) = sin

(
1

2 + cos t+ cos
√
2t

)
(sin v + ϑ) + e−t|v + sinϑ|

is asymptotically almost automorphic in t ∈ R+ uniformly for all (v, ϑ) ∈
K, where K is any bounded subset of V × V, V = L2([0, 1], and the
functions f̂ ∈ AA, ∇ ∈ C0 are defined by

f̂(t, v, ϑ) = sin

(
1

2 + cos t+ cos
√
2t

)
(sin v + ϑ) ∈ AA(R× V × V,V),

∇(t, v, ϑ) = e−t|v + sinϑ| ∈ C0(R+ × V × V,V).
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Now, we introduce the Kuratowski measure of noncompactness Ψ
given by

Ψ(Θ) = inf{κ > 0 : Θ has a finite cover by sets of diameter ≤ κ},

for a bounded set Θ in any space V. Some basic properties of Ψ(·) are
given in the following lemma. For more details, please see [7].

Lemma 2.15 ( [7]). Let V be a Banach space and Θ1,Θ2 ⊂ V be
bounded, and the following properties are satisfied:

(ı1) Θ is pre-compact if and only if Ψ(Θ) = 0,

(ı2) Ψ(Θ) = Ψ(Θ) = Ψ(ConvΘ), where Θ and convΘ are the closure
and the convex hull of Θ, respectively,

(ı3) Ψ(Θ1) ≤ Ψ(Θ2) when Θ1 ⊂ Θ2,

(ı4) Ψ(Θ1 +Θ2) ≤ Ψ(Θ1) + Ψ(Θ2),

(ı5) Ψ(kΘ) = |k|Ψ(Θ) for any k ∈ R,

(ı6) Ψ(Θ) = Ψ(Θ),

(ı6) Ψ(Θ2 +Θ1) ≤ Ψ(Θ2) + Ψ(Θ2) where

Θ2 +Θ1 = {v + ϑ : v ∈ Θ, ϑ ∈ Θ2},

(ı6) Ψ(Θ2 ∪Θ1) ≤ max (Ψ(Θ2),Ψ(Θ2)) ,

(ı6) if Γ : V → V is a Lipschitz continuous map with constant k, then
Ψ(Γ(Θ)) ≤ kΨ(Θ) for all bounded subset Θ of V.

Lemma 2.16. ( [17]) Let V be a Banach space, Θ ⊂ V be bounded.
Then there exists a countable set Θ0 ⊂ Θ, such that

Ψ(Θ) ≤ 2Ψ(Θ0).

Lemma 2.17 ( [28]). Let V be a Banach space, and let Θ = {vn} ⊂
C([c, d],V) be a bounded and countable set for constants −∞ < c < d <
+∞. Then Ψ(v(t)) is Lebesgue integral on [c, d], and

Ψ
({∫ d

c
vn(t)dt : n ∈ N

})
≤ 2

∫ d

c
Ψ(Θ(t))dt.
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Now, we recall a useful compactness criterion.

Lemma 2.18 (Corduneanu [18]). A set C ⊂ BC(R+,V) is relatively
compact if the following conditions hold

(i) C is bounded in BC(R+,V),

(ii) C is a locally equicontinuous family of function, i.e., for any con-
stant d > 0, the functions in C are equicontinuous in [0, d],

(iii) the set C(t) := {v(t) : v ∈ C} is relatively compact on any compact
interval of R+,

(iv) the functions from C are equiconvergent, i.e For each ε > 0 ,there
exists d(ε) > 0 such that |v(t) − v(+∞)| < ε for all t ≥ d(ε) and
for all v ∈ C.

3 The Main Results

In this section, we discuss the existence of mild solutions for system (1).
Firstly, let us propose the definition of the mild solution of system (1).

Definition 3.1. A function v ∈ BC(R+,V) is called a mild solution to
the problem (1) if v satisfies the integral equation

v(t) = Φ(t)v0 +

∫ t

0
Φ(t− ȷ)f

(
ȷ, v(ζ),

∫ ȷ

0
g(ȷ, ζ, v(ζ))dζ

)
dȷ, t ∈ R+. (3)

In order to obtain the results, we need the following conditions:

(H1) A is an infinitesimal generator which generates a C0-semigroup
(Ψ(t))t≥0 such that

∥Φ(t− ȷ)∥B(E) ≤ ηe−λ(t−ȷ).

with η > 0 and λ > 0 for all t ≥ 0.

(H2) The function f : R+ × V × V → V satisfies:

(i) For a.e. t ∈ R+, the function f(t, ·, ·) : V×V → V is continuous,
and for each (v, ϑ) ∈ V × V, the function f(·, v, ϑ) : R+ → V
is strongly measurable.
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(i) The function f(t, v, ϑ) asymptotically almost automorphic i.e.,
f(t, v, ϑ) = f̂(t, v, ϑ) +∇(t, v, ϑ) with

f̂(t, v, ϑ) ∈ AA(R×V×V,V), ∇(t, v, ϑ) ∈ C0(R+×V×V,V),

and f̂(t, v, ϑ) is uniformly continuous on any bounded subset
K ⊂ V × V uniformly for t ∈ R.

(ii) There exists a function ℏ ∈ L
1
p1 (R+,R+), for a constant p1 ∈

(0, 1) such that:

|f(t, v, ϑ)| ≤ ℏ(t)(|v|+ |ϑ|) for a.e t ∈ R+ and each v, ϑ ∈ V.

(iii) There exists a function ρ ∈ L
1
p2 (R+,R+), for a constant p2 ∈

(0, 1) such that:

Ψ(f(t, V1, V2)) ≤ ρ(t) (Ψ(V1) + Ψ(V2))

for a.e t ∈ R+ and V1, V2 ⊂ V.

(H3) The function g : D × V → V satisfies the following:

(i) There exists a positive function β(t, ȷ) ∈ L1(D,R+) such that:

|g(t, ȷ, v)| ≤ β(t, ȷ) |v| , for a.e (t, ȷ) ∈ D and each v ∈ V.

(ii) There exists a positive function χ(t, ȷ) ∈ L1(D,R+) such that:

Ψ(g(t, ȷ, V ) ≤ χ(t, ȷ)Ψ(V ) for a.e (t, ȷ) ∈ D and V ⊂ V.

For brevity of notations, we denote

β∗ = sup
t∈R+

∫ t

0
β(t, ȷ)dt, χ∗ = sup

t∈R+

∫ t

0
χ(t, ȷ)dt.

We need the following technical lemma.

Lemma 3.2. Assume that the hypotheses (H1) is satisfied and let V ∈
AA(R,V). If ℵ1 is the function defined by

ℵ1(t) =

∫ t

−∞
Φ(t− ȷ)V (ȷ)dȷ, t ∈ R,

then ℵ1 ∈ AA(R,V).
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Proof. By (H1), we deduce that ℵ is well-defined and continuous
on R. Since V (t) ∈ AA(R,V), then for every sequence {κ′

n}, we can
extract a subsequence {κn} where

(Cd1) lim
n→∞

V (t+ κn)− Ṽ (t) = 0 for each t ∈ R and,

(Cd2) lim
n→∞

Ṽ (t− κn)− V (t) = 0 for each t ∈ R.

Notes that Ṽ is also bounded on R, and measurable. Define

ℵ̃1(t) =

∫ t

−∞
Φ(t− ȷ)Ṽ (ȷ)dȷ, t ∈ R.

For t ∈ R, Since Ṽ is measurable, ℵ̃1 is well-defined.
Using (H1), it yields∣∣∣ℵ1v)(t+ κn)− (ℵ̃1v)(t)

∣∣∣
=

∣∣∣∣∫ t+κn

−∞
Φ(t+ κn − ȷ)V (ȷ)dȷ−

∫ t

−∞
Φ(t− ȷ)Ṽ (ȷ)dȷ

∣∣∣∣
=

∣∣∣∣∫ t

−∞
Φ(t− ȷ)V (ȷ+ κn)dȷ−

∫ t

−∞
Φ(t− ȷ)Ṽ (ȷ)dȷ

∣∣∣∣
≤
∫ t

−∞
∥Φ(t− ȷ)∥B(V)

∣∣∣V (ȷ+ κn)− Ṽ (ȷ))
∣∣∣ dȷ

≤ η

∫ t

−∞
e−λ(t−ȷ)dȷ sup

t∈R

∣∣∣V (t+ κn)− Ṽ (t))
∣∣∣

≤ η

λ
sup
t∈R

∣∣∣V (t+ κn)− Ṽ (t))
∣∣∣

Using (Cd1), we obtain that for n→ ∞,

ℵ1(t+ κn) → ℵ̃1(t).

Similarly, it is possible to demonstrate that,

ℵ̃1(t− κn) → ℵ(t)1 for each t ∈ R as n→ ∞.

Therefore

ℵ1 ∈ AA(R,V).
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Lemma 3.3. Assume that the hypotheses (H1) is satisfied and let U ∈
C0(R+,V). If ℵ2 is the function defined by

ℵ2(t) =

∫ t

0
Φ(t− ȷ)U(ȷ)dȷ, t ∈ R+,

then U ∈ C0(R+,V).

Proof. By (H1) we have that ℵ2 is well-defined and continuous on
R. Since U ∈ C0(R+,V), one can choose a T > 0 such that

∥U∥∞ ≤ ε.

This enables us to conclude that for all t > T,

|(ℵ2v)(t)| ≤
∫ t

0
∥Φ(t− ȷ)∥B(V)|U(ȷ)|dȷ

≤
∫ t

2

0
∥Φ(t− ȷ)∥B(V)|U(ȷ)|dȷ

+

∫ t

t
2

∥Φ(t− ȷ)∥B(V)|U(ȷ)|dȷ

≤ η sup
t∈R+

|U(t)|
∫ t

2

0
e−λ(t−ȷ)dȷ

+ ηε

∫ t

t
2

e−λ(t−ȷ)dȷ

≤ η∥U∥∞
e−

t
2
λ − e−λt

λ
+
ηε(1− e−

t
2
λ)

λ
→ ηε

λ
as t→ +∞.

Since ε is arbitrary, we get that ℵ ∈ C0(R+,V).

Theorem 3.4. Assume that the hypotheses (H1) − (H3) are satisfied.
Then the problem (1) has a asymptotically almost automorphic mild so-
lution If

max
(
2η(1 + β∗)∥ℏ∥

L
1
p1
, 4η(1 + 2χ∗)∥ρ∥

L
1
p2

)
< 1. (4)
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Proof. Consider the operator T : BC(R+,V) → BC(R+,V) defined
by

(T v)(t) = Φ(t)v0 +

∫ t

0
Φ(t− ȷ)f

(
ȷ, v(ζ),

∫ ȷ

0
g(ȷ, ζ, v(ζ))dζ

)
dȷ, t ∈ R+.

(5)
Our aim is to show that T admits at least one fixed point in a AAA(R+×
V × V,V).

Step 1. We demonstrate that T : BC(R+,V) → BC(R+,V) is well
defined.
For t ∈ R+, thus, from the hypotheses (H1)-(H3), we get

|(T v)(t)| ≤ ∥Φ(t)∥B(V) |v0|

+

∫ t

0
∥Φ(t− ȷ)∥B(V) ℏ(ȷ)

(
|v(ȷ)|+

∫ ȷ

0
ξ(ȷ, ζ)|v(ȷ)|dζ

)
dȷ

≤ η |v0|+ η

∫ t

0
e−λ(t−ȷ)ℏ(ȷ)

(
|v(ȷ)|+

∫ ȷ

0
ξ(ȷ,κ)|v(ζ)|dκ

)
dȷ

≤ η|v0|+ η

∫ t

0
e−λ(t−ȷ)ℏ(ȷ) (sup |v(ȷ)|+ β∗ sup |v(ζ)|)dζ) dȷ

≤ η|v0|+ η

∫ t

0
e−λ(t−ȷ)ℏ(ȷ) ((1 + β∗) sup |v(ȷ)|) dȷ

≤ η|v0|+ η(1 + β∗)

∫ t

0
e−λ(t−ȷ)ℏ(ȷ)dȷ∥v∥BC

≤ η|v0|+ η(1 + β∗)∥ℏ∥
L

1
p1

(∫ t

0
e
− λ

1−p1
(t−ȷ)

dȷ

)1−p1

dȷ∥v∥BC

≤ η|v0|+ η(1 + β∗)∥ℏ∥
L

1
p1

(
1− e

− λt
1−p1

)
dȷ∥v∥BC

≤ η|v0|+ η(1 + β∗)∥ℏ∥
L

1
p1
∥v∥BC,

which implies that T : BC(R+,V) → BC(R+,V) is well defined.
In what follows, we need to demonstrate that all assumptions of Mönch’s
fixed point theorem [38] are fulfilled by the operator T . For any ϱ > 0,
set

Aϱ =
{
v ∈ BC(R+,V) : ∥v∥ ≤ ϱ

}
.
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Clearly, the subset Aϱ is a bounded, closed and convex subset ofBC(R+,V).

Step 2. We demonstrate that for ϱ0 > 0 we have T
(
Aϱ0

)
⊂ Aϱ0 .

If this condition fails, then for every positive constant ϱ > 0 and t ≥ 0,
there exists a function v̂ ∈ Aϱ but T (v̂) /∈ Aϱ, i.e |(T v̂)(t)| > ϱ. Thus,
by the Hölder inequality, the condition (H1) − (H3), and thus, we can
show that

|(T v)(t)| ≤ η|v0|+ η(1 + β∗)∥ℏ∥
L

1
p1
ϱ.

Thus,

ϱ ≤ η|v0|+ η(1 + β∗)∥ℏ∥
L

1
p1
ϱ.

Dividing on both sides by ϱ and taking the lower limit as ϱ→ +∞ , we
can obtain that

1 ≤ η(1 + β∗)∥ℏ∥
L

1
p1
,

which contradicts the assumption (4). Hence, there is a positive con-
stant ϱ0 such that T (Aϱ) ⊂ Aϱ.

Step 3. T is continuous on Aϱ0 .
To demonstrate the continuity of T , we assume that there exists a se-
quence vn → v in Aϱ0 .
Case 1. If t ∈ [0, d], d > 0, and vn, v ∈ Aϱ0 , we have

|(T vn)(t)− (T v)(t)| ≤ η

∫ t

0

∣∣∣∣f (t, vn(t),∫ t

0
g(t, ζ, vn(ζ))dζ

)
−f
(
t, v(t),

∫ t

0
g(t, ζ, v(ζ))dζ

)∣∣∣∣ dȷ.
By the Lebesgue dominated convergence theorem accompanying with
(H2)(i), we get

∥T vn − T v∥ → 0 as n→ +∞.

Case 2. If t ∈ (d,+∞), d > 0, By (H2)(i), we can see that∣∣∣∣f (t, vn(t), ∫ t

0
g(t, ζ, vn(ζ))dζ

)
− f

(
t, v(t),

∫ t

0
g(t, ζ, v(ζ))dζ

)∣∣∣∣ ≤ λε

η
, (6)



SEMILINEAR INTEGRO-DIFFERENTIAL EVOLUTION ... 15

for t ≥ d.
Hence, according to the dominated convergence theorem and (6), we
obtain that for every t ≥ 0,

|(T vn)(t)− (T v)(t)| ≤
∫ t

0
∥Φ(t− ȷ)∥B(E)

∣∣∣∣f (t, vn(t), ∫ t

0
g(t, ζ, vn(ζ))dζ

)
−f
(
t, v(t),

∫ t

0
g(t, ζ, v(ζ))dζ

)∣∣∣∣ dȷ
≤ ηλε

η

∫ t

0
e−λ(t−ȷ)dȷ

≤ η

λ

λε

η
(1− e−λt)

≤ ε.
(7)

Then the inequality (7) reduces to

∥T (vn)− T (v)∥BC → 0 as n→ ∞.

Thus we conclude that T is continuous in Aϱ0 .
Next, we show that T is equi-continuous on every compact interval [0, d]
of [0,+∞), for d > 0 and is equi-convergent in v ∈ Aϱ0 .

Step 4. T (Aϱ0) is equicontinuous.
Let 0 < d < +∞ be an arbitrary constant. Generally, let 0 ≤ t1 ≤ t2 ≤
d, for any v ∈ Aϱ0 , we know that

|(T v)(t2)− (T v)(t1)|

=

∣∣∣∣Φ(t2)v0 + ∫ t2

0
Φ(t− ȷ)f

(
ȷ, v(ζ),

∫ ȷ

0
g(ȷ, ζ, v(ζ))dζ

)
dȷ

− Ψ(t1)v0 +

∫ t1

0
Φ(t− ȷ)f

(
ȷ, v(ζ),

∫ ȷ

0
g(ȷ, ζ, v(ζ))dζ

)
dȷ

∣∣∣∣
≤ |Φ(t2)v0 − Φ(t1)v0|

+

∣∣∣∣∫ t1

0
(Φ(t2, ȷ)− Φ(t1, ȷ))f

(
ȷ, v(ζ),

∫ ȷ

0
g(ȷ, ζ, v(ζ))dζ

)
dȷ

+

∫ t2

t1

Φ(t2,κ)f
(
ȷ, v(ζ),

∫ ȷ

0
g(ȷ, ζ, v(ζ))dζ

)
dȷ

∣∣∣∣
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≤ |Φ(t2)v0 − Φ(t1)v0|

+

∫ t1

0
∥Φ(t2,κ)− Φ(t1,κ)∥B(V) ℏ(ȷ)

(
|v(ȷ)|+

∫ ȷ

0
β(ȷ, ζ)|v(ζ)|dζ

)
dȷ

+ η

∫ t2

t1

e−λ(t−ȷ)ℏ(ȷ)
(
|v(ȷ)|+

∫ ȷ

0
β(ȷ, ζ)|v(ζ)|dζ

)
dȷ.

It follows from the Hölder’s inequality that

|(T v)(t2)− (T v)(t1)|
≤ ∥Φ(t2)− Φ(t1)∥B(V) |v0|

+(1 + β∗)ϱ

∫ t1

0
∥Φ(t2 − ȷ)− Φ(t1 − ȷ)∥B(V) ℏ(ȷ)dȷ

+η∥ℏ∥
L

1
p1
(1 + β∗)ϱ∥χ∥

L
1
p1

(∫ t

0
e
− λ

1−p1
(t−ȷ)

dȷ

)1−p1

.

It follows that

|(T v)(t2)− (T v)(t1)|
≤ ∥Φ(t2)− Φ(t1∥B(V) |v0|

+(1 + β∗)ϱ

∫ t1

0
∥Φ(t2 − ȷ)− Φ(t1 − ȷ)∥B(V) ℏ(ȷ)dȷ

+
η∥ℏ∥

L
1
p1
(1 + β∗)ϱ(1− p1)

1−p1

λ1−p1

(
e
− λ

1−p1
(t−t2) − e

− λ
1−p

(t−t1)
)1−p1

.

As t2 → t1, the right-hand side of the above inequality tends to zero.
Therefore, T (Aϱ0) is equicontinuous.

Step 5. Aϱ0(t) =
{
(T v)(t) : v ∈ Aϱ

}
is a relatively compact subset

of V in each t ∈ R+.
Let M be a subset of Aϱ0 such that M ∈ conv(T (M) ∪ {0}).

In addition, by Lemma 2.16, we know that there is a countable set
{v}n=+∞

n=0 ⊂ Θ such that Ψ((T (Θ)) ≤ 2Ψ((T ({v}n=+∞
n=0 ) for any bounded

set Θ. Thus for {vn}+∞
n=0 ⊂ M, for the appropriate choice of M. For ev-

ery t ∈ [0, d], by utilizing Lemma 2.17 and conditions and the properties
of the measure Ψ, we obtain

Ψ((T (M(t))

≤ 2Ψ((T ({vn(t)}∞n=0)
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≤ 2Ψ

({
Φ(t)v0 +

∫ t

0
Φ(t− ȷ)f

(
ȷ, vn(ȷ),

∫ ȷ

0
g(ȷ, ζ, vn(ζ))dζ

)
dȷ

}∞

n=0

)
≤ 2Ψ

({∫ t

0
Φ(t− ȷ)f

(
ȷ, vn(ȷ),

∫ ȷ

0
g(ȷ, ζ, vn(ζ)dζ

)
dȷ

}∞

n=0

)
≤ 2Ψ

(∫ t

0
Φ(t− ȷ)f

(
ȷ, {vn(ȷ)}∞n=0 ,

∫ ȷ

0
g(ȷ, ζ, {vn(ζ)}∞n=0)dκ

)
dȷ

)
≤ 4η

∫ t

0
e−λ(t−ȷ)ρ(t)

×

(
sup
ȷ∈[0,t]

Ψ({vn(ȷ)}∞n=0) + 2

∫ ȷ

0
χ(ȷ, ζ) sup

κ∈[0,ȷ]
Ψ({vn(ζ)}∞n=0)dκ

)
dȷ

≤ 4η

∫ t

0
e−λ(t−ȷ)ρ(t)

×

(
sup
ȷ∈[0,t]

Ψ({vn(ȷ)}∞n=0) + 2 sup
κ∈[0,ȷ]

Ψ({vn(ζ)}∞n=0)

∫ ȷ

0
χ(ȷ, ζ)dζ

)
dȷ

≤ 4η(1 + 2χ∗)

∫ t

0
e−λ(t−ȷ)ρ(ȷ) sup

ȷ∈[0,t]
Ψ({vn(ȷ)}∞n=0)dȷ

≤ 4η(1 + 2χ∗)

∫ t

0
e−λ(t−ȷ)ρ(ȷ)dȷΨ({vn}∞n=0)

≤ 4η(1 + χ∗)∥ρ∥
L

1
p2

(∫ t

0
e
− λ

1−p2
(t−ȷ)

dȷ

)1−p2

Ψ({vn}∞n=0)

≤ 4η(1 + 2χ∗)∥ρ∥
L

1
p2

(
1− e

− λt
1−p2

)
Ψ({vn}∞n=0)

≤ 4η(1 + 2χ∗)∥ρ∥
L

1
p2
Ψ({vn}∞n=0),

which ensures that

Ψ((T (M)(t)) ≤ 4η(1 + 2χ∗)∥ρ∥
L

1
p2
Ψ(M(t)).

Then,

Ψ(M) ≤ Ψ((T (Θ)(t) ≤ 4η∥ρ∥
L

1
p2
(1 + 2χ∗)Ψ(M).

That is to say (
1− 4η(1 + 2χ∗)∥ρ∥

L
1
p2

)
Ψ(M) ≤ 0.
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From (4), we observe that Ψ(M) = 0.

Step 6. T (Aϱ0) is equiconvergent.
Let v ∈ Aϱ0 . For t ∈ R+, we have

|(T v)(t)| ≤ Φ(t)v0 +

∫ t

0
Φ(t− ȷ)f

(
ȷ, v(ζ),

∫ ȷ

0
g(ȷ, ζ, v(ζ))dζ

)
dȷ

≤ η|v0|e−λt + η(1 + 2β∗)

∫ t

0
e−λ(t−ȷ)ℏ(ȷ)dȷ

≤ η|v0|e−λt + η(1 + β∗)∥ℏ∥
L

1
p1

(∫ t

0
e
− λ

1−p1
(t−ȷ)

dȷ

)1−p1

≤ η|v0|e−λt + η(1 + β∗)∥ℏ∥
L

1
p1

(
1− e

− λt
1−p1

)
.

Then, we get

|T (t)| → η(1 + β∗)∥ℏ∥
L

1
p1

as t→ +∞.

Hence, as t→ +∞, we have |(T v)(t)− (T v)(+∞)| → 0.

Step 7. We prove that T (AAA(R+×V ×V,V)) ⊂ (AAA(R+×V ×
V,V).
Let v, ϑ ∈ AAA(R+,V) with v = ω+ δ and ϑ = σ+℘, where ω, σ is the
principal term and δ, ϱ the corrective term of v, ϑ.

Let
E(t) = Φ(t)v0,

then

|E(t)| = |Φ(t)v0| ≤ |Φ(t)v0| ≤ ηe−λt|v0|.

Since λ > 0, we get lim
t→+∞

|(E(t)| = 0. That is

E ∈ C0(R+,V). (8)

We can have

f(t, v(t), ϑ(t)) = f̂(t, ω(t), σ(t)) + f(t, v(t), ϑ(t))− f(t, ω(t), σ(t))
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+∇(t, ω(t), σ(t))

= f̂(t, ω(t), σ(t)) + k(t, v(t), ϑ(t)), (9)

In view of (9), we have

ϖ(t) =

∫ t

0
Φ(t− ȷ)f(t, v(ȷ), ϑ(ȷ))dȷ

=

∫ t

0
Φ(t− ȷ)f̂(t, ω(ȷ), σ(ȷ))dȷ+

∫ t

0
Φ(t, ȷ)k(t, v(ȷ), ϑ(ȷ))dȷ

=

∫ t

−∞
Φ(t− ȷ)f̂(t, ω(ȷ), σ(ȷ))dȷ−

∫ 0

−∞
Φ(t− ȷ)f̂(t, ω(ȷ), σ(ȷ))dȷ

+

∫ t

0
Φ(t− ȷ)k(t, v(ȷ), ϑ(ȷ))dȷ

= (Λ1v)(t) + (Λ2v)(t),

where

(Λ1v)(t) =

∫ t

−∞
Φ(t− ȷ)f̂(t, ω(ȷ), σ(ȷ))dȷ,

(Λ2v)(t) =

∫ t

0
Φ(t− ȷ)k(t, v(ȷ), ϑ(ȷ)), ϑ(ȷ))dȷ

−
∫ 0

−∞
Φ(t− ȷ)f̂(t, ω(ȷ), σ(ȷ))dȷ.

Let

(N1v)(t) =

∫ t

0
Φ(t− ȷ)k(t, v(ȷ), ϑ(ȷ))dȷ,

(N2v)(t) =

∫ t

−∞
Φ(t− ȷ)f̂(t, ω(ȷ), σ(ȷ))dȷ.

Using (H2) and Lemma 2.8, ȷ → f̂(t, ω(ȷ), σ(ȷ)) is in AA(R,V).
Thus, by Lemma 3.2 we obtain

Λ1 ∈ AA(R,V). (10)

Let’s prove that N1 ∈ C0(R+,V),N2 ∈ C0(R+,V).
Indeed by definition k ∈ C0(R+,V), Thus, by Lemma 3.4 we obtain

N1 ∈ C0(R+,V). (11)
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Demonstrating that N2 ∈ C0(R+,V).

|(N2v)(t)| ≤
∫ 0

−∞
∥Φ(t− ȷ)∥B(V)|f̂(t, ω(ȷ), σ(ȷ))|dȷ

≤ η sup
t∈R

|f̂(t, ω(ȷ), σ(ȷ))|
∫ 0

−∞
e−λ(t−ȷ)dȷ

≤ η∥f̂∥∞
e−λt

λ
→ 0 as t→ ∞.

So,

N2 ∈ C0(R+,V). (12)

Finally combining (8),(10), (11) and (12) proves our claim that

T (AAA(R+,V)) ⊂ (AAA(R+,V).

Thus, from the above results, we have that

T : Aϱ0 ∩AAA(R+,V) → Aϱ0 ∩AAA(R+,V)

is a continuous mapping and the assumption

Θ = convT (Θ) or Θ = T (Θ) ∪ {0} =⇒ Ψ(Θ) = 0,

holds for every subset Θ of Aϱ0 ∩AAA(R+,V). It follows from the
Mönch fixed point theorem that T has a fixed point

v ∈ Aϱ0 ∩AAA(R+,V).

4 Example

In order to illustrate the usefulness of the theoretical results established
in the preceding section, we consider the following heat equation with
Dirichlet boundary conditions :
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∂

∂t
ω(t, y) =

∂2

∂ξ2
ω(t, y) +

∫ t

0
ℵ(t− ζ)

∂2

∂ζ2
ω(t, y)dζ

+
1

52
√
1 + t

sin

(
1

2 + cos t+ cos
√
2t

)
×
(
sinω(t, y) +

∫ t

0

sin(t− ζ)

1 + (t− ζ)2
ω(t, y)dζ

)
+

e−t

52
√
1 + t

(
ω(t, y) +

∫ t

0

sin(t− ζ)

1 + (t− ζ)2
ω(t, y)dζ

)
,

t ∈ R+, y ∈ [0, 1],

ω(t, 0) = ω(t, 1) = 0, ω(0, y) = ω0(y), t ∈ R+, y ∈ [0, 1].
(13)

Here ℵ : R → R is bounded uniformly continuous, continuously differ-
entiable. Set V = L2(0, 1) and let A be be the Laplace operator

(Aω)(y) = ∂2

∂ζ2
ω(y),

then A : D(A) = H2(0, 1)∩H1
0 (0, 1) → L2(0, 1). Note that, the operator

A has eigenvalues {−n2π2}+∞
1 and generates a C0-semigroup (Φ(t))t≥0

on V such that
∥Φ(t)∥B(V) ≤ ηe−λt,

with η = 1, λ = π2 for all t ≥ 0 .
We define the operator B(t) : B : V → V as follows:

B(t)ω = ℵ(t)Aω for t ≥ 0 and ω ∈ D(A).

Furthermore we set

ω(t)(y) = ω(t, y) for t ∈ R+ and y ∈ [0, 1].

ω(0) = ω(0, y) for t ∈ R+ and y ∈ [0, 1].

Then the system (13) takes the following abstract form
ω′(t) = Aω(t) +

∫ t

0
B(t− ζ)ω(ζ)dζ

+f

(
t, ω(t),

∫ t

0
g(t, ζ, ω(ζ))dζ

)
, t ≥ 0,

ω(0) = ω0,

(14)
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where the nonlinear function f : R+ → V given by

f

(
t, ω(t),

∫ t

0
g(t, ζ, ω(ζ))dζ

)
=

1

52
√
1 + t

sin

(
1

2 + cos t+ cos
√
2t

)
×
(
sinω +

∫ t

0

sin(t− ζ)

1 + (t− ζ)2
ω(ζ)dζ

)
+

e−t

52
√
1 + t

(
ω(t) +

∫ t

0

sin(t− ζ)

1 + (t− ζ)2
ω(ζ)dζ

)
.

Let

f̂ (t, ω(t), ϑ(t)) =
1

52
√
1 + t

sin

(
1

2 + cos t+ cos
√
2t

)
(sinω(t) + ϑ(t)) ,

∇(t, ω(t), ϑ(t)) =
e−t

52
√
1 + t

(ω(t) + ϑ(t)),

and

g(t, ζ, ω(ζ)) =
2 sin(t− ζ)

1 + (t− ζ)2
ω(ζ).

Then it is easy to verify that f̂ ,∇ : R → V are continuous
and f̂(t, v(t), ϑ(t)) ∈ AA(R → V) and

|∇(t, ω(t), ϑ(t))| ≤ e−t

52
√
1 + t

(|ω|+ |ϑ|),

which implies ∇(t, ω(t), ϑ(t)) ∈ C0(R+ → V) and

f(t, ω(t), ϑ(t)) = f̂(t, ω(t), ϑ(t)) +∇(t, ω(t), ϑ(t)) ∈ AAA(R+,V).

Observe that

|f(t, ω(t), ϑ(t))| ≤ 1

52
√
1 + t

(|ω2(t)|+ |ϑ(t)|).
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Moreover, for a bounded subset V1, V2 of V, and from properties of
measure of noncompactness Ψ, we have

Ψ(f(t, V1, V2)) ≤
1

52
√
1 + t

(Ψ(V1) + Ψ(V2)) .

Moreover, let p1 = p2 =
1

3
, then, the assumptions (H2) hold with

ℏ(t) = ρ(t) =
1

52
√
1 + t

.

Similarly, g clearly satisfies. Further, we get

|g(t, ȷ, v)| ≤ 2| sin(t− ζ)|
1 + (t− ζ)2

|v| .

Now, by the property of measure of noncompactness for bounded subset
V of V, we have

Ψ(g(t, ȷ, V )) ≤ 2| sin(t− ζ)|
1 + (t− ζ)2

Ψ(V ).

In addition

sup
t∈R+

∫ t

0

2| sin(t− ζ)|
1 + (t− ζ)2

dζ ≤ π.

Then the assumptions (H1) hold with

β(t, ȷ) = χ(t, ȷ) =
2 sin(t− ζ)

1 + (t− ζ)2
.

Furthermore, from Theorem 3.4, we obtain

max
(
2η(1 + β∗)∥ℏ∥

L
1
p1
, 4η(1 + 2χ∗)∥ρ∥

L
1
p2

)
=

3
√
2(1 + 2π)

13

= 0, 80 < 1.

So, all the conditions of Theorem 3.4 are satisfied. Hence by the con-
clusion of Theorems 3.4, it follows that the problem (1) has at least one a
asymptotically almost automorphic mild solution ω ∈ Aϱ ∩AAA(R+,V).
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Conclusion

In this paper, we have presented an analysis of the existence of asymptot-
ically almost automorphic mild solution for a class of integro-differential
equations. Our approach utilizes Mönch’s fixed point theorem and mea-
sures of non-compactness to obtain the results. Furthermore, we have
illustrated the practical applications of our results through a specific
example. We hope that our analysis can inspire further research in this
area and contribute to the development of more complex systems. In
our future work, we aim to expand the study to second-order differential
evolution equations, with different types of delay impulsive effects.
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