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Abstract. In this paper, we demonstrate notion of ¢-morphism of
Hilbert H*-modules and describe some properties of these module maps.
Moreover, we show that if ¢ : A — B is an injective morphism of sim-
ple H*-algebras, the range of ¢|. 4 is TB-closed, {e;}icr is a maximal
family of doubly orthogonal minimal projections for A, & : F — Fis a
surjective ¢g-morphism of Hilbert H*-modules, {ux ; }xea is an orthonor-
mal basis for E in which for each A € A, [ux;|uxr:] = €; (i € I) and
F is full, then {¢(e;)}icr and {®(uxr,;)}rea are maximal family of dou-
bly orthogonal minimal projections for B and orthonormal basis for F’
respectively.
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1. Introduction

The notion of ¢-homomorphism of Hilbert C*-modules first was introduced by
Bakic in [2], then Joita [7] described it in the framework of Hilbert modules
over locally C*-algebras. Authors of [12] and [6] studied ¢-homomorphisms of
Finsler modules over C*-algebras and Finsler modules over H*-algebras re-
spectively. Some properties of ¢g-homomorphisms are stable under Hilbert H*-
modules [3,5]. In this paper we use these properties to discover new ones for
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¢-homomorphisms of Hilbert H*-modules. An H*-algebra, was introduced by
Ambrose [1] in the associative case, is a Banach algebra A satisfying the fol-
lowing conditions:

(i) A is itself a Hilbert space under an inner product (., .);

(it) For each a in A, there is an element a* in A, the so-called adjoint of a,
such that we have both (ab,c) = (b,a*c) and (ab, c) = (a, cb*) for all b,c € A.

Example 1.1. The Hilbert space C”, consists of all n-tuples {a;}? ; of com-
plex numbers, is an H*-algebra where for each {a;}!, and {b;}7, in C",
{aifimi {bi}iny = {abi}is, and ({ai}is,)” = {@i}is,-

Obviously any Hilbert space is an H *-algebra where the product each pair of
elements is zero. Of course in this case the adjoint a* of a need not be unique,
in fact every element is an adjoint of every element. Recall that Ag = {a € A :
aA={0}}={acA: Aa={0}} (see[l, Lemma 2.1]) is called the annihilator
ideal of A. A proper H*-algebra is an H*-algebra with zero annihilator ideal.
Ambrose [1] proved that an H*-algebra is proper if and only if every element
has a unique adjoint.

The trace class of A is the set 7(4) = {ab: a,b € A}. As in the proof of [10,
Lemma 3 one can show that 7(A) ia linear subspace of A. Further 7(4) is an
ideal of A which is a Banach *-algebra under a suitable norm 74(.). The norm
T4 is related to the given norm ||.|| on A by 74(a*a) = ||al|? and ||b|| < 74(b)
for each a € A, b € 7(A) ([3]). If A is proper, then 7(A) is dense in A ([1,
Lemma 2.7]). The trace functional tr on 7(A) is defined by tr(ab) = {(a,b*) =
(b,a*) = tr(ba) for each a,b € A, in particular tr(aa*) = tr(a*a) = |al|®>. A
projection is a self adjoint idempotent e € A, e is called minimal if e # 0 and
eAe = Ce. Each simple H*-algebra (that is an H*-algebra without nontrivial
closed two-sided ideals) contains minimal projections ([3]). Two idempotents
e and €’ are doubly orthogonal if (e,e’) = 0 and ee’ = e’e = 0. A positive
member of A is an element a € A such that (az,z) > 0 for each z € A. Tt
is known from [9] that for each a € A, there exists a unique positive member
[a] of A such that a*a = [a]?. We also recall that if a is a nonzero element
in A, then there exists a sequence {e,} of doubly orthogonal projections and
a sequence {\,} of positive numbers such that a*a = ), Ane,. In this case,

1

la] =3, Ade, and if @ is in 7(A), then 74(a) = tr([a]).

The notion of Hilbert H*-module first was introduced by Saworotnow in (8]
under the name of generalized Hilbert space, then many mathematicians such
as Cabrera, Martinez, Rodriguez, Bakic and Guljas developed it in several
directions.

Definition 1.2. Let A be a proper H*-algebra. A Hilbert H*-module is a left
module E over A with a mapping [-|'] : E x E — 7(A) which satisfies the
following conditions:
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i) [oxly] = alzly],
i) [z +ylz] = [z|z] + [y]2],

) [z]y]* = [y|z],

v) For each nonzero element x in E there is a nonzero element ¢ in A such
that [z|x] = c*c,

(
(
(#11) laz|y] = alz|y],
(
(

(vi) E is a Hilbert space with the inner product (x,y) = tr([z|y]),
for each o € C, z,y,z € E, a € A. We denote norm of E by ||.|g, whence

|z g = tr([z|z])2. It is an immediate consequence of the above definition that

laz||g < llal||l|z||g for alla € A and x € E.

For, let © € E then [z]z] = c*¢ for some ¢ € A and |z|p = tr([z]z])2 =
tr(ce)z = |lel. So |laz|% = tr(jaz|az]) = tr(a[z|z]a*) = tr(ac*ca®) =
lea*|1? < el llal? = l2li3al?. We also have lazls < ra(@)lalls for cach
acT(A) andx € E.

As an example of Hilbert H*-module, let A be a proper H*-algebra, then it
becomes a Hilbert A-module via [z|y] = zy*.

For Hilbert A-module E, the x-ideal of A generated by {[z|y] : z,y € E} is
denoted by [E|E]. We say that E is full if [E|E) is Ta-dense in T(A). An element
u € E is said to be a basic element if there exists a minimal projections e € A
such that [ulu] = e. An orthonormal system in E is a family of basic elements
{ur}ren satisfying [ux|uy] =0 for all \,;p € A, X # p. An orthonormal basts
in E is an orthonormal system generating a dense submodule of E.

We recall from [5], that each Hilbert H*-module contains basic orthonormal
bases. For more details on the Hilbert H*-modules we refer the reader to [3,5,11].

The notions of ¢-homomorphism and unitary operators were studied by many
mathematicians such as Bakic, Guljas, Joita and Taghavi. In this paper, in-
spiring of these concepts we introduce ¢-morphism of Hilbert H*-modules
and unitary operator and then describe some results concerned with these
ones. Throughout this note all H*-algebras are assumed proper and also by
a morphism we always mean a #-homomorphism of H*-algebras.

2. Main Results

Here, we give an example including both full and non full Hilbert H*-modules
which is interesting in its own right.
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Example 2.1. It is straightforward to see that the H*-algebra A = C" is
proper and 7(A) = A (since A is unital). Clearly, {e1,...,e,} (e;, has 1 as i-th
position and 0 elsewhere) is a maximal family of doubly orthogonal projections
for A. If {a;}1~, € A, then

n

({ai}?:l)*{ai}?zl = {|ai|2}?=1 = Z|ai|2€i7
Hai}iei] = laile; and ta({ai}ie,) = tr([{a:}i,]) =

i=1

tr(Z\a”ei) = Z |ail (1)

Since for i = 1,...,n, tr(e;) = tr(e?) = (e;,e;) = 1 where (.,.) denotes the usual
inner product on C™.

Let E = A and [{a;}7,|{b;}"~,] = {aib;}?_,. Then E is a full Hilbert H*-
module over A. For fullness of E, it is enough to substitute {b;}?_; with unit
of C" (we mean by unit of C" the element {t;}?,; which t; = 1 for each
i = 1,...,n). On the other hand, let F = {{a;}.; € C” : a1 = 0}. Then
F is a Hilbert H*-module over A with [{a;}7,|{b;}",] = {a;b;}7_, which is
not full. For this, let {a;}?; € 7(A) (= A) in which a; be nonzero. If on the
contrary [F|F] " = 7(A), then there exist Aj € C, {b;;}, and {c;;}7 in F
(j =1,...,k) in which

e

Ta(D_Ailbig Y Heig o] — {aifioy) <e. (2)

j=1

k
Put {d;}, = {ZAjbi>jW —a; 7. Then by (1) the left side of (2) is equal

Jj=1
n

n
to Z|dl| Hence |a1]| = |d1] < Zld’| < € by (2) and since this is valid for each
i=1 i=1
€ > 0 so a; = 0 which is a contradiction. Therefore F is not full.
The proof of the following lemma is similar to the one in [6, Lemma 2.4] and
so it is omitted.

Lemma 2.2. Let E be a full Hilbert A-module and a € A. Then ax = 0 for all
x € E if and only if a = 0.

Remark 2.3. If ¢ : A — B is an isometric morphism of H*-algebras, then for
each a € A, ||¢(a)||* = ||a||? and so (¢(a), d(a)) = (a,a). Whence tr(¢(aa*)) =
tr(aa™).
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Definition 2.4. Let E and F be Hilbert modules over H*-algebras A and B
respectively and ¢ : T(A) — 7(B) be a norm continuous morphism. A map
®: E — F s said to be a ¢p-morphism if [2(z)|®(y)] = ¢([z]y]) for all z,y
m E.

We can extend ¢ to a continuous morphism ¢ : A — B. Obviously, ® is a ¢-
morphism, i.e. [®(x)|®(y)] = é([z|y]) for each z,y in E. From now on we mean
by a ¢-morphism, a ¢-morphism. Using polarization identity, one conclude that
® is a ¢-morphism if and only if [®(z)|®(x)] = ¢([z|z]) for each x in E. It is
easy to see that each ¢-morphism is necessarily a linear operator and a module
map in the sense that ®(az) = ¢(a)®(x) for all z € E,a € A. Applying norm
continuity of ¢, the calculation ||®(z)||? = tr([®(x)|®(x)]) = tr(¢([z|z]) =
l6@? < [612llall? = 9l?l«)?, where [a]a] = a%a for some a € A, shows
that ® is continuous too.

If E, F and G are Hilbert modules over H*-algebras A, B and C respectively,
¢1: A — B and ¢ : B — C are morphisms of H*-algebras and ®; : £ — F
and ®5 : F' — G are ¢p-morphism and ¢o-morphism respectively, then it is
straightforward to show that ®o®; : £ — G is a ¢o¢1-morphism.

In what follows we give an analogue of [7, Proposition 2.2] in the framework of
Hilbert H*-modules.

Proposition 2.5. Let A and B be proper H*-algebras, E and F' be full Hilbert
module and Hilbert module over A and B respectively. Also let ® : E — F
be a cogtinuous bijective linear map and ¢ : A — B be a map in which
S(r(A) " = 6(r(4)), (az) = 9(a)®(z) and [(x)|D(y)] = 6([ely]), for cach
ac€ Aandz,y € E. Then F is full if and only if ¢|,(a) is a (Ta, TB)-continuous
isomorphism.

Proof. Suppose that F' is full. Let aj,as € A and a € C, then (¢(aa; +
az) — ap(ar) — ¢(az))®(xz) = 0 and (¢p(a1a2) — ¢(a1)p(az))®(x) = 0, for each
x € F. Since @ is surjective and F is full, we deduce from Lemma 2.2 that ¢ is
linear and preserves multiplication. We are going to show that ¢ is injective.

Let ¢(a) =0 (a € A), then for each z € E, ®(ax) = 0. Injectivity of ® implies
that axz = 0 for each x € E. Applying again Lemma 2.2, we obtain that a = 0. It
is clear that ¢|.(4) denotes a linear map such as ¢; : 7(A) — 7(B) such that
¢1(a) = ¢(a) for all a € 7(A). Now let b € 7(B), then fullness of F' implies
that b = nan;OTB [D(2)|P(yn)] = nlirgo73¢1([xn|y7l]) for some z,, y, € E. From

this fact and taking into account that ¢(7(A)) is Tp-closed, we conclude that
@1 is surjective. Next we will show that ¢ is (74, 75)-continuous. Assume that
{an} is a sequence in 7(A) such that lim ™a, = 0 and lim "®¢y(a,) = b
for some b € 7(B). Then by the comment after Definition 1.2, lim a,z =0
and continuity of ® forces that 0 = lim ®(a,z) = lim ¢1(a,)P(z) = bP(z)

n—oo
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for all z € E. Since ® is surjective and F is full, b = 0 and it follows from
closed graph theorem that ¢y is (74, 7p)-continuous. A similar argument shows
that ¢ is continuous too. By above discussion it is enough to show that ¢,
preserves adjoint. Before proving this we remind that the equalities ||a|| = ||a*|]
and 74(b) = 74(b*) (a € A, b € 7(A)), imply that the map which takes a to a*
(a € A) and its restriction to 7(A) are norm continuous and (74, 75 )-continuous
respectively. Let a € 7(A), then we may assume that ¢ = lim ™u,, each u,

n—oo
kn

is of the form u,, = E [@in|Yin] for some x; ,,,y;n € E. Hence
i=1

n—oo

Fn
¢1(a”) = Tim ™ ¢ (uy) = lim ™ > 1 ([Winlzin))
i=1

kn kn
= nh_{goTB Z[‘I)(yznﬂq’(xznﬂ = (nli_{IOloTB Z[‘P(wm)l‘?(ym)])*
=1 i=1
kn kn
= (nILHéOTB Z ¢1([Ii,n|yi,n}))* = (1 (n]LII;OTA Z[Ii,n|yi,n}))*
=1 =1
= ¢1(a)”.

The second equality in the last line holds since by the inverse mapping theorem
(¢1)7 1 is a (7, 7a)-continuous operator. Therefore ¢; preserves adjoint and
so it is a (74, 7p)-continuous isomorphism. Since A is proper, so 7(4) = A
([1, Lemma 2.7]), hence if a € A, then there exists a sequence {a,} C 7(A)
such that a = lim a,. By morphism of ¢; and continuity of ¢ we obtain the

n o0
equality ¢(a*) = ¢( lim a)) = lim ¢(a,)” = (lim ¢(an))* = (¢(a))*, which
n—oo n—oo n—oo
proves that ¢ is a morphism too.
Conversely, if ¢; is (T4, Tp)-continuous isomorphism, then (¢1)~!is a (75, 74)-
continuous isomorphism. Thus we have

[FIF]” = ®(B)®(E)] " = ¢ ([EIE]) " = ¢ ([E[E] ") = d1(7(A)) = 7(B),

it means that F' is full and our goal is achieved. [J

In the following theorem we investigate some conditions under which a ¢-
morphism takes an orthonormal basis to an orthonormal basis. For this pur-
pose, we need to recall some assertions. Firstly, if A is a simple H*-algebra
and {e;}icr is a maximal family of doubly orthogonal minimal projections
for A, then it is the orthogonal sum of minimal ideals Ae; s’ ([4, Theorem
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5.34.16]). Secondly, if E is a Hilbert A-module, then for each minimal projec-
tion e; € A (i € I) there exists an orthonormal basis {uy ;}rea in E such that
[ur,i|ux ] = e; for each A € A ([3, Proposition 1.5]).

Theorem 2.6. Let ¢ : A — B be a continuous morphism of simple H*-algebras,
®: E — F be a ¢p-morphism of Hilbert H*-modules and {e;}icr and {ux;}rea
be as above. If ¢ is injective in which ¢|.(4) has T-closed range, ® is surjective
and F is full, then {¢(e;) }ier and {®(uyx;)ren are mazimal family of doubly
orthogonal minimal projections for B and orthonormal basis for F respectively.

Proof. At first we show that {¢(e;) }ier is a maximal family of doubly orthog-
onal minimal projections.

Step 1. ¢(e;) (i € I) is a minimal projection. Obviously ¢(e;) is a projection.
We will show that it is minimal. If b € B, then fullness of F' implies that

kn
bo(e;) = lim 7" Z[yj,n|y;7n] for some y; ,, 9}, in F. It follows by surjectivity
j=1
of @ that
kx, kn
.7 LT 77 B
bo(e;) = lim ™ ;@(a:j,n)@(x;m)} = lim ™ Zlqﬁ([xj,n\w;,n]) € o(r(4) " = o(r(4))
J= J=

for some z;,, 2}, in E. Thus bg(e;) = ¢(a) for some a € 7(A). Then

P(ei)bo(ei) = ¢(6i)b¢(€?) = ¢(ei)(bo(ei))g(ei) = peiae;) = Ag(e;),

for some A € C. It gives that ¢(e;)Bo(e;) = Co(e;).
Step 2. ¢(e;) s’ are doubly orthogonal, since for i # j, ¢(e;)¢p(e;) = d(ee;) =0
and also we have

(p(ei), p(ej)) = (d(ei)d(es), o(ej))
= <¢(ei)7
= <¢(el)7

Step 3. {¢(e;i) }bier is a maximal family of doubly orthogonal minimal projec-
tions. If on the contrary there is a minimal projection eg in F that is doubly or-

thogonal to each element of {¢(e;) }ier, then by fullness of F' and surjectivity of
kn k

®, we have eg = nan;oTB Zl[é(t]n)\cb(t;n)] = nan;OTB Zl o([tjnlt],]) for some
j= j=
tjnst;, in E. By the argument applied in Proposition 2.5 ¢|,(4) is (74, 75)-

continuous and using inverse mapping theorem we obtain that (|, A))’l is
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ko, kn

(TB,Ta)-continuous. So ey = ¢(nangoTA Z[tjn|t;n]) Puta = nler;OTA Z[tj,ﬂ“/',n}‘
j=1 j=1

By the preceding assertions, a = Zaiei for some a; € A and by continuity of

el
o, eg = ¢(a) = ¢(ZaieZ Z(b a;)o(e;). It yields that
el i€l
leoll® = (eo, e0) = (> _¢(ai)é = ($(ai), e0(e;)) = 0.
i€l icl

Then eg = 0 which is a contradiction.
Finally we are going to show that {®(uy;)}rea is an orthonormal basis for
F'. To see this, we have

(1) [®(ux)|@(uni)] = d([uni|ur i) =0, for X £ N.
(i1) [@(uxi)|@(uxi)] = d([uxiluxi]) = d(es).

(#i7) Let y € F be arbitrary. By surjectivity of ®, y = ®(x), for some z € X.
En En

Ifx = nh—>n;o }\Zl ay, uy, ; for some ay, € A, then y = hm zqﬁ ax,)®(uy, i)
n= =1

by continuity of ®. It means that {®(uy;)}rca generates a dense submodule

of . O

Theorem 2.7. Let E and F' be Hilbert modules over simple H*-algebras A and
B respectively, ¢ : A — B be a continuous morphism, {e;}ic; and {ux ;}ren be
as before and ® : E — F be a ¢-morphism. If {¢(e;)}ier and {®(uy ;) }ren are
mazximal family of doubly orthogonal minimal projections for B and orthogonal
basis for F respectively, then ¢ is injective and [F|F] = B.

Proof. Suppose that a € A and ¢(a) = 0. We know that a = Zaiei (see step
iel
3 in the proof of Theorem 2.6). Since {¢(e;)}ics is doubly orthogonal, we have

le(@)[* = (¢(a), ¢(a))
= (;52(116z Za]ej

i€l jeI

> (plai)dler), dlai)dles)) = 0.

el
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Thus ||¢(a;)p(e;)|| = 0 for each i € I, and (b(ai 2a¥) = 0. Let i be an arbitrary

fixed element of I. By [9, Lemma 1], a;e?a} = a;efe;a Z)\ e for some
jeJ

maximal family {e'» }jes of doubly orthogonal projections and some positive

scalars A;. It follows from continuity of ¢ that ¢(a;eje;a Z)\]gb

for each i € I. Multiplying this relation by ¢(el,) (m € J is arbltrary) we
get A, = 0. Note that ¢(e],) # 0, because by assumption, A and B have the
same cardinal of maximal family of doubly orthogonal projections (see also the
comment before [9, Lemma 1]). Consequently a;efe;af and so a;e; are equal
to zero by [1, Lemma 2.2]. Since ¢ € I is arbitrary, a;e; = 0 for each ¢ € I. It
follows that a = 0.
For the second part, let b € B. Then b = Zbiqﬁ(ei) = Zbiqb([u)\,ﬂu,\,i]) =
icl iel
Z[bi@(u,\7i)\@(u,\7i)] for an arbitrary fixed element A € A. It means that
i€l
b € [F|F] and the proof is completed. O

Proposition 2.8. Let E and F be Hilbert modules over H*-algebras A and B
respectively, ¢ : A — B be a morphism and ® : E — F be a ¢-morphism. If
is surjective, I is full and ¢(7(A)) is Tp-closed in T(B), then ¢|;(ay : T(A) —
7(B) is surjective.

Proof. By the assumptions one obtains that

7(B) = [FIF]” = R(E)®(E)] " = ¢(EIE])” < o(7(A))” = ¢(r(4)) <
7(B). It implies that ¢(7(4)) =7(B). O

We specialize a result of [6] to Hilbert H*-modules.

Lemma 2.9. (see[6, lemma 2.10.]) Let E and F be Hilbert module and full
Hilbert module over H*-algebras A and B respectively, ¢; s’ (i = 1,2) be maps
from A to B and ® : E — F be a surjective map satisfies ®(ax) = ¢;(a)P(x)
(i=1,2) forallz € E and a € A. Then ¢1 = ¢o.

Definition 2.10. Let E and F be Hilbert modules over H*-algebras A and B
respectively. A linear operator ® : E — F is said to be a unitary operator
if there exists an injective morphism ¢ : A — B such that ® is a surjective
¢-morphism and ¢|,(ay is (Ta, TB)-continuous.

From (74, 7p)-continuity of ®|-(a) one conclude that ¢ is continuous. Indeed,
there exists M > 0 in which 75(¢(b)) < M74(b) for each b € 7(A). Thus for
each a € A, we have ||¢(a)||? = 75(¢(a*a)) < M7a(a*a) = M||a|?.

For example let B = C"*! (n > 2), A=FE = {{a;}"; € C" : a; = 0} and
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F={{d}™! € B:dy = dy = 0}. Then 7(A) = A, 7(B) = B, E is a full
Hilbert A-module when [{a;}7-;|{ci}7—1] = {a:G}}; and F is a Hilbert B-
module (but not full) when [{d; }"+1|{b i = {dib ) Let @ E — F
defined by ®({a;}7;) = {b:}1"}' where by = 0 and b; = a;_; fori =2,...,n+1
and let ¢ : A — B in Wthh (b = ®. Clearly ¢ (and so @) is a contlnuous
isomorphism and moreover [®({a;}? )|®({c;}i1)] = o([{ai}|{ci},]) for
all {a;}*_; and {¢;}?_; in E. Using Example 2. and cont1nu1ty of ¢, it is easy
to verify that ¢ is (74, 7g)-continuous, therefore ® is a unitary operator.

In what follows we state [12, Theorem 3.5] for Hilbert H*-modules.

Theorem 2.11. Suppose that E and F are Hilbert modules over H*-algebras
A and B respectively and ¢ : A — B is a surjective morphism in which ¢|.(a)
is isometry. Then linear operator ® : E — F which satisfies ®(ax) = ¢(a)P(x)
forallxz € E and a € A, is a ¢-morphism if and only if it is isometry.

Proof. If ® is a ¢-morphism, then by Remark 2.3 for each z € E, || ®(z)||r =
tr(0@)0@)} = tr(@(ala)} = tr(lele))} = oz, so ® is an isome-
try. Conversely, let @ be an isometry, we will show that [®(x)|®(x)] = ¢([z|]). Let
x € F and b € B, then by surjectivity of ¢, there exists a € A such that
¢(a) = b. Applying again Remark 2.3 we have

tr(o[®(x)|@(z)]b") = tr([p@(x)[b®(2)]) = tr([¢(a)D(x)|d(a)(2)])
= tr([®(az)|®(az)]) = [|®(az)|®

= |laz|* = tr([az|az]) = tr(¢(laz|az]))
]

= tr(¢(afz|z]a®)) = tr(bp([z]x])b"). 3)

By the Definition 1.2, [®(z)|®(x)] = c¢*c and ¢([z|z]) = d*d for some ¢ and d
in B. Then from (3) we deduce that tr(bc*cb*) = tr(bd*db*) and so (bc*,bc*) =
(bd*,bd*) for each b € B. From this we conclude that

(b*b, c*e — d*d) = 0. (4)

Replace b by ¢ and then by d in (4) and subtract the obtained relations we
get (c*c — dd*,c*c — d*d) = 0 and so ¢*c = d*d. Consequently [®(z)|®(z)] =
¢([zlz]). O

Corollary 2.12. Suppose that E and F are full Hilbert modules over H*-
algebras A and B respectively, ¢ : A — B is a map and ¢|,(a) is isometry and
further ® : E — F' is a linear operator in which ®(ax) = ¢(a)®(z) forallz € E
and a € A. If ® is unitary, then it is surjective and isometry. Conversely, if
in addition ¢ is surjective, then ® is unitary.
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Proof. If ® is a unitary operator, then there exists an injective morphism
¢ : A — B such that ® is a surjective @-morphism and ¢|,(4) is (74, 7B)-
continuous. By Lemma 2.9, ¢ = ¢. On the other hand the argument applied
in Theorem 2.11 shows that ® is isometry. Conversely, let ® be surjective and
isometry and also ¢ be surjective, according to the proof of Proposition 2.5, ¢
is a continuous injective morphism and also ¢|.(4) is (74, 7p)-continuous. By
Theorem 2.11, ¢ is a ¢-morphism, hence ® is a unitary operator. U

The following three propositions are the versions of some results appeared in
[7, 12] in the framework of Hilbert H*-modules. The proofs are omitted.

Proposition 2.13. Let E, F' be full Hilbert modules over H*-algebras A and B
respectively and ® : E — F be a continuous linear operator. Then the following
assertions are equivalent:

(i) ® is a unitary operator.

(i4) ® is bijective and there is a map ¢ : A — B such that ®(ax) = ¢(a)P(x)
and [®(2)|®(y)] = ¢([z|y]) for alla € A and z,y € E.

Proposition 2.14. Let E with [.|.]a : Ex E — 7(A) be a full Hilbert A-module
and with [.|.|p : E x E — 7(B) be a full Hilbert B-module. Then idg (identity
operator on E) is a unitary operator if and only if there is a map ¢ : A — B
such that ¢|.(ay is (Ta,Tp)-continuous, ax = ¢(a)x and ¢([z|yla) = [z|y]B for
alla € A and x,y € E.

Proposition 2.15. Suppose that E and F are full Hilbert modules over H*-
algebra A and ® : E — F is a surjective and isometry A-linear map. Then
® is a unitary operator and identity map is only morphism which makes ® to
¢-morphism.

We terminate this discussion with a result concerned with faithful Hilbert H*-
modules [3]. For this purpose, we need to state some comments.

Let A and B be simple proper H*-algebras and ¢ be a surjective morphism
from A into B. If e is a minimal projection in A, then it is easy to check
that ¢(e) is a minimal projection in B. If A is a commutative simple proper
H*-algebra, then by [1, Theorem 4.1], A = Ae for some minimal projection e
in A and further A = Ae = Ae? = eAe = Ce.

Suppose that A and B are commutative simple proper H*-algebras, ¢ : A — B
is a nonzero morphism and e,e’ are minimal projections in A and B respec-
tively. Then for some complex number A, ¢(Ae) = ¢€’. It implies that every
nonzero morphism ¢ is a surjection. One can easily conclude that ¢ is an in-
jection, too.

Recall that a Hilbert A-module X is faithful if {a € A : aX = {0}} = {0}.
By [3, Remark 1.6] (see also [5]), for each faithful Hilbert H*-module X over
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a proper H*-algebra A, there exists a family {X;};cr of Hilbert H*-modules
where each X is a Hilbert H*-module over a simple H*-algebra A;, such that
X is equal to the mixed product of the family {X;}ier,

X=Q)X;={{z} e [[Xi: D llasll® < o0}

i€l i€l i€l

Theorem 2.16. Suppose that A and B are commutative proper H*-algebras
in which they have the same cardinal of doubly orthogonal minimal projections,
E and F are faithful Hilbert modules over A and B respectively and ¢ : A —
B is a continuous morphism. Assume that ® : E — F is a surjective ¢-
morphism. Then ® s a unitary operator.

Proof. Suppose that {e;}icr and {e.}icr (= {¢(ei)}ier) are the maximal
family of doubly orthogonal minimal projections for A and B respectively. Also
suppose that e; (i € I) is an arbitrary minimal projection in A, ¢(e;) = e},
Ee, ={z € E: [z|z] = Xe;; A > 0} and Iy = {y € F': [y|ly] = Aej, A > 0}, then
Ae; = Cei, Be; = Ce] (by the previous comment), Ee, (F/) is a full Hilbert
module over Ae; (Be;) and @, = ®|p, : E., — F. is well defined. Indeed
for each = € E.,, [®(2)|®(x)] = ¢([z|z]) = e, (Ae;) = Ae} for some positive
number A, where ¢e, = ¢|ac,. It forces that ®(z) € F,. Obviously @, is
a ¢e,-morphism. By the above comment ¢., is an isomorphism. Also it is
(Ta,7B)-continuous. Since 7(Ce;) = Ce;, then 7(Ae;) = Ae; and so for each
a € Ae;, a*a = ejhe; = |M2e;, [a] = |Ne; and Ta(a) = tr([a]) = tr(|\e;) =
IA|tr(e;) = |M|lei]|>. Now let € > 0 be given. Put § < 6””:,1””22 In this case
inequality 74(\e;) < & implies that 75(¢e,(Ne;)) = T8(Ael) = |N||[e}]|? < e.
As we mentioned, the faithful Hilbert H*-module E(F) is equal to the mixed
product of the family {Ee, }icr({Fe }ier), where each Ee, (Fe/) is a faithful

Hilbert H*-module over a simple H*-algebra A.,(B.). Also A = ZA@Z- and
i€l

B = Bej ([1, Theorem 4.1)).
iel

Injectivity of ¢e, s’ (i € I) implies that ¢ is injective too. We will show that
for each @ € I, @, is surjective. Since for any arbitrary element y € Fi/, by
surjectivity of ® there exists € E such that y = ®(x). We have [y|y] =
[®(x)|®(z)] = ¢([z|x]). Furthermore for some positive number A, we have
[yly] = Xel = Agp(e;) = ¢(Xe;). Then [z|z] = Ne;y so x € E,, and P, is
surjective. From the above discussion we conclude that for each minimal pro-
jection e; in A, ®., is a unitary operator. Now since ®({x;}icr) = {®Pe, (i) }ier,
so ® is a unitary operator. [
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