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Abstract. In this study, an efficient iterative numerical technique based
on a trapezoidal formula will be proposed to solve nonlinear (mixed)
Volterra and Fredholm integral equations of the second kind in any
dimension. Also, we will prove the rate of convergence and the conver-
gence analysis of the iterative method. Furthermore, some numerical
examples are considered to confirm the applicability of the method.
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1 Introduction

Integral equations are an important subject within pure and applied
mathematics and are used as mathematical models to describe many
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and varied concrete physical phenomena. They also occur as reformu-
lations of other mathematical problems as well as in chemistry, physics,
engineering, and biological science [2, 5, 20, 24, 28].

Numerous numerical methods for solving integral equations have
been studied and developed by many authors. We refer the readers to
the books [5, 28] for the results of numerical methods in one-dimensional
integral equations. In view of applications, however, functions that are
defined on the Cartesian product of intervals in higher-dimensional Eu-
clidean space are also important. In this direction, the solution of multi-
dimensional (mixed) Volterra and Fredholm integral equations of the
second kind has been extensively studied over the years. Several numer-
ical solution methods for solving multi-dimensional (mixed) Volterra and
Fredholm integral equations of the second kind exist in the literature,
including iterative method, Prentice’s Euler-type and Miculas cubature
approach, e.g. see [6, 12–14, 16, 21, 21–23, 25].

In this paper, we introduce and establish an iterative method based
on the m-dimension (briefly, m-D) trapezoidal rule with a novel proof for
solving fixed points of (mixed) Volterra and Fredholm integral equations
and show the rate of convergence, which is defined as

B(x)(s) := x(s) = f(s) +

∫
I
K(s, t)h(t, x(t))dt, s, t ∈ I, (1)

where
∫

stands for Lebesgues integral, x is an unknown real-valued func-
tion, f (source function) and K (kernel function) are the given suitable
functions, and I is one of the following m-D cubes:

(a) Fredholm integral equations: where I := [a1, b1]× · · · × [am, bm] ⊆
Rm, and a1 < b1, . . . , am < bm are fixed numbers.

(b) Volterra integral equations: where I := [a1, s1] × · · · × [am, sm] ⊆
Rm and a1 ≤ s1 ≤ b1, . . . , am ≤ sm ≤ bm.

(c) Mixed integral equations: where I := [a1, s1]×· · ·×[am, sm] ⊆ Rm,
a1 ≤ s1 ≤ b1, . . . , am ≤ sm ≤ bm and for some i = 1, . . . ,m, not
necessarily all cases, si is equal to bi.

The advantages of the proposed method are simplicity, accuracy, precise
convergence control, and its application in various dimensions. We also
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show that the rate of convergence of the method is O( 1
n2 ). Numerical

results are reported in Section 4, which confirm that the implementation
of the method is considerably fast and highly accurate. This method
can be applied to solve linear and nonlinear (mixed) Volterra integral
equations or any combination of them (see Examples below).

2 Preliminaries
In the sequel, let d be a metric on Rm, and C(I) be the Banach space
of all continuous mappings x from I into R with the uniform norm. If
x : I → R be a bounded function, the oscillation of x on I is the quantity

ωδ(x) := ωδ(x, I) = sup{|x(t1)− x(t2)| : t1, t2 ∈ I, d(t1, t2) ≤ δ}.

If x ∈ C(I), then ωI(x) is also called the uniform modulus of continuity
of x.

Similarly, for a bounded function x : I × I → R we denote

ω1
δ (s)(x) := sup{|x(s, t1)− x(s, t2)| : t1, t2 ∈ I, d(t1, t2) ≤ δ}, s ∈ I.

The following properties will be very useful in what follows.

Theorem 2.1. Let x ∈ C(I). The following properties hold:

(i) |x(t)− x(s)| ≤ ωd(t,s)(x) for all t, s ∈ I,

(ii) ωδ(x) is an non-decreasing mapping in δ,

(iii) ωδ1+δ2(x) ≤ ωδ1(x) + ωδ2(x) for any δ1, δ2 ≥ 0,

(iv) ωnδ(x) ≤ nωδ(x) for any δ ≥ 0 and n ∈ N,

(v) ωλδ(x) ≤ (λ+ 1)ωδ(x) for any δ, λ ≥ 0,

(vi) If I ⊆ J , then ωδ(x, I) ≤ ωδ(x, J), for all δ > 0,

(vii) ω(·)(x) is continuous at 0 iff x ∈ C(I) (see [15]),

(viii) ω1
δ (·)(x) and ω2

δ (·)(x) belong to C(I), for all δ > 0 and x ∈ C(I×I)
(see [10, Page 187]).
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Two sets in Rm are said to overlap if they have a common interior
point (their interiors have non-empty intersection). Suppose that [a, b] ⊆
R be a closed interval. A partition of [a, b], i.e., a sequence of non-
overlap interval I1 = [t0 := a, t1], I2 = [t1, t2], . . . , In = [tn−1, tn := b]
such that |Ii| > 0. Note that we have

∑n
i=1 |Ii| = |[a, b]| = b − a. Let

{Ii}n1 ≺ [a, b] denotes a partition for [a, b]. If I =
∏m

i=1[ai, bi] = [a1, b1]×
· · ·× [am, bm] ⊆ Rm be a m-D cube then a partition for I is produced by
Cartesian product of partitions on each sets [ai, bi], i = 1, · · · ,m, i.e., if

{Ji,ji := [ti,ji , ti,ji+1]}ni−1
ji=0 ≺ [ai, bi] (2)

be a given partition for [ai, bi], where ni ∈ N are fixed integers, then each
element Ik in the partition {Ik}rk=1 ≺ I, r = n1n2 · · ·nm has the form
Ik =

∏m
i=1 Ji,ji . Also, note that we get |I| =

∑r
k=1 |Ik| =

∏m
i=1(bi − ai).

Theorem 2.2. (1) Let x : I → R a bounded mapping, and x ∈ L1(I),
where L1(I) is the space of integrable functions on I inv Lebesgue’s
sense. Then, for any partitions {Ik}rk=1 ≺ I and any points ξi,ji ∈
[ti,ji , ti,ji+1], 1 ≤ i ≤ m, 0 ≤ ji ≤ ni − 1, we have

∣∣∣∣ ∫
I
x(t)dt−

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

(t1,j1+1 − t1,j1) · · · (tm,jm+1 − tm,jm)

x(ξ1,j1 , · · · , ξm,jm)

∣∣∣∣
≤

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

(t1,j1+1 − t1,j1) · · · (tm,jm+1 − tm,jm)

ωδ(x, [t1,j1 , t1,j1+1]× · · · × [t1,jm , t1,jm+1]),

≤
n1−1∑
j1=0

· · ·
nm−1∑
jm=0

(t1,j1+1 − t1,j1) · · · (tm,jm+1 − tm,jm)ωδ(x)

= |I|ωδ(x),

(2) Also, if x : I× I → R be a bounded mapping and if x(s, ·) ∈ L1(I),
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for all s ∈ I then∣∣∣∣ ∫
I
x(s, t)dt−

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

(t1,j1+1 − t1,j1) · · · (tm,jm+1 − tm,jm)

x(s, ξ1,j1 , · · · , ξm,jm)

∣∣∣∣
≤

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

(t1,j1+1 − t1,j1) · · · (tm,jm+1 − tm,jm)

ω1
δ (s)(x, [t1,j1 , t1,j1+1]× · · · × [t1,jm , t1,jm+1]),

≤
n1−1∑
j1=0

· · ·
nm−1∑
jm=0

(t1,j1+1 − t1,j1) · · · (tm,jm+1 − tm,jm)ω
1
δ (s)(x)

= |I|ω1
δ (s)(x),

where

δ = max{d((t1,j1 , . . . , tm,jm), (t1,j1+1, . . . , tm,jm+1)),

0 ≤ j1 ≤ n1 − 1, . . . , 0 ≤ jm ≤ nm − 1}.

Proof.

(1) It is known that integrals are additively related to intervals. This
brings us to∣∣∣∣ ∫

I
x(t)dt−

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

(t1,j1+1 − t1,j1) · · · (tm,jm+1 − tm,jm)

x(ξ1,j1 , · · · , ξm,jm)

∣∣∣∣
≤

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

∣∣∣∣ ∫ tm,j1+1

tm,j1

· · ·
∫ t1,j1+1

t1,j1

x(t1, · · · , tm)− x(ξ1,j1 , · · · , ξm,jm)dt1 · · · dtm
∣∣∣∣

≤
n1−1∑
j1=0

· · ·
nm−1∑
jm=0

∫ tm,j1+1

tm,j1

· · ·
∫ t1,j1+1

t1,j1

∣∣x(t1, · · · , tm)
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− x(ξ1,j1 , · · · , ξm,jm)
∣∣dt1 · · · dtm.

From parts (i), (ii) and (vi) of Theorem 2.1 we conclude that
n1−1∑
j1=0

· · ·
nm−1∑
jm=0

∫ tm,j1+1

tm,j1

· · ·
∫ t1,j1+1

t1,j1

∣∣∣∣x(t1, · · · , tm)

− x(ξ1,j1 , · · · , ξm,jm)

∣∣∣∣dt1 · · · dtm.

≤
n1−1∑
j1=0

· · ·
nm−1∑
jm=0

(t1,j1+1 − t1,j1) · · · (tm,jm+1 − tm,jm)

ωδ(x, [t1,j1 , t1,j1+1]× · · · × [t1,jm , t1,jm+1]),

≤
n1−1∑
j1=0

· · ·
nm−1∑
jm=0

(t1,j1+1 − t1,j1) · · · (tm,jm+1 − tm,jm)ωδ(x)

= |I|ωδ(x),

which completes the proof.

(2) is similar to (1).

□

3 Method of Numerical Solution
Here, we introduce an iterative method to solve Eq. (1) for case (a), the
cases (b) and (c) are similar, e.g. see equations (13), (14) and examples
4.1-4.3 below. Let m,n1, . . . , nm ∈ N be fixed and consider Eq. (1) with
kernel K on I × I and choose partition (2) on I with

ti,j = ai + jihi, (3)

where hi =
bi−ai
ni

, i = 1, . . . ,m, ji = 0, . . . , ni. Take x ∈ C(I) and denote

x̂(s) = f(s) +

∏m
i=1 hi
2m

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

1∑
i1,...,im=0

[K(s, t1,j1+i1 , . . . , tm,jm+im)

h((t1,j1+i1 , . . . , tm,jm+im), x(t1,j1+i1 , . . . , tm,jm+im))] ,

(4)
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for all s ∈ I. Notice that x → x̂ defines a nonlinear operator from C(I)
into itself, where K(·, t) ∈ C(I), for all t ∈ I. Take an initial value
u0 ∈ C(I), then we shall show that the Picard iterative procedure

ur(s) = ûr−1(s) s ∈ I, r ∈ N, (5)

obtained by computing the corresponding m-D integral equation with
the trapezoidal formula, gives the approximate solution of Eq. (1) in I.

3.1 Convergence Analysis and the Rate of Convergence

Here, we obtain an error estimate between the exact solution and the
approximate solution for the given integral Eq. (1). Before we state the
main result of this section the following notions are needed. Let K on
I× I and h on I×R be bounded function, for s ∈ I and u ∈ C(I) define

ω1
δ (s)

(
Khu) := sup

t1,t2∈I
{
∣∣K(s, t1)h(t1, u(t1))

−K(s, t2)h(t2, u(t2))
∣∣ ; d(t1, t2) ≤ δ},

ωδ

(
hu) := sup

t1,t2∈I
{
∣∣h(t1, u(t1))− h(t2, u(t2))

∣∣ ; d(t1, t2) ≤ δ},

ω2
δ (t)

(
h) := sup

s1,s2∈I
{
∣∣h(s1, t)− h(s2, t)

∣∣ ; d(s1, s2) ≤ δ}, t ∈ R,

and MK := sups,t∈I |K(s, t)| and Mh := sups∈I,t∈R |h(s, t)|.

Lemma 3.1. Let u ∈ C(I), K ∈ C(I × I) and h ∈ C(I ×R) be contin-
uous functions,

(a) ω1
δ (s)

(
Khu) ≤ MKωδ(hu) +Mhω

1
δ (s)(K), ∀s ∈ I.

(b) limδ→0 ω
1
δ (s)(K) = 0, ∀s ∈ I.

(c) limδ→0 sups∈I ω
1
δ (s)(K) = 0.

(d) Let xr ∈ C(I) be a sequence defined as Theorem 3.2 and f ∈ C(I),
then

ωδ(hxk) ≤ Lωδ(f) + LMh

∫
I
ω2
δ (t)(K)dt+ sup

|t|≤M0

ω2
δ (t)(h), (6)

where M0 = supk∈N ∥ xk ∥u. Moreover, limδ→0 ωδ(hxk) = 0.
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(e) limδ→0 sups∈I ω
1
δ (s)

(
Khu) = 0.

Proof.For all s, t, t′ ∈ I, we get

|K(s, t)h(t, u(t))−K(s, t′)h(t′, u(t′))|
≤ |K(s, t)h(t, u(t))−K(s, t)h(t′, u(t′))|
+ |K(s, t)h(t′, u(t′))−K(s, t′)h(t′, u(t′))|
≤ |K(s, t)||h(t, u(t))− h(t′, u(t′))|
+ |h(t′, u(t′))||K(s, t)−K(s, t′)|,

therefore, (a) is obtained.
(b) The function K(s, ·) is in C(I), for all s ∈ I, so by Theorem

2.1-(vii), the function ωδ(·)(K) pointwise converges to 0, as δ → 0.
(c) Using part (b), the compactness of the space, and Theorem 2.1

parts (ii) and (viii), from Dini’s theorem (see, for instance, [3, Theorem
24.2]) it is concluded that the convergent is uniform, i.e.

lim
δ→0

∥ω1
δ (·)(K)∥u = lim

δ→0
sup
s∈I

ω1
δ (s)(K) = 0.

(d) For all s1, s2 ∈ I, d(s1, s2) ≤ δ, k ∈ N, we get

|xk+1(s1)− xk+1(s2)| = |B(xk)(s1)−B(xk)(s2)|

≤ |f(s1)− f(s2)|+
∫
I
|K(s1, t)−K(s2, t)||h(t, xk(t))|dt

≤ ωδ(f) +Mh

∫
I
ω2
δ (t)(K)dt,

(7)

and

|h(t1, xk(t1))− h(t2, xk(t2))| ≤ |h(t1, xk(t1))− h(t2, xk(t2))|
+ |h(t1, xk(t2))− h(t2, xk(t2))|
≤ L|xk(t1)−, xk(t2)|+ |h(t1, xk(t2))− h(t2, xk(t2))|.

(8)

Notice that xk is a convergent sequence, so it is bounded, and M0 =
supk∈N ∥ xk ∥u exits. Combine (7) and (8), inequality (6) is obtained.
Moreover, from Theorem 2.1-(vii) we have limδ→0 ωδ(f) = 0 and similar
to (c) we have limδ→0

∫
I ω

2
δ (t)(K) ≤ limδ→0 |I| supt∈I ω2

δ (t)(K) → 0 and
limδ→0 sup|t|≤M0

ω2
δ (t)(h) = 0. These prove part (d).



ITERATIVE CUBIC TRAPEZOIDAL RULE . . . 9

(e) is obtained from previous parts. □
Now, we shall prove the existence and uniqueness of the solution of

Eq. (1) that will be used in the next section.

Theorem 3.2. Assume that

(I)◦ f : I → R belong to C(I),

(II)◦ K : I × I → R is a continuous function such that K(s, ·)2 belong
to L1(I), for any s ∈ I.

(III)◦ h : I×R → R is a bounded function such that the function h(s, ·) :
R → R, for all s ∈ I, is Lipschitz on R with Lipschitz constant
L > 0 i.e.,

|h(s, u)− h(s, v)| ≤ L|u− v|, s ∈ I, u, v ∈ R,

where h2 ∈ L1(I × R) and L > 0.

(IV)◦ κ := L sups∈I ∥ K(s, ·) ∥L1< 1,

then (1) has a unique solution u∗ ∈ C(I). Moreover, for any u0 ∈ C(I),
the Picard sequence defined by xr+1 = B(xr) with initial value x0 := u0
converges to u∗ and the following error

∥ xr − u∗ ∥u≤
κr

1− κ
∥ x0 −B(x0) ∥u . (9)

fulfills the estimate.

Proof. Note that conditions on K and h and Cauchy-Schwarz inequality
imply that K(s, ·)h(·, x(·)) ∈ L1(I), for all s ∈ I, and so the integral in
(1) well defined. Also, for any x ∈ C(I) we have

ωδ(B(x)) ≤ sup{|f(s1)− f(s2)| : s1, s2 ∈ I, d(s1, s2) ≤ δ}

+ sup

{∣∣∣∣ ∫
I
K(s1, t)h(t, x(t))dt−

∫
I
K(s2, t)h(t, x(t))dt

∣∣∣∣
s1, s2 ∈ I, d(s1, s2) ≤ δ

}
≤ ωδ(f) +

∫
I
ω2
δ (t)(K)|h(t, x(t))|dt.
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Take the limit as δ → 0, then by Lebesgues monotone convergence
theorem and Theorem 2.1-(vii) we have ωδ(B(x)) → 0, so B maps C(I)
into itself. We show that the operator B is a contraction. We have

|B(x)(s)−B(y)(s)| =
∣∣∣∣ ∫

I
K(s, t)[h(t, x(t))− h(t, y(t))]dt

∣∣∣∣
≤ L

∫
I
|K(s, t)||x(t)− y(t)|dt

≤ L ∥ K(s, ·) ∥L1∥ x− y ∥u,

for all s ∈ I, x, y ∈ C(I), thus,

∥ B(x)−B(y) ∥u≤ κ ∥ x− y ∥u .

Let x0 ∈ C(I), and define the Picard iterative sequence xr = B(xr−1),
r ∈ N. In virtue of the Banach contraction principle and crucial condi-
tion (IV)◦, we infer that integral equation (1) has a unique solution and
the error estimation (9) holds. □

Remark 3.3. In cases (b) and (c) the condition (IV)◦ is superfluous
and it can be removed. Since there exists 1 ≤ i ≤ m such that I ⊆
[a1, b1]× · · · × [ai, si]× · · · × [am, bm] and we have

|B(x)(s)−B(y)(s)| =
∣∣∣∣∫

I
K(s, t)[h(t, x(t))− h(t, y(t))]dt

∣∣∣∣
≤ LMK

|I|
|bi − ai|

(si − ai) ∥ x− y ∥u,

for all s = (s1, . . . , sm) ∈ I, where MK = sups,t∈I |K(s, t)|. We compute

|B2(x)(s)−B2(y)(s)| =
∣∣∣∣∫

I
K(s, t)[h(t, Bx(t))− h(t, By(t))]dt

∣∣∣∣
≤ LMK

∫
I
|Bx(t)−By(t)|dt

≤ (LMK)2
|I|

|bi − ai|

∫
I
(ti − ai) ∥ x− y ∥u dt

≤
(
LMK |I|
|bi − ai|

)2 (si − ai)
2

2
∥ x− y ∥u .
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Thus, inductively we get

∥ Bn(x)−Bn(y) ∥u ≤ (LMK |I|)n

n!|bi − ai|n
(si − ai)

n ∥ x− y ∥u

≤ (LMK |I|)n

n!
∥ x− y ∥u .

Since limn→+∞
(LMK |I|)n

n! = 0, there exists some n0 ∈ N such that Bn

is a contraction for all n ≥ n0. So, the above proof can be applied to
Bn, n ≥ n0. Suppose that u∗ ∈ C(I) be a unique fixed point of Bn0 then
u∗ is a unique fixed point for B. We note that B(u∗) = B(Bn0(u∗)) =
Bn0(B(u∗)), ie. B(u∗) is a fixed point of Bn0 , thus, we have B(u∗) = u∗.
Every fixed point of B is also a fixed point of Bn, for all n ∈ N, so u∗ is
the unique possible fixed point for all Bn, n ∈ N and Banach contraction
principle implies that Picard sequence xk = B(xk−1) converges to u∗.

Theorem 3.4. Let f , K and h satisfy the conditions of Theorem 3.2.
If u0 ∈ C(I) be an arbitrary initial value, then the iterative procedure
(5) converges to the unique solution of Eq. (1), u∗.

Proof. We prove the theorem for case (a), the others are similar.
Consider iterative procedure (5) and let xk defined by Picard sequence
xk = B(xk−1) with the initial value x0 := u0. For each κ < κ′ < 1 and
s ∈ I from Theorems 2.1-(c) and 2.2-(2) for 0 < ε(s) ≤ (κ′ − κ)/L there
exists δ > 0 such that∣∣∣∣ ∫

I
K(s, t)dt−

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

m∏
i=1

hiK(s, t1,j1+i1 , . . . , tm,jm+im)

∣∣∣∣
≤ |I|ωδ(s)(K, I) ≤ ε(s) ≤ κ′ − κ

L
,

where
∏m

i=1 hi = (t1,j1+1− t1,j1) · · · (tm,jm+1− tm,jm). Using theorem 2.2
and

∑1
i1,...,im=0 = 2m, for all k ∈ N ∪ {0}, s ∈ I we get

|xk+1(s)− uk+1(s)|
≤ |xk+1(s)− x̂k(s)|+ |x̂k(s)− uk+1(s)|

≤ 1

2m

1∑
i1,...,im=0

[∣∣∣∣ ∫
I
K(s, t)h(t, xk(t))dt
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−
n1−1∑
j1=0

· · ·
nm−1∑
jm=0

m∏
i=1

hiK(s, t1,j1+i1 , . . . , tm,jm+im)

h(t1,j1+i1 , . . . , tm,jm+im , xk(t1,j1+i1 , . . . , tm,jm+im)

∣∣∣∣
+

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

m∏
i=1

hi

∣∣∣∣K(s, t1,j1+i1 , . . . , tm,jm+im)[
h(t1,j1+i1 , . . . , tm,jm+im , xk(t1,j1+i1 , . . . , tm,jm+im))

− h(t1,j1+i1 , . . . , tm,jm+im , uk(t1,j1+i1 , . . . , tm,jm+im))
]∣∣∣∣]

≤ 1

2m

1∑
i1,...,im=0

[(
|I|ω1

δ (s)(Khxk)

+ L

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

m∏
i=1

hiK(s, t1,j1+i1 , . . . , tm,jm+im)

 ∥ xk − uk ∥u
]

≤ |I|ω1
δ (s)(Khxk) + L

(∫
I
|K(s, t)|dt+ κ′ − κ

L

)
∥ xk − uk ∥u

≤ |I| sup
s∈I

ω1
δ (s)(Khxk) + κ′ ∥ xk − uk ∥u .

Thus, we get

∥ xk+1 − uk+1 ∥u≤ |I| sup
s∈I

ω1
δ (s)(Khxk) + κ′ ∥ xk − uk ∥u . (10)

Take the limsup as δ → 0, k → +∞ from both sides of (10) and from
Lemma 3.1-(e) and κ′ < 1, it is concluded that ∥ xk − uk ∥→ 0. So
from Theorem 3.2 and ∥ u∗ − uk ∥u≤∥ u∗ − xk ∥u + ∥ xk − uk ∥u, it is
concluded that uk convergence uniformly to u∗. □ Since the above
proof can be apply for all Bn, n ∈ N and remark 3.3 implies that Picard
sequence xk = B(xk−1) converges to u∗. Similar to remark 3.3, in case
(b) and (c) the condition (IV)◦ is superfluous and it can be removed
from theorem 3.4.

3.2 Algorithm of the Approach

Here, we propose an algorithm to carry out the method.



ITERATIVE CUBIC TRAPEZOIDAL RULE . . . 13

Initial step:
Set ε

′
> 0, n ∈ N, k = 1 and for any partition {Ii}ri=1 ≺ I, denote

I0 = {(t1,j , . . . , tm,j), j = 0, . . . , n}, where ti,j is given by equation (3).
It can be choose as initial value, u0(s) = 0, s ∈ I0 (it is arbitrary), and
go to the main steps.

Main steps:

Step 1: Compute uk(s) by (5), for all s ∈ I0 and go to Step 2.

Step 2: Compute Mk = max{| uk(s) − uk−1(s) |, s ∈ I0} and go to
Step 3.

Step 3: If Mk < ε
′ , print uk(s).s ∈ I0, Stop. Otherwise, set k :=

k + 1 and go to Step 1.

3.3 Rate of Convergence

Let n1, . . . , nm ∈ N be fixed numbers, and n = max{n1, . . . , nm}. The
trapezoidal rule provides the approximate value

Sj1,...,jm(x) :=

∏m
i=1 hi
2m

1∑
i1,...,im=0

x(t1,j1+i1 , . . . , tm,jm+i1),

in the subinterval Ij1,...,jm := [t1,j1 , t1.j1+1]× · · · × [tm,jm , tm,jm+1] of the
nods ti,j = ai + jih where hi =

bi−ai
ni

, i = 1, . . . ,m, ji = 0, . . . , ni. Let
t = (t1, . . . , tm) ∈ Ij1,...,jm and T0 = (t1,j1 , . . . , tm,jm).

Let x ∈ C2(Rm), i.e., the second order partial ∂2x
∂tr∂ts

derivatives.,
for i, j = 1, 2, . . . ,m all exist and are continuous on Rm, then H(t) =

maxmr,s=1
∂2x

∂tr∂ts
(t) is a continuous and there exists Hmin ≤ Hmax such

that Hmin ≤ H(t) ≤ Hmax on I. Use Taylor’s theorem to write x(t) =
p(t) + e(t), where p(t) and e(t) have the forms

p(t) = x(T0) +

m∑
r=1

∂x

∂tr
(T0)(tr − tr,jr),

and

e(t) =
m∑

r,s=1

∂2x

∂tr∂ts
(ξ(t))(tr − tr,jr)(ts − ts,js),
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where ξ(t) is on the line segment joining t and T0. Sj1,...,jm is exact
when applied to any and all linear functions, and since polynomials
(tr − tr,jr)(ts − ts,js) and terms (tr,jr+ir − tr,jr)(ts,js+is − ts,js), r, s =
1, . . . ,m are positive sign on Ij1,...,jm we get∫

Ij1,...,jm

x(t)dt− Sj1,...,jm(x) =

∫
Ij1,...,jm

e(t)dt− Sj1,...,jm(e)

≤ Hmax

m∑
r,s=1

∫
Ij1,...,jm

(tr − tr,jr)(ts − ts,js)dt

−Hmin

∏m
i=1 hi
2m

m∑
r,s=1

1∑
i1,...,im=0

(tr,jr+ir − tr,jr)(ts,js+is − ts,js)

=
1

4
Hmax

m∏
i=1

hi

 m∑
r,s=1

hrhs

−Hmin

∏m
i=1 hi
2m

m∑
r,s=1

2m−2hrhs

=
Hmax −Hmin

4

m∏
i=1

hi

 m∑
r,s=1

hrhs

 ≤ m2(Hmax −Hmin)

4
hm+2,

where h = max{h1, . . . , hm}. For the entire interval I, we obtain the
approximation,∣∣∣∣ ∫

I
x(t)dt−

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

Sj1,...,jm(x)

∣∣∣∣
≤

n1−1∑
j1=0

· · ·
nm−1∑
jm=0

∣∣∣∣∣
∫
Ij1,...,jm

x(t)dt− Sj1,...,jm(x)

∣∣∣∣∣
≤ nmm2(Hmax −Hmin)

4
hm+2 =

m2(Hmax −Hmin)A
m

4
h2,

where A = nh = max{b1− a1, . . . , bm− am}. So that the rate of conver-
gence of the trapezoidal rule that is used in relation (4) to approximate
the m-D integral in integral equation (1) is O

(
1
n2

)
. Consequently, for

every x ∈ C2(I) and h ∈ C2(I × R) and for every s ∈ I0 such that
K(s, ·) ∈ C2(I), we have K(s, ·)h(·, x(·)) ∈ C2(I) and

|B(x)(s)− x̂(s)| = O

(
1

n2

)
, (11)
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suppose that uk+1(s) ≃ xk+1(s) ≃ xk(s) ≃ u∗(s), s ∈ I0 be the approx-
imate solution for (1), where uk, xk, u

∗ be same as theorem 3.4, notice
from theorem 3.2 it is concluded that the uk converges to unique fixed
point u∗ and for every s ∈ I0, from (11) we get

|u∗(s)− uk+1(s)| ≃ |û∗(s)− xk+1(s)|
= |û∗(s)−B(xk)(s)| ≃ |û∗(s)−B(u∗)(s)|

= O

(
1

n2

)
,

thus, the rate of convergence of this method as you see in section 4 is
O
(

1
n2

)
.

4 Numerical Experiments
In this section, to show the practicability, accuracy, and efficiency of
the theoretical results, we present some examples. Let en(s) = |u∗(s)−
uk(s)| is a pointwise error function in s ∈ I0 and ∥en∥max is a maximum
absolute errors, i.e. ∥en∥max := max{en(s), s ∈ I0}, where I0 ⊆ I, where
u∗ is the exact solution and uk is the numerical solution obtained by
equation (5), which is computed by the algorithm described in Section
4, where k is the number of iterations and n ∈ N is a fixed integer. All
the examples are satisfied in conditions (I)◦-(III)◦.

For the first example, let us consider the Voltetra type as

x(s) = f(s) +

∫
I
K(s, t)h(t, x(t))dt, (12)

where, I = [a1, s1]×· · ·×[am, sm], for all s = (s1, . . . , sm) ∈ I. More pre-
cisely, in the algorithm described in Section 3.2 the Voltetra trapezoidal
formula becomes:

uk(s) = f(s)

+

∏m
i=1 hi
2m

J1−1∑
j1=0

· · ·
Jm−1∑
jm=0

1∑
i1,...,im=0

[K(s, t1,j1+i1 , . . . , tm,jm+im)

h((t1,j1+i1 , . . . , tm,jm+im), uk−1(t1,j1+i1 , . . . , tm,jm+im))] ,

(13)
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Figure 1: The graphs of error functions e30(s), s ∈ I2(30) and
e60(s), s ∈ I2(60)

for all s = (s1, . . . , sm) = (t1,J1 , . . . , tm,Jm) ∈ I0, 1 ≤ J1 ≤ n1, . . . , 1 ≤
Jm ≤ nm, where hi = si−ai

ni
, i = 1, . . . ,m and si = ti,Ji = ai + Jihi

also define uk(s) = f(s), for all s = (s1, . . . , sm) ∈ I such that for some
0 ≤ i ≤ m, si = ai, since it is clear in this case that u∗(s) = f(s). In
what follows, for convenience, we suppose that n1 = n2 = n3 = n be a
fixed integer.

Example 4.1 ([26]). Consider the following two-dimensional linear Volte-
tra integral equation:

u(s1, s2) = s1 sin(s2)−
1

4
s51 +

1

4
s51 cos(s2)−

1

4
s21 sin

2(s2)

+

∫ s1

0

∫ s2

0
(s1t

2
1 + cos(t2))u(t1, t2)dt1dt2,

where s1, s2 ∈ [0, 1]. The exact solution is u∗(s1, s2) = s1 sin(s2).
Denote I1(n) = {0, 1/n, 2/n, . . . , 1} and I2(n) = I1(n)×I1(n) and ap-

ply the algorithm and equation (13) for m = 2, n = 15, 30, 60, ε
′
= 10−10

and I0 = I2(n). For more details, please see Table 1 and Figure 1, where
s ∈ I2(n) is optionally selected. The results ∥e15∥max, ∥e30∥max, ∥e60∥max

are 2.18473e-4, 5.22629e-5 and 1.33539e-5, respectively.
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Nodes n = 15
s := (1/l, 1/l) u∗(s) u8(s) e15(s)
l = 1 0.8415 0.8417 2.1847e-04
l = 3 0.1091 0.1091 2.1987e-06
l = 5 0.0397 0.0397 4.1058e-07
l = 15 0.0044 0.0044 6.5838e-09
l = 30 0.0011 s /∈ I2(15)
l = 60 2.7776e-04 s /∈ I2(15)

n = 30 n = 60
u8(s) e30(s) u7(s) e60(s)
0.8415 5.2263e-05 0.8415 1.3354e-05
0.1091 5.4909e-07 0.1091 1.3724e-07
0.0397 1.0256e-07 0.0397 2.5636e-08
0.0044 1.6447e-09 0.0044 4.1111e-10
0.0011 1.0859e-10 0.0011 2.7144e-11

s /∈ I2(30) 2.7776e-04 1.7415e-12

Table 1: Summary of numerical results of Example 4.1 for n =
15, 60, ε

′
= 10−10
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Example 4.2 ([9, 12, 14]). Consider the following two-dimensional non-
linear mixed integral equation:

u(s1, s2) = − ln

(
1 +

s1s2
1 + s12

)
+

s2s1
2

8(1 + s1)(1 + s12)

+

∫ s1

0

∫ 1

0

s2(1− t2
2)

(1 + s1)(1 + t12)
(1− exp(−u(t1, t2))dt1dt2,

where s1, s2 ∈ [0, 1]. The exact solution is given by

u∗(s1, s2) = − ln

(
1 +

s1s2
1 + s12

)
The 2-D mixed Voltetra-Ferdholm trapezoidal formula described in the
previous section for this example is

uk(s) = f(s) +

∏2
i=1 hi
22

J1−1∑
j1=0

n−1∑
j2=0

1∑
i1,i2=0

[K(s, t1,j1+i1 , t2,j2+i2)

h((t1,j1+i1 , t2,j2+i2), uk−1(t1,j1+i1 , t2,j2+i2))] .

(14)

for all s = (s1, s2) = (t1,n, t2,n) ∈ I0, where h2 = h1 = 1
n and s1 =

t1,J1 = a1 + J1h1, 1 ≤ J1 ≤ n, also define uk(s) = f(s), for all s =
(0, s2) ∈ I0, s2 ∈ [0, 1], since it is clear in this case u∗(s) = f(s).

Applying the algorithm and equation (14) for n = 30, 60, 120, ε
′
=

10−10 and I0 = I2(n). The results ∥e30∥max, ∥e60∥max and ∥e120∥max are
5.2302e-5 , 1.3079e-5 and 3.2699e-6 , respectively. Figure 2 illustrates
the error results for this example.

Example 4.3 ([17, 18]). Consider the following three-dimensional non-
linear mixed integral equation:

u(s1, s2, s3) = s21s2s3 −
11

5760
s61s3(4s

2
2 + 3)

+
1

4

∫ s1

0

∫ 1

0

∫ 1

0
(s1 + t1)(s

2
2 + t3)s3t2u

2(t1, t2, t3)dt1dt2dt3,

where s1, s2, s3 ∈ [0, 1] and the exact solution is given by u∗(s1, s2, s3) =
s21s2s3.
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Figure 2: The graphs of error functions e60(s), s ∈ I2(60) and
e120(s), s ∈ I2(120)

Applying the algorithm and formula similar to equation (14) for three
variables, and n = 5, 10, 20, ε

′
= 10−10. The results ∥e5∥max, ∥e10∥max

and ∥e20∥max are 5.70978e-4 ,9.92278e-5 and 1.69753e-5, respectively.
Figure 3 illustrates the error results for this example.

Example 4.4 ([6, 13, 14]). Consider the following two-dimensional non-
linear Fredholm integral equation:

u(s1, s2) =
1

(1 + s1 + s2)2
− s1

6(1 + s2)

+

∫ 1

0

∫ 1

0

s1
1 + s2

(1 + t1 + t2)u
2(t1, t2)dt1dt2,

where s1, s2 ∈ [0, 1] and the exact solution is given by u∗(s1, s2) =
1

(1+s1+s2)2
.

Applying the algorithm and formula similar to equation (4) for two
variables, and n = 40, 80, ε

′
= 10−50. The results ∥e40∥max and ∥e80∥max

are 1.2422e-04 and 3.1047E-5, respectively. Figure 4 illustrates the error
results for this example.
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Figure 3: The graphs of error functions e10(s), s = (s1, s2, 1) ∈ I2(10)
and e20(s), s = (s1, s2, 1) ∈ I2(20)

Figure 4: The graphs of error functions e40(s), s = (s1, s2) ∈ I2(40)
and e80(s), s = (s1, s2) ∈ I2(80)
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5 Conclusions

In this study, we propose the (2m-points) trapezoidal method for solving
linear and nonlinear m-D integral equations of the second kind. The pro-
posed method is very simple and accurate for obtaining the approximate
solution of the integral equation. An approximation of the error bound
and the rate of convergence for the proposed method are presented by
proving some theorems. In section 4, some numerical examples are con-
sidered to confirm the applicability and efficiency of the method. All
results are obtained using programs written in Matlab. The numer-
ical results verify that the typical convergence rate of the method is
O( 1

n2 ). The method is very convenient for solving higher-dimensional
(linear and nonlinear) integral equations of any type, including (mixed)
Volterra and Fredholm or any combination of them, such as examples
considered in [1, 4, 7, 8, 11, 19, 27].
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