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1 Introduction

Convergence is a fundamental concept in mathematical analysis that
plays a crucial role in comprehending the topological and geometrical
properties of the space. In recent years, some new topologies have been
produced using different types of convergence in topological spaces. Ex-
amining known concepts with these newly produced topologies and iden-
tifying differences has become one of the most interesting research areas.

In this study, especially by considering IK-convergence, which will
be defined below, some topological concepts will be re-examined.

By ideal of N, we mean a subfamily of P(N) which is closed under
finite union and has hereditary property. Similarly, by filter, we mean a
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subfamily of P(N) which is closed under superset and finite intersection.
The set of complements of all elements of an ideal I of N is a filter
known as a filter associated with the ideal and denoted by F(I). If all
singleton subsets of N belongs to I, then it is called an admissible ideal,
and if I ≠ ϕ and N /∈ I then it is called a nontrivial ideal (see more in
[17, 21]).

The relatively new notion of IK-convergence for functions was first
introduced by M. Macaj and M. Slezial [12] in the year 2021 as a gener-
alization of I∗-convergence. In a space, this subject was first discussed
in [6]. After that, some more results relating to IK-convergence can be
found in the papers [3, 4, 5, 16, 15, 8], etc.

In connection with these concepts, the author S.K. Pal in [20] intro-
duced the I-sequential topological space, and later X. Zhou, L. Liv, and
S. Lin in [22] gave more results about the I-sequential topological space
in 2020. After these studies, in the paper [9] I∗-sequential topological
space, and recently, in [10] the notion of IK-sequential topological space
was introduced.

In the year 2000, A. Blali et al. [1] defined the concept of I-
compactness. Later, several results about compactness in relation to
ideals were published in [7, 14, 19, 2, 13, 18]. In 2023, M. Singha and R.
Sima in [11] defined the I-sequential compact space and I∗-sequential
compact space by taking the I-nonthin subsequence of a given sequence
by considering an admissible ideal I.

In this work, the ideas considered in the papers [1] and [11] will be
generalized, and IK-connectedness and IK-compactness are going to be
introduced for any ideals I and K. The first section will present certain
established definitions and outcomes. The second and third sections
will focus on the concepts of IK-compactness and IK-connectedness in
a topological space.

Throughout this paper, (Ω, T ) will be referred to as a topological
space and instead of using the term “topological space,” we shall use
the abbreviation “space”. The collection of finite subsets of natural
numbers is an ideal, which is symbolized as Fin.

Definition 1.1. [1] A sequence t⃗ = (tn) in a space (Ω, T ) is said to be
I-convergent to a point t ∈ Ω if the set {n ∈ N : tn ∈ w} is an element
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of the filter F(I) for every neighborhood w of t.

The point t can be described as the ideal limit of the sequence, t⃗ and

it is expressed by t⃗
I−→ t (or I − lim tn = t).

Definition 1.2. [1] Consider F ⊂ Ω. The I-closure of a set F is defined
as the set of all t ∈ Ω for which there exists a sequence (tn) ⊂ F that
I-converges to t. F is considered I-closed if its I-closure is identical
to itself, while a subset of Ω is considered I-open if its complement is
I-closed.

Definition 1.3. [1] Consider a space (Ω, T ) with an ideal I. (i) A sub-
set F of Ω is considered I-compact if, for any I-open cover of F , there
exists a finite subcover. (ii) A set F is said to be sequentially I-compact
if every sequence (tn) in F has a subsequence (tnk

) that I-converges to
a point of F .

Definition 1.4. [12] Consider I and K as arbitrary ideals, and let
(Ω, T ) be a space. A sequence t⃗ = (tn) ⊂ Ω is IK-convergent to a point
t ∈ Ω if there exists M ∈ F(I) such that the related sequence (yn) defined
by

yn :=

{
tn, n ∈ M,

t, n /∈ M,

is K-convergent to t. The expression IK − lim(tn) = t or t⃗
IK

−−→ t
represents the limit of the sequence tn as it approaches the value of t
under the context of IK .

Definition 1.5. [10] Let I and K be two ideals and (Ω, T ) be a space.
Then, (i) A subset F ⊆ Ω is considered to be IK-closed if the IK-limit
point of all sequences F is a point of F . (ii) A subset V of Ω is consid-
ered to be IK-open if its complement V c is IK-closed.

Remark 1.6. Define K as the set of all finite subsets of the set of natural
numbers. Then, (i) IK-convergence is transformed into the familiar
concept of I∗-convergence.
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(ii) IK-open and IK-closed are identical to I∗-open and I∗-closed,
respectively.

Proof. The proof is provided in [10]. □

Remark 1.7. According to the reference [12], it is evident that any
K-converges sequence is also IK-converges. Therefore, it can be demon-
strated that any set that is IK-open is also K-open.

Definition 1.8. Consider two ideals, I and K, and a space (Ω, T ).

Then, IK-closure of A is denoted by A
IK

and defined as

A
IK

:= {t ∈ Ω : ∃(tn) ⊆ A, tn
IK

−−→ t}

for any subset A ⊆ Ω.

Remark 1.9. The following statements are true: (i) The IK-closure
of the empty set and Ω are equal to themselves. Additionally, for any
A ⊆ Ω, A is a subset of its IK-closure. (ii) A subset of the space Ω is
IK-closed if and only if its IK-closure is equal to itself.

Proof. The proof is provided in [10]. □

Theorem 1.10. Consider a space (Ω, τ), and let I and K be two ideals
of N. Then,

TIK := {A ⊂ Ω : clIK (Ω−A) = Ω−A}

is a topology over the set Ω.

Proof. The proof can be obtained by considering definitions. There-
fore, we have excluded it from this discussion. □

Definition 1.11. [10] (Ω, τIK ) is said to be IK-discrete space if every
subset of Ω is IK-open set.
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2 IK-Compactness

For any ideal I andK, the notions IK-compactness and IK-connectedness
will be defined.
Definition 2.1. Consider I and K as arbitrary ideals of N, and let
(Ω, τ) be a space. A set C that is a subset of Ω is referred to as: (i) IK-
compact, for any collection of IK-open sets that covers C, there exists
a finite subcollection that also covers C.

(ii) A set C is sequentially IK-compact if, for any sequence (tn) in
C, there exists a subsequence that is IK-convergent and IK-converges
to a point in C.

(iii) Locally IK-compact if for any point t ∈ Ω, there is a neighbor-
hood that is IK-compact.

In the case where K = Fin, the concepts of IK-compactness and
sequentially IK-compactness are identical to I∗-compactness and se-
quentially I∗-compactness, respectively.

Every space that is IK-compact is also locally IK-compact.

Theorem 2.2. Consider I and K as arbitrary ideals of N. Let (Ω, τ)
be a space. A subset of an IK-compact space that is also IK-closed, is
IK-compact.

Proof. Let A be an IK-closed subset of Ω. Let {Uα}α∈Λ be a collection
of IK-open sets that covers the set A, then {Uα}α∈Λ ∪ Ac is IK-open
cover of Ω. Since Ω is IK-compact, then there exists a finite subcover
of Ω. Hence, we have

Ω ⊂
n⋃

α=1

Uα ∪Ac

and

A = A ∩ Ω ⊂ A ∩

(
n⋃

α=1

Uα ∪Ac

)
.

So, the set A is an IK-compact set. □
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Theorem 2.3. Consider I and K as arbitrary ideals of N. Let (Ω, τ)
denote a space. An IK-closed subset of sequentially IK-compact space
is sequentially IK-compact.

Proof. Let Ω be a sequentially IK-compact space. Let C be an IK-
closed subset of Ω, and (tn) ⊂ C be any sequence. Since Ω is sequentially
IK-compact and C ⊂ Ω, then there exists an IK-convergent subse-
quence (tnk

) of (tn) such that IK-converges to some point t ∈ Ω. It is
clear that t is the IK closure point of C. Since C is IK-closed, then
t ∈ C. Hence, C is sequentially IK-compact. □

Theorem 2.4. Consider I and K as ideals of N, and let (Ω, τ) be
a space. If A1 and A2 are IK-compact subsets, then A1 ∪ A2 is IK-
compact.

Proof. Assume that A1 and A2 are IK compact subsets of the space
(Ω, τ). Let C = {Ui : i ∈ λ} be an IK-open cover of A1 ∪A2, i.e.,

A1 ∪A2 ⊂
⋃
i∈λ

Ui.

This inclusion implies that the family C is also IK-open cover of A1

and A2. Because of the IK-compactness of A1 and A2, there exists a fi-
nite subcover C1 = {Ui : i = 1, 2, . . . , n} and C2 = {Uj : j = 1, 2, . . . ,m}
of C that covers A1 and A2, respectively. Then, the collection C1 ∪ C2 is
a finite subcover of A1 ∪A2. □

Theorem 2.5. Consider I and K as ideals of N, and let (Ω, τ) be a
space. If A1 and A2 are sequentially IK-compact sets, then A1 ∪ A2 is
sequentially IK-compact.

Proof. Let t⃗ = (tn) ⊂ A1 ∪ A2 be any arbitrary sequence. Then, at
least an infinite number of terms of the sequence t⃗ are in the set A1 (or
A2). Since A1 and A2 are sequentially IK-compact, then there exists
an IK-convergence subsequence (tnk

) of t⃗ in A1 (or in A2), which IK-
converges to some point of A1 ∪A2. □
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Corollary 2.6. The finite union of IK-compact (sequentially IK-compact)
sets is IK-compact (sequentially IK-compact), respectively.

Theorem 2.7. Arbitrary union of locally IK-compact space is locally
IK-compact.

Proof. The proof is clear from the definition of locally IK-compactness.
□

Theorem 2.8. Consider I and K as ideals of N, and let (Ω, τ) be a
space. Then, (i) Every K-compact space is IK-compact. (ii) Every se-
quentially K-compact space is sequentially IK-compact.

Proof. (i) Let Ω be a K-compact space. Then, for any K-open cover of
Ω, there exists a finite subcover. Now, consider an arbitrary family of
IK-open sets {Uα}α∈Λ as a cover of Ω. Then, by Remark 1.7, it is clear
that {Uα}α∈Λ is a K-open cover, and by the K-compactness of Ω there
exists a finite subcover.

(ii) Let Ω be a sequentially K-compact space. Let t⃗ = (tn) ⊂ Ω
be a sequence. Then there exists a subsequence (tnk

) of t⃗ such that
K-converges to somepoint t ∈ Ω. And by [12] the sequence t⃗ is IK-
convergent to t ∈ Ω. □

Remark 2.9. By (Proposition 2 in [1]), if I is an admissible ideal,
then every open subset of space Ω is I-open. So, every I-compact space
is also a compact space.

The following example shows that every sequentially I-compact space
is not sequentially IK-compact.

Example 2.10. Let Ω = [0, 1] be equipped with the standard topology
inherited from R. Consider the set N, which may be decomposed as
the union of infinitely many subsets ∆j . Each ∆j is infinite, and the
intersection between any two different subsets ∆i and ∆j is empty. Let

I = {A ⊂ N : A ∩∆i is finite, for all but finitely many i’s} ∪ Fin
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and

K = Kd = {A ⊂ R : δ(A) = 0}.

Here δ(A) shows the asymptotic density of A, (see [22]). Clearly,
the ideals I and K are non-trivial and admissible. We claim that Ω
is sequentially I-compact. Let (tn) ⊂ Ω be a sequence. Then, by the
Bolzano–Weierstrass theorem, it has a I-convergent subsequence (tnk

)
such that (tnk

) → t, t ∈ Ω. As the ideal I is admissible by (Proposition

1 in [1]) tnk

I−→ t. Therefore, Ω is sequentially I-compact. But it is not a
sequentially IK-compact space. Now consider the sequence (tn) =

(
1
n

)
.

It is clear that in the decomposition of N, each ∆i ∈ I. Let (yn) be
a sequence defined as yn = tj when n ∈ ∆j . The sequence (yn) is not
IK-convergent. Assume that (yn) is IK-convergent to zero. Then, there
exists M ∈ F(I) such that the following sequence

sn :=

{
yn, n ∈ M,

0, n /∈ M,

is K-convergent to 0. So, for any neighborhood U of zero, {n ∈ N :
tn /∈ U} ∈ K. This implies that {n ∈ M : tn /∈ U} ∈ K. But
δ({n ∈ N : tn /∈ U}) ̸= 0 because M ∈ F(I) implies that there ex-
ists H ∈ I such that M = N − H. So there exists l ∈ N and assume
that H ⊂ ∆1 ∪∆2 ∪ . . . ∪∆l, and for all i > l + 1, there exist infinitely
many terms of yn that are equal to ti.

Definition 2.11. Consider I and K as ideals of N, and (Ω, τ) and
(Ω′, ρ) as spaces. A function f from the space Ω to Ω′ is said to be IK-
continuous if it provides the inverse image of any IK-open subset of Ω′

is IK-open in Ω.

Theorem 2.12. (i) The image of IK-compact space under IK-continuous
function is IK-compact, (ii) The image of sequentially-IK-compact space
under IK-continuous function is sequentially-IK-compact.

Proof. (i) Let us assume that f : Ω → Ω′ be an IK-continuous function
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and Ω be an IK-compact space. Take {Uα}α∈Λ be an IK-open cover of
f(Ω). Therefore, f(Ω) ⊂

⋃
α∈Λ Uα implies that

Ω ⊂
⋃
α∈Λ

f−1(Uα).

Since Ω is IK-compact and f is IK-continuous function, then we
have

Ω ⊂
n⋃

α=1

f−1(Uα) = f−1

(
n⋃

α=1

Uα

)
and this implies that f(Ω) ⊂

⋃n
α=1 Uα holds.

(ii) Let Ω be a sequentially IK-compact space. Let (yn) ⊂ f(Ω) be
an arbitrary sequence. Then, there exists a sequence (tn) ⊂ Ω such that
yn = f(tn) for all n. Since Ω is sequentially IK-compact, then there is

an IK-convergence subsequence (tnk
) of (tn) such that tnk

IK

−−→ t. Since
every IK-continuous function is a sequentially IK-continuous function,

then f(tnk
)

IK

−−→ f(t) which completes the proof. □

Theorem 2.13. Consider I and K as ideals of N. Let (Ω, τ) be a
space. Assume that a sequence (tn) ⊂ Ω is IK-convergent to a point t.
Then, following set

A = {tn : n ∈ N} ∪ {t}

is sequentially IK-compact.

Proof. Let (yn) ⊂ A be a sequence. Case 1: If there are infinitely
many terms of (yn) that are equal to t, we can take the subsequence
(ynk

) = t, and it is IK-convergent to x ∈ Ω. Case 2: Let finitely many
terms of yn be equal to t. Then infinitely many terms of (yn) are equal
to terms in (tn). Take ynk

= yn where yn ̸= t, then (ynk
) = (tn), which

is IK-converges to x ∈ Ω. And in case (3), if the infinite number of
terms of the sequence is equal to tn and also equal to x, clearly there
exists IK-convergent subsequence which is converging to some point of
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set A. □

Definition 2.14. Consider two IK-sequential spaces denoted as (Ω, τIK )
and (Ω′, ρIK ). Then, the IK-product topology on Ω× Ω′ is the topology
having as basis the collection

B = {U × V : U ∈ τIK , V ∈ ρIK}.

Lemma 2.15. Consider two sequential spaces denoted by (Ω, τIK ) and
(Ω′, ρIK ). Then the projection maps πj : Ω × Ω′ → Ω, j = 1, 2 are
IK-continuous.

Proof. The proof is evident based on the concept of function IK-
continuity, hence it is omitted. □

Theorem 2.16. If Ω and Ω′ are spaces, then (i) Ω×Ω′ is IK-compact
if and only if Ω and Ω′ are both IK-compact. (ii) The Cartesian product
of Ω and Ω′ is sequentially IK-compact if and only if Ω and Ω′ are both
sequentially IK-compact.

Proof. (i) Let Ω × Ω′ be an IK-compact space. Since the projection
maps π1 and π2 are IK-continuous maps, Ω and Ω′ are IK-compact
spaces.

Conversely, let Ω and Ω′ be IK-compact spaces. Consider an arbi-
trary IK-open cover {Ui × Vj , i, j ∈ λ} of Ω × Ω′ such that Ω × Ω′ ⊂⋃

i,j∈λ Ui×Vj holds. So, for all (x, y) ∈ Ω×Ω′, there exists m,n ∈ λ such
that x ∈ Un and y ∈ Vm. Hence, Ω ⊂

⋃
n∈λ Un and Ω′ ⊂

⋃
m∈λ Vm are

satisfied. From the IK-compactness of Ω and Ω′, we have Ω ⊂
⋃n0

n=1 Un

and Ω′ ⊂
⋃m0

m=1 Vm. So, Ω× Ω′ ⊂
⋃n0

n=1

⋃m0
m=1 Un × Vm holds.

(ii) Let Ω and Ω′ be sequential IK-compact spaces. Let x⃗ = ((tn, yn)) ⊂
Ω× Ω′ be a sequence, then π1(x⃗) = (tn) and π2(x⃗) = (yn) are in Ω and
Ω′, respectively. Since Ω and Ω′ are sequentially IK-compact spaces,
there exists IK-convergent sub-sequences (tnk

) of (tn) and (ymj ) of (yn),
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which are IK-converge to some point t ∈ Ω and y ∈ Ω′. So, there exists
M1,M2 ∈ F(I) such that the sequences

y1n =

{
tnk

, nk ∈ M1,

t, nk /∈ M1,

is K-converges to t and the sequence

y2n =

{
ymj , mj ∈ M2,

y, mj /∈ M2,

is K-converges to y. So, for any neighborhood U1 of t and for any
neighborhood U2 of y

{nk ∈ M1 : tnk
∈ U1} ∈ F(K) and {mj ∈ M2 : ymj ∈ U2} ∈ F(K).

Let M = M1 ∩M2. Define a sequence

tn =

{
(tnk

, ymk
), nk ∈ M,

(t, y), nk /∈ M.

Let U be any IK-open set that contains (t, y). So, there exists
B1 ×B2 ∈ B such that B1 ×B2 ⊂ U and (t, y) ∈ B1 ×B2. Hence,

{(nk) ∈ M : (tnk
, ymk

) /∈ U} ⊂ {(nk,mj) ∈ M : tnk
, ymj /∈ B1×B2} ⊂ {(nk ∈ M1 : tnk

/∈ B1)∪(mj ∈ M2 : ymj /∈ B2)} ∈ K

is satisfied. Therefore, the sequence K-converges to (t, y). This im-
plies that Ω× Ω′ is sequentially IK-compact.

The converse of the proof is clear by the IK-continuity of the pro-
jection mappings. □

Definition 2.17. Consider I and K as arbitrary ideals of N. Let
(Ωj , τ

j
IK )j∈Λ be a family of IK-sequential spaces. Let Ω =

∏
j∈ΛΩj.

The IK-product space is defined as the product set Ω equipped with a
topology τIK , having as its basis the family
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B =

∏
j∈Λ

Oj : Oj ∈ τ jIK and Oj = Ωj for all but finite numbers of j

 .

Proposition 2.18. Let (Ωj , τ
j
IK )j∈Λ be a family of IK-sequential spaces.

Then, the projection maps πi :
∏

j∈ΛΩj → Ωi are IK-continuous maps.

Proof. The proof is self-evident based on the definition of IK-continuous
maps and projection maps, so it is omitted. □

Theorem 2.19. Let (Ωj , τ
j
IK )j∈Λ be a family of IK-sequential spaces.

Then, the IK-product space Ω is IK-compacted iff the set Ωi is com-
pacted for all i ∈ Λ.

Proof. We will prove the theorem by the fact that a sequential space
Ω is IK-compact iff every family E of IK-closed subset of Ω with the
finite intersection property (F.I.P.) satisfy

⋂
E∈E E ̸= ∅.

Let Ωi be an IK-compact space for each i. Let E be a family of
IK-closed subsets of Ω with the F.I.P.; we prove that

⋂
E∈E E ̸= ∅.

By using Zorn’s Lemma, it can be shown that there exists a maximal
family G subsets of Ω (not necessary IK-closed) that contain E and have
the F.I.P. We will demonstrate that

⋂
G∈G G ̸= ∅. This implies the

desired result, as each E ∈ E is closed.
If G1, G2, . . . , Gn ∈ G, for any n ∈ N, then the set G′ = G1 ∩ G2 ∩

. . . ∩Gn ∈ G. Assuming that this is not true, we can conclude that the
set G′ = G ∪ {G′} properly contains G, has the F.I.P., and contains E .
This contradicts the maximality of G.

Consider S, a subset of Ω, which has intersection with every element
in G. We assert that the set G ∪ {S} possesses the F.I.P. To see this,
let G′

1, G
′
2, . . . , G

′
m be members of G. By previous paragraph, G′

1 ∩G′
2 ∩

. . . ∩G′
m ∈ G, and by assumption, S ∩ (G′

1 ∩G′
2 ∩ . . . ∩G′

m) ̸= ∅, hence
G ∪ {S} has the F.I.P. and contains E . By utilizing the properties of G
being maximum, having a F.I.P., and including E , it becomes evident
that S belongs to G. Fix i and let Pi : Ω → Ωi be the projection maps,
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then the family {Pi(G) : G ∈ G} has the F.I.P. As (Ωi, τi) is IK-compact,⋂
G∈G Pi(G) ̸= ∅. Select xi ∈

⋂
G∈G Pi(G), then for each i we can find a

point xi ∈
⋂

G∈G Pi(G), put x =
∏

i xi ∈ Ω.

We shall prove that x ∈
⋂

G∈G G. Let O be any IK-open set con-
taining x. Then O contains a basic IK-open set about x of the form⋂

i∈J P
−1
i (Wi), where Wi ∈ τi, xi ∈ Wi, and J is a finite subset of Λ. As

xi ∈ Pi(G), Wi∩Pi(G) ̸= ∅, for all G ∈ G, thus P−1
i (Wi)∩G ̸= ∅ for all

G ∈ G. By observation above, this implies that P−1
i (Wi) ∈ G, ∀i ∈ J .

As G has F.I.P.,
⋂

i∈J P
−1
i (Wi)∩H ̸= ∅ for all G ∈ G, so O∩G ̸= ∅ for

all G ∈ G, hence x ∈
⋂

G∈G G, as required.

Conversely, let the product space Ω be IK-compact. Since the pro-
jection maps pi are IK-continuous maps and they map IK-compact
space into IK-compact spaces, so Ωi is IK-compact for all i ∈ Λ. □

3 IK-Connectedness

In this section, the idea of connectedness of a space has been generalized
to IK-connectedness.

Definition 3.1. Consider I and K as ideals of N, and let (Ω, T ) be a
space. The subsets U and V of Ω are said to be IK-semi separated if

clIK (U) ∩ V = ∅ = U ∩ clIK (V ).

Lemma 3.2. Consider I and K as ideals of N. Let (Ω, T ) be a space
and Ω′ be a subspace of Ω. Then, any subsets U, V ⊂ Ω′ are IK-semi
separated in Ω iff they are IK-semi separated in Ω′.

Proof. Let U and V be IK-semi separated in Ω. Then,

clIK (U) ∩ V = ∅ = U ∩ clIK (V )

holds. So, clIK (U) ∩ V = clIK (U) ∩ Ω′ ∩ V = ∅. Similarly, we have

clIK (V ) ∩ U = clIK (V ) ∩ Ω′ ∩ U = ∅.
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Conversely, let U and V be IK-semi separated in Ω′. Then,

clIK (U) ∩ V = clIK (U) ∩ U.

Therefore, clIK (U)∩Ω′ ∩V = ∅. Since Ω′ ̸= ∅, then clIK (U)∩V =
∅. Similarly, we can show that clIK (V ) ∩ U = ∅. □

Lemma 3.3. Consider I and K as ideals of N, and (Ω, T ) and (Ω′, T ′)
as spaces. Let f be a function from X to Y that is IK-continuous. If A
and B are IK-semi separated subsets of Ω′, then the preimage of A and
B under f are IK-semi separated subsets of Ω.

Proof. Let A,B ⊂ Ω′ be IK-semi separated. Then, we have

clIK (A) ∩B = ∅ = A ∩ clIK (B)

and we are going to prove,

f−1(A) ∩ clIK (f−1(B)) = ∅ = f−1(B) ∩ clIK (f−1(A))

holds. Let x ∈ f−1(A) ∩ clIK (f−1(B)). Then, x ∈ f−1(A) and
x ∈ clIK (f−1(B)). So, f(x) ∈ A and there exists a sequence (tn) ⊂
f−1(B) such that IK-converges to x. Since f is an IK-continuous
function, the sequence (f(tn)) IK converges to f(x) in Ω′. Because
of (tn) ⊂ B, f(x) ∈ clIK (B). Therefore, f(x) ∈ A ∩ clIK (B). But
A and B are IK-semi separated subsets of Ω, which is a contradic-
tion. Hence f−1(A) ∩ clIK (f−1(B)) = ∅. Similarly, we can prove that
f−1(B) ∩ clIK (f−1(A)) = ∅. □

Definition 3.4. Consider I and K as ideals of N, and let (Ω, T ) be
a space. (i) A set C ⊂ Ω is considered IK-connected if it cannot be
expressed as the combination of two IK-semi-separated sets. (ii) The
space Ω is considered IK-connected if there are no subsets U and V of
Ω that are semi-separated and satisfy Ω = U ∪ V .

Definition 3.5. Consider a space (Ω, T ). The component CIK (t) of t
in Ω is the union of all IK-connected subsets of Ω containing t.
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Definition 3.6. A space (Ω, T ) is totally IK-disconnected if the com-
ponent CIK (t) consists just of the element {t} for all t ∈ Ω.

Theorem 3.7. Consider a space (Ω, T ). A subset Y ⊂ Ω is IK-
connected if and only if for every subset A of Y ,

clIK (A) ∩ (Y −A) ∪ clIK (Y −A) ∩A ̸= ∅

Proof. Let Y ⊆ Ω be an IK-connected set. Let

[clIK (A) ∩ (Y −A)] ∪ [clIK (Y −A) ∩A] = ∅

then

clIK (A) ∩ (Y −A) = ∅ ∧ clIK (Y −A) ∩A = ∅

Theorem 3.8. Consider a space (Ω, T ). The following assertions are
equivalent: (i) Ω is IK-connected. (ii) The only subsets of Ω that are
simultaneously IK-open and IK-closed are Ω itself and the empty set.
(iii) If the IK-discrete space Ω′ has more than one point, there isn’t a
non-constant IK-continuous function that maps Ω to Ω′.

Proof. (i) ⇒ (ii): Consider a space Ω that is IK-connected. Consider
a valid subset D of Ω that is simultaneously IK-open and IK-closed.
There are two possibilities: (1) D is IK-open. Then, Ω−D is IK-closed
and Ω − D = clIK (Ω − D). Then D = clIK (D). (2) D is IK-closed.
Then D = clIK (D).

Given that both instance (1) and (2) occur simultaneously. So D
and Ω−D are IK-semi separated subsets of Ω such that their union is
Ω. So Ω is IK-disconnected, which is a contradiction.

(ii) ⇒ (iii): Consider a set Ω′′ that is an IK-discrete space with
more than one element. Let f : Ω → Ω′′ be a function that is IK-
continuous. Let’s assume that f is not constant. There is a subset D
of Ω such that f(D) is equal to a in Ω′′, and f(Dc) is equal to b in Ω′′.
Given that Ω′′ is an IK-discrete space, it follows that both {a} and {b}
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are IK-open

clIK (D) = clIKf−1({a}) = f−1(clIK ({a})) = f−1({a}) = D.

This indicates that D is also IK-closed under the operation in Ω.
Which is a contradiction.

(iii) ⇒ (i): Let Ω′′ be IK-discreet space consisting of more than
one element. Suppose that Ω is an IK-disconnected space. Then, there
exists IK-semi-separated subsets D and E of Ω such that Ω = D ∪ E.
If we consider E = Ω − D, we have clIK (Ω − D) ∩ D = ∅ and also
Ω − D ∩ clIK (D) = ∅. So clIK (D) ⊂ D and clIK (Ω − D) ⊂ Ω − D.
Therefore, clIK (D) = D and clIK (Ω − D) = Ω − D. Without loss
of generality, take Ω′′ = {0, 1} with clIK (∅) = ∅, clIK (Ω′′) = Ω′′,
clIK ({0}) = {0}, and clIK ({1}) = {1}. Define a function f : Ω → Ω′′ as
f(D) = {0} and f(E) = {1}.

We argue that f is an IK-continuous function. Let ϕ ̸= C ⊂
Ω′′. In order to observe this, we have three cases as follows: (i) If
C = Ω′′, then f−1(C) = Ω holds. So, clIK (f−1(C)) = clIK (Ω) =
Ω = f−1(clIK (C)). (ii) If C = {0}, then f−1(C) = A holds. So,
clIK (f−1({0})) = clIK (D) = D = f−1(clIK ({0})). (iii) If C = {1}, then
f−1(C) = E holds. So, clIK (f−1({1})) = clIK (E) = D = f−1(clIK ({1})).

Thus, f is an IK-continuous function but not constant. Hence, Ω is
an IK-connected space. □

Theorem 3.9. If M is an IK-connected subset of a space Ω and S and
W are IK-semi-separated subsets of Ω. Then, either M ⊂ S or M ⊂ W .

Proof. The proof is evident based on the concept of IK-connectedness
and the definition of IK-semi-separated sets. Therefore, it is excluded
from discussion. □

Theorem 3.10. Let M be an IK-connected subset of a space (Ω, T )
and M ⊂ N ⊂ clIK (M). Then, N is IK-connected.

Proof. Assume that N is not IK-connected. Then there exists IK-
semi-separated subsets S and W of N such that N = S ∪ W . Since
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M is IK-connected, then either M ⊂ S or M ⊂ W . Suppose that
M ⊂ S. Then clIK (M) ⊂ S and W ∩ clIK (M) = ∅. But by hypothesis,
W ⊂ N ⊂ clIK (M), and W = clIK (M) ∩W = ∅, which is a contradic-
tion since W ̸= ∅. □

Corollary 3.11. If M is an IK-connected subset of a space (Ω, T ),
then clIK (M) is IK-connected.

Theorem 3.12. Let M and N are subsets of an IK-connected space
(Ω, T ). If M and N are IK-connected but not IK-semi-separated, then
M ∪N is IK-connected.

Proof. Assume that E = M ∪ N is not IK-connected. Then there
exists IK-semi-separated subsets C and D of Ω such that E = C ∪D.
M ⊂ C ∪D, so by Theorem 3.9 either M ⊂ C or M ⊂ D. Similarly, we
can say that either N ⊂ C or N ⊂ D. If M ⊂ C and also N ⊂ C, then
M ∪N ⊂ C and D = ∅, which is not the case. Thus

(M ⊂ C ∧ N ⊂ D) or (M ⊂ D ∧ N ⊂ C).

In the first case,

clIK (M) ∩N ⊂ clIK (C) ∩D = ∅

and

clIK (N) ∩M ⊂ clIK (D) ∩ C = ∅

Likewise, in the second situation, we can have the identical outcome.
Thus, it follows that M and N are IK-semi-separated in Ω, which con-
tradicts the initial statement. □

Theorem 3.13. If {Mi : i ∈ λ} be a non-empty family of IK-connected
subsets of space Ω, such that

⋂
i∈λMi ̸= ∅. Then,

⋃
i∈λMi is IK-

connected.

Proof. Let T =
⋃

i∈λMi. Assume that T is an IK-disconnected subset
of Ω. Then T = S ∪W , where S and W are IK-semi-separated sets in
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Ω. Since
⋂

i∈λMi ̸= ∅, we choose a point x ∈
⋂

i∈λMi. Then x ∈ T .
So either x ∈ S or x ∈ W . Suppose that x ∈ S. Since x ∈ Mi, for each
i ∈ λ and (Mi ∪ S ̸= ∅,∀i ∈ λ), so Mi must be either in S or in W .
Since S and W are disjoint, so Mi ⊂ S for all i ∈ λ. Hence, T ⊂ S.
This means that W = ∅, which is a contradiction. □

Theorem 3.14. IK-continuous image of IK-connected space is IK-
connected.

Proof. Let Ω be an IK-connected space and Ω′′′ be an IK-discreet space
that has more than one element. Then, any IK-continuous function from
Ω to Ω′′′ is constant.

Let g : f(Ω) → Ω′′′ be an IK-continuous function. Since f and g are
both IK-continuous functions, then g ◦f : Ω → Ω′′′ is an IK-continuous
function, and by the IK-connectedness of Ω, g ◦ f is constant. This
implies that g is constant. Hence, f(Ω) is IK-connected. □
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