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1 Introduction

The concept of balancing numbers was introduced by Behera and Panda
in 1999, [1]. In particular, n ∈ Z+ is a balancing number with balancer
r ∈ Z+ if it is a solution of this Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) ,
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and if n is a balancing number, 8n2+1 is a perfect square and its square
root is called a Lucas-balancing number.

Panda in [10] introduced the Lucas-balancing numbers Cn as Cn =√
8B2

n + 1, where Bn is called the balancing number of order n. The
recurrence relation of the balancing numbers is

Bn+2 = 6Bn+1 −Bn,

with initial conditions B0 = 0 and B1 = 1. In the case of the Lucas-
balancing numbers {Cn}∞n=0, the recurrence relation is the same as that
of the balancing numbers, differing in their initial conditions, being, in
this case, C0 = 1 and C1 = 3.

In [12], Panda and Ray introduced the sequence {cn}n≥1 of Lucas-
cobalancing numbers which satisfy the following recurrence relation

cn+2 = 6cn+1 − cn,

with initial conditions c1 = 1 and c2 = 7.

Also in [12], Panda and Ray introduced the sequence {bn}n≥1 of
cobalancing numbers that satisfies the recurrence relation

bn+2 = 6bn+1 − bn + 2,

with initial conditions b1 = 0 and b2 = 2.

The first four sequences defined above are in The On-Line Encyclopedia
of Integer Sequences® (OEIS®) [15] and Table 1 gives us their first
elements.

Table 1: Some first elements of the sequences {Bn}n≥0, {Cn}n≥0,
{cn}n≥1 and {bn}n≥1

n 0 1 2 3 4 5 6 7 8 9

Bn 0 1 6 35 204 1189 6930 40391 235416 1372105

Cn 1 3 17 99 577 3363 19601 114243 665857 3880899

cn - 1 7 41 239 1393 8119 47321 275807 1607521

bn - 0 2 14 84 492 2870 16730 97512 568344
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Remark 1.1. For the sequences of Lucas-cobalancing and cobalancing
numbers in Table 1, we consider the value c1 and b1 as the first element
of these sequences, respectively.

Some detailed studies on balancing, Lucas-balancing, Lucas-cobalancing
and cobalancing numbers can also be found in [7, 8, 9, 11, 13, 14].

In [3], the bidimensional version of the balancing and Lucas-balancing
numerical sequences were introduced. In particular, in this work, the
authors defined, respectively, the bidimensional recurrence relations of
these two numerical sequences, as follows:

� The bidimensional balancing numerical sequence B(n,m) satisfies
the following recurrence conditions, where n andm are non-negative
integers:

{
B(n+1,m) = 6B(n,m) −B(n−1,m),

B(n,m+1) = 6B(n,m) −B(n,m−1),
(1)

with the initial conditions B(0, 0) = 0, B(1, 0) = 1, B(0, 1) = i, B(1, 1) =
1 + i, where i2 = −1.

� The bidimensional Lucas-balancing numerical sequence C(n,m) sat-
isfies the following recurrence conditions, where n and m are non-
negative integers:

{
C(n+1,m) = 6C(n,m) − C(n−1,m),

C(n, m+1) = 6C(n,m) − C(n,m−1),
(2)

with the initial conditions C(0, 0) = 1, C(1, 0) = 3, C(0, 1) = 1+i, C(1,1) =
3 + i, where i2 = −1.

On the other hand, the bidimensional version of the Lucas-cobalancing
and cobalancing numbers was introduced in [4]. In this paper, in par-
ticular, the authors defined, respectively, the bidimensional recurrence
relations of these two numerical sequences, as follows:

� The bidimensional Lucas-cobalancing numbers c(m,n) satisfy the
following recurrence relations, where n and m are non-negative
integers:
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{
c(n+1,m) = 6c(n,m) − c(n−1,m),

c(n,m+1) = 6c(n,m) − c(n,m−1),
(3)

with the initial conditions c(0,0) = 1, c(1,0) = 7, c(0,1) = 1+i, c(1,1) = 7+i
and i2 = −1.

� The bidimensional cobalancing numbers b(m,n), ∀n,m ∈ N0, are
defined by:

b(n,m) =
1

8
c(n+1,m) −

3

8
c(n,m) −

1

2
, (4)

with the initial conditions b(0,0) = 0, b(1,0) = 2, b(0,1) = −1
4 i, b(1,1) =

2 + 1
4 i and i2 = −1.
In this article, our purpose is to find balancing, Lucas-balancing,

Lucas-cobalancing and cobalancing numbers using the determinants of
some tridiagonal matrices. For this, we closely follow some of the work
done in [2] and [5] for the sequences k-Pell, k-Pell-Lucas and Modified
k-Pell and k-Fibonacci, respectively.

2 Tridiagonal Matrices and the Bidimensional
Balancing and Lucas-Balancing Numbers

In this section, we will use the matrices defined in [6] and apply them to
the bidimensional balancing and Lucas-balancing numerical sequences.
For this, we will consider tridiagonal matrices similar to the one ex-
pressed in [5] and calculate its determinant by Laplace expansion. In
Linear Algebra, Laplace expansion, named after Pierre-Simon Laplace
(1749-1827), also known as cofactorial expansion, is an expression of the
determinant of an n × n-matrix A as a weighted sum of minors, which
are the determinants of some (n− 1) × (n− 1)-submatrices of A. In
particular, for each i, the Laplace expansion along the i-th row is the
equality ∣∣A∣∣ = n∑

j

ai,jAi,j

where, ai,j is the element in the i-th row and the j-th column of A, and,
Ai,j = (−1)i+j Di,j is the cofactor in which Di,j is the determinant of
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the matrix resulting from the elimination of the i-th row and the j-th
column from A. Similarly, the Laplace expansion along the j-th column
is the equality ∣∣A∣∣ = n∑

i

ai,jAi,j .

2.1 The determinant of a special model of tridiagonal ma-
trices

In this Subsection, we will present the definition of the tridiagonal ma-
trices given in [5], as mentioned before.

Let us consider the n-order tridiagonal matrices, denoted by Mn,

Mn =



a b 0 0 · · · 0 0 0
c d e 0 · · · 0 0 0
0 c d e · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · c d e
0 0 0 0 · · · 0 c d


,

where a, b, c, d and e are real numbers.
Solving the sequence of determinants of the tridiagonal matrices Mn,

we get ∣∣M1

∣∣ = a∣∣M2

∣∣ = d
∣∣M1

∣∣− bc∣∣M3

∣∣ = d
∣∣M2

∣∣− ce
∣∣M1

∣∣∣∣M4

∣∣ = d
∣∣M3

∣∣− ce
∣∣M2

∣∣
...

and, in general, ∣∣Mn+1

∣∣ = d
∣∣Mn

∣∣− ce
∣∣Mn−1

∣∣ . (5)

In the next subsections, we are going to use these determinants in order
to obtain the balancing, Lucas-balancing, Lucas-cobalancing and cobal-
ancing numbers.
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2.2 The case of bidimensional balancing numbers

We will use the tridiagonal matrix presented in Subsection 2.1 as a basis
and apply it to the bidimensional balancing numbers. Now, we adapt the
matrix Mn considering that a, b, c, d and e could be complex numbers.

So if a = B(1,m), b = B(m,0), c = i, d = 6 and e = −i, the matrix Mn

expressed in Subsection 2.1 is transformed into a tridiagonal matrix,

Rn =



B(1,m) B(m,0) 0 0 · · · 0 0 0

i 6 −i 0 · · · 0 0 0
0 i 6 −i · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · i 6 −i
0 0 0 0 · · · 0 i 6


,

with n,m ∈ N, m fixed.

Solving the sequence of determinants of the tridiagonal matrix Rn,
we obtain∣∣R1

∣∣ =
∣∣B(1,m)

∣∣ = B(1,m)∣∣R2

∣∣ = 6B(1,m) −B(0,m)i

= 6B(1,m) −B(0,m) = B(2,m) (by the first recurrence relation

described in (1))∣∣R3

∣∣ = 6B(2,m) − i (−i)B(1,m) (by Laplace expansion along the third

column)

= 6B(2,m) −B(1,m) = B(3,m) (once again, by the first recurrence

relation in (1))

...

so that (5) is given by,∣∣Rn+1

∣∣ = 6
∣∣Rn

∣∣− ∣∣Rn−1

∣∣ = 6B(n,m) −B(n−1,m) = B(n+1,m).

The result below gives us the bidimensional balancing numbers of order
n as the determinant of a tridiagonal matrix given in the next result.
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Theorem 2.1. Let us consider the square n × n matrix for n,m ∈ N,
m fixed:

Rn =



B(1,m) B(m,0) 0 0 · · · 0 0 0

i 6 −i 0 · · · 0 0 0
0 i 6 −i · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · i 6 −i
0 0 0 0 · · · 0 i 6


.

Then ∣∣Rn

∣∣ = B(n,m).

Proof. The proof is done by induction on n:

For n = 1 we have
∣∣R1

∣∣ = B(1,m), by the determinant of the matrix
R1, calculated before.

For n = 2 we have
∣∣R2

∣∣ = B(2,m), by the determinant of the matrix
R2, calculated before.

Suppose the statement of the theorem is true for all k ≤ n and we
show that it remains true for n+ 1. Then we have

∣∣Rn+1

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B(1,m) B(m,0) 0 0 · · · 0 0 0 0

i 6 −i 0 · · · 0 0 0 0
0 i 6 −i · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 0 · · · i 6 −i 0
0 0 0 0 · · · 0 i 6 −i
0 0 0 0 · · · 0 0 i 6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus, by Laplace’s rule (expansion along (n+ 1)-th row) and by the
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induction hypothesis, we have∣∣Rn+1

∣∣ = iAn+1,n + 6An+1,n+1

= i (−1)2n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

B(1,m) B(m,0) 0 0 · · · 0 0 0

i 6 −i 0 · · · 0 0 0
0 i 6 −i · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · i 6 0
0 0 0 0 · · · 0 i −i

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ 6

∣∣Rn

∣∣

= (−i)

∣∣∣∣∣∣∣∣∣∣∣∣∣

B(1,m) B(m,0) 0 0 · · · 0 0 0

i 6 −i 0 · · · 0 0 0
0 i 6 −i · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · i 6 0
0 0 0 0 · · · 0 i −i

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ 6

∣∣Rn

∣∣

= (−i) (−i)An,n + 6
∣∣Rn

∣∣
= i2 (−1)2n

∣∣∣∣∣∣∣∣∣∣∣

B(1,m) B(m,0) 0 0 0 · · · 0 0

i 6 −i 0 0 · · · 0 0
0 i 6 −i 0 · · · 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 0 · · · i 6

∣∣∣∣∣∣∣∣∣∣∣
+ 6

∣∣Rn

∣∣
= −

∣∣Rn−1

∣∣+ 6
∣∣Rn

∣∣
= 6B(n,m) −B(n−1,m) = B(n+1,m) (by the expression (1)),

as we wanted to prove. □

Now if a = B(n,1), b = B(n,0), c = 1, d = 6 and e = 1, the matrix Mm is
transformed into the following tridiagonal matrix,

R̃m =



B(n,1) B(n,0) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 1
0 0 0 0 · · · 0 1 6


,
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with n fixed.

Solving the sequence of determinants of the tridiagonal matrices R̃m,
we get∣∣∣R̃1

∣∣∣ =
∣∣B(n,1)

∣∣ = B(n,1)∣∣∣R̃2

∣∣∣ = 6B(n,1) −B(n,0) = B(n,2) (by the second recurrence relation

in (1))∣∣∣R̃3

∣∣∣ = 6B(n,2) −B(n,1) (by Laplace expansion along column three)

= B(n,3) (again, by the second recurrence relation in (1))

...

so that (5) is given by,∣∣∣R̃m+1

∣∣∣ = 6
∣∣∣R̃m

∣∣∣− ∣∣∣R̃m−1

∣∣∣ = 6B(n,m) −B(n,m−1) = B(n,m+1).

The following result gives us the bidimensional balancing numerical se-
quence of order m as the determinant of a tridiagonal matrix:

Theorem 2.2. Let us consider the m×m matrix for a fixed n natural
number and m ∈ N:

R̃m =



B(n,1) B(n,0) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 1
0 0 0 0 · · · 0 1 6


.

Then ∣∣∣R̃m

∣∣∣ = B(n,m).

Proof. We prove by induction on m:

For m = 1 we have
∣∣∣R̃1

∣∣∣ = B(n,1), by the determinant of the matrix

R̃1, as calculated before.
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For m = 2 we have
∣∣∣R̃2

∣∣∣ = B(n,2), by the determinant of the matrix

R̃2, as calculated before.
Suppose the statment of the theorem is true for any integer less than

or equal to m. Let us show that
∣∣∣R̃m+1

∣∣∣ = B(n,m+1). Hence

∣∣∣R̃m+1

∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B(n,1) B(n,0) 0 0 · · · 0 0 0 0

1 6 1 0 · · · 0 0 0 0
0 1 6 1 · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 0 · · · 1 6 1 0
0 0 0 0 · · · 0 1 6 1
0 0 0 0 · · · 0 0 1 6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Thus, according to Laplace’s rule (expansion along the (n+ 1)-th row)
and the induction hypothesis, we have∣∣∣R̃m+1

∣∣∣ = 1Am+1,m + 6Am+1,m+1

= (−1)2m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

B(n,1) B(n,0) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 0
0 0 0 0 · · · 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)2m+2 6

∣∣∣R̃m

∣∣∣

= (−1)Am,m + 6
∣∣∣R̃m

∣∣∣ (by expansion along last column)

= 6
∣∣∣R̃m

∣∣∣− ∣∣∣R̃m−1

∣∣∣
= 6B(n,m) −B(n,m−1) = B(n,m+1) (by expression (1)),

as we wanted to prove. □

2.3 The case of bidimensional Lucas-balancing numbers

As presented in Subsection 2.2, we will use the tridiagonal matrices
defined in Subsection 2.1 for the Lucas-balancing numbers.
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Hence, if a = C(1,m), b = C(0,m), c = 1, d = 6 and e = 1, the matrix
Mn is converted into a tridiagonal matrix given by

Sn =



C(1,m) C(0,m) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 1
0 0 0 0 · · · 0 1 6


,

with m fixed.
Considering the determinants of the tridiagonal matrix Sn, we get∣∣S1

∣∣ =
∣∣C(1,m)

∣∣ = C(1,m)∣∣S2

∣∣ = 6C(1,m) − C(0,m) = C(2,m) (by the first recurrence relation

in (2))∣∣S3

∣∣ = 6C(2,m) − C(1,m) (by Laplace expansion along the third

column)

= C(3,m) (once again, by the first recurrence relation in (2))

...

and (5) is given by,∣∣Sn+1

∣∣ = 6
∣∣Sn

∣∣− ∣∣Sn−1

∣∣ = 6C(n,m) − C(n−1,m) = C(n+1,m).

Below is the generic result that gives us the bidimensional balancing
numbers of order n in terms of the determinant of a tridiagonal matrix:

Theorem 2.3. Let the following matrix be given for n,m ∈ N, m fixed:

Sn =



C(1,m) C(0,m) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 1
0 0 0 0 · · · 0 1 6


.

Then ∣∣Sn

∣∣ = C(n,m).
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Proof. The proof is done by induction on n:
For n = 1 we have

∣∣S1

∣∣ = C(1,m), by the definition of the determinant
of the matrix S1, what was calculated previously.

For n = 2 we have
∣∣S2

∣∣ = C(2,m), once again, by the definition of the
determinant of the matrix S2 and take into account what was calculated
before.

Suppose the statment of the theorem is valid for any integer less than
or equal to n and let us prove that it remains valid for n+ 1.

∣∣Sn+1

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C(1,m) C(0,m) 0 0 · · · 0 0 0 0

1 6 1 0 · · · 0 0 0 0
0 1 6 1 · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 0 · · · 1 6 1 0
0 0 0 0 · · · 0 1 6 1
0 0 0 0 · · · 0 0 1 6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By the calculation of
∣∣Sn+1

∣∣ using Laplace’s rule (expansion along the
(n+ 1)-th row) and by the induction hypothesis, we get∣∣Sn+1

∣∣ = 1An+1,n + 6An+1,n+1

= 1 (−1)2n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

C(1,m) C(0,m) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 0
0 0 0 0 · · · 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ 6

∣∣Sn

∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣

C(1,m) C(0,m) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 0
0 0 0 0 · · · 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ 6

∣∣Sn

∣∣

= (−1)An,n + 6
∣∣Sn

∣∣ (by Laplace expansion in last column)

= −
∣∣Sn−1

∣∣+ 6
∣∣Sn

∣∣
= 6C(n,m) − C(n−1,m) = C(n+1,m),
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as we wanted to prove. □

Now if a = C(n,1), b = C(n,0), c = 1, d = 6 and e = 1, then the matrix of
the form Mm defined in Subsection 2.1 is transformed into a tridiagonal
matrix,

S̃m =



C(n,1) C(n,0) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 1
0 0 0 0 · · · 0 1 6


,

with n fixed.
Solving the sequence of determinants of the matrix S̃m, in similar

way that was done before, we get∣∣∣S̃m+1

∣∣∣ = 6
∣∣∣S̃m

∣∣∣− ∣∣∣S̃m−1

∣∣∣ .
The following result, which proof is omitted, gives us the Lucas-balancing
numbers in terms of the determinant of a tridiagonal matrix:

Theorem 2.4. Let us consider the matrix for n,m ∈ N, n fixed:

S̃m =



C(n,1) C(n,0) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 1
0 0 0 0 · · · 0 1 6


,

Then ∣∣∣S̃m

∣∣∣ = C(n,m).

2.4 The case of bidimensional Lucas-cobalancing and cobal-
ancing numbers

In this Subsection, we will present the definition of the tridiagonal matri-
ces for the bidimensional Lucas-cobalancing numbers based on the defi-
nition given in Subsection 2.1. Also as a consequence of this tridiagonal
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matrix and taking into account the relation between Lucas-cobalancing
and cobalancing numbers, we will obtain expressions for the cobalancing
numbers b(n,m) in terms of sums of special tridiagonal matrices determi-
nants.

Then, if a = c(1,m), b = c(0,m), c = 1, d = 6 and e = 1, the tridiagonal
matrix presented in Subsection 2.1 is transformed into a tridiagonal
matrix,

Tn =



c(1,m) c(0,m) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 1
0 0 0 0 · · · 0 1 6


,

with m a natural number that is fixed.

Solving the sequence of determinants of the tridiagonal matrix Sn,
we obtain

∣∣T1

∣∣ =
∣∣c(1,m)

∣∣ = c(1,m)∣∣T2

∣∣ = 6c(1,m) − c(0,m) = c(2,m) (by the first recurrence relation

described in (3))∣∣T3

∣∣ = 6c(2,m) − c(1,m) (by Laplace expansion along the third column)

= c(3,m) (once again, by the first recurrence relation in (3))

...

so that (5) is given by,

∣∣Tn+1

∣∣ = 6
∣∣Tn

∣∣− ∣∣Tn−1

∣∣ .
The following result gives us the bidimensional Lucas-cobalancing num-
bers in terms of the determinant of a tridiagonal matrix:

Theorem 2.5. Let the following triangular matrix be given for n,m ∈
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N, m fixed:

Tn =



c(1,m) c(0,m) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 1
0 0 0 0 · · · 0 1 6


.

Then ∣∣Tn

∣∣ = c(n,m).

Proof. We proceed to the proof by induction on n:

For n = 1 we have
∣∣T1

∣∣ = c(1,m), by the definition of the determinant
of the matrix T1, what was previously calculated.

For n = 2 we have
∣∣T2

∣∣ = c(2,m), once again, by the definition of the
determinant of the matrix T2, was calculated before.

Suppose the statment of the theorem is true for all integers less than
or equal to n and prove that it remains true for n+1. Hence we obtain
the following:

∣∣Tn+1

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c(1,m) c(0,m) 0 0 · · · 0 0 0 0

1 6 1 0 · · · 0 0 0 0
0 1 6 1 · · · 0 0 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 0 · · · 1 6 1 0
0 0 0 0 · · · 0 1 6 1
0 0 0 0 · · · 0 0 1 6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus, taking into account Laplace’s rule (expansion along the (n+ 1)-th
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row) and the induction hypothesis, we obtain∣∣Tn+1

∣∣ = 1An+1,n + 6An+1,n+1

= 1 (−1)2n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

c(1,m) c(m,0) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 0
0 0 0 0 · · · 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ 6

∣∣Tn

∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣

c(1,m) c(0,m) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 0
0 0 0 0 · · · 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ 6

∣∣Tn

∣∣

= (−1)A(n,n) + 6
∣∣Tn

∣∣ (by Laplace expansion in last column)

= − (−1)2n

∣∣∣∣∣∣∣∣∣∣∣

c(1,m) c(0,m) 0 0 · · · 0 0

1 6 1 0 · · · 0 0
0 1 6 1 · · · 0 0
...

...
...

. . .
...

...
...

0 0 0 0 · · · 1 6

∣∣∣∣∣∣∣∣∣∣∣
+ 6

∣∣Tn

∣∣
= 6

∣∣Tn

∣∣− ∣∣Tn−1

∣∣
= 6c(n,m) − c(n−1,m) = c(n+1,m),

as we wanted to prove. □

Now if a = c(n,1), b = c(n,0), c = 1, d = 6 and e = 1, the matrix of the
form Mm as defined in Subsection 2.1 is transformed into a tridiagonal
matrix,

T̃m =



c(n,1) c(n,0) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 1
0 0 0 0 · · · 0 1 6


,
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n fixed.
In a similar way to the previous subsections, we get∣∣∣T̃m+1

∣∣∣ = 6
∣∣∣T̃m

∣∣∣− ∣∣∣T̃m−1

∣∣∣ .
The result that follows gives us the bidimensional cobalancing num-

bers in terms of the determinant of a tridiagonal matrix, which proof is
similar to those presented previously:

Theorem 2.6. Let us consider the matrix for a fixed natural number n:

T̃m =



c(n,1) c(n,0) 0 0 · · · 0 0 0

1 6 1 0 · · · 0 0 0
0 1 6 1 · · · 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 1 6 1
0 0 0 0 · · · 0 1 6


,

Then ∣∣∣T̃m

∣∣∣ = c(n,m).

According to the recurrence relation (4), the following results follow:

Corollary 1. For any non-negative integers n and m, the bidimensional
cobalancing numbers satisfy

b(n,m) =
1

8

∣∣Tn+1

∣∣− 3

8

∣∣Tn

∣∣− 1

2
.

3 Conclusion

This article presents four types of bidimensional numerical sequences in
terms of the determinant of tridiagonal matrices. Some results related
to these sequences are presented and we consider that this article consti-
tutes a contribution to the field of mathematics and gives an opportunity
to researchers interested in this topic of numerical sequences.
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