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Abstract. In this article by using G-type domains, we introduce
strong G-type domains and locally countable quotient rings(lcqr). Mo-
rover, G-type ideals are classified. Finally some relations between prime
ideals and G-type ideals in valuation rings have been investigated.
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1. Mathematical Notations

Definition 1.1. A domain R with its quotient field Q is called a G-type
domain if Q as a ring on R is countably generated (c.g.), i.e., there
exists a countable multiplicative closed subset(cmcs) in R such that:

Q = S−1R = R[1/S]

Note: An Ordinal number of λ is called the Caliber of R. It is denoted
by: ”Ca(R) = λ”. For a multiplicative closed subset M of R, which is
the smallest multiplicative closed subset generated by S, if M−1R = Q

then |S| = λ.[9]

Lemma 1.2. A domain R is a G-type domain if and only if Ca(R) 6
ℵ0.
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Definition 1.3. A prime ideal P of domain R is called a G-type ideal

if the quotient ring R/P is a G-type domain.

Theorem 1.4. [8] Let P be a prime ideal of R, the following statements
are equivalent:
i)P is a G-type ideal of R.
ii)There exists a cmcs set S in R such that P is maximal with respect
to having the empty intersection with S.
iii)There is either only a countable number of prime ideals in R/P or
any uncountable set of prime ideals properly containing P , say F , can
be written in the form F =

⋃
n∈Λ Fn, where Λ is a subset of the natural

numbers, P is properly contained in
⋂

Q∈Fn
Q for each n ∈ Λ and some

of the Fn are uncountable and Fn = {Q ∈ F : sn ∈ Q} 6= ∅.

Definition 1.5. [9] Let R be a commutative domain and Q its quotient
field. R is called a strong G-type domain if every overring R

′
of R is

the form of R[1/t1, 1/t2, 1/t3, ...], for some nonzero elements ti ∈ R,
in other words,

R′ = R[1/S] = S−1R

where S =< {t1, t2, ..., tn, ...} > is a cmcs of R.

Definition 1.6. A quotient ring R′ of a domain R is called a countable

quotient ring (cqr) if R′ = RS, for a cmcs, S =< {t1, t2, t3, ...} >
where ti 6= 0, ∀i ∈ I.

Example 1.7. The Integral domain of Z is a trivial sample for Definition
1.4.

Definition 1.8. R is called a locally countable quotient ring (lcqr)

if for every prime ideal P of R, the localization of RP is a cqr of R.

Lemma 1.9. Every strong G-type domain is a lcqr.

Proof. For each arbitrary prime ideal P of R, RP is also an overring
of R, so by the property of strong G-type domains and by Definition
1.4, there exists a cmcs, S =< {t1, t2, ..., tn, ...} > of R, such that P with
respect to inclusion satisfies the property of P ∩ S = ∅.
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Therefore we have:
RP = S−1R(= RS). �

Lemma 1.10. Every lcqr is a G-type domain.

Proof. Since R is a domain, so {0} is also prime ideal of R. Therefore,
R{0} is a cqr i.e., there exists a cmcs set S of R such that R{0} = S−1R.
Since R is a domain; therefore, R{0} is its quotient field “say, K”. So

K = R{0} = S−1R.

Hence R is a G-type domain. �

2. Properties of LCQR Domains

In this section, some key results have been drawn for the lcqr domains
which are defined in §1. The importance of these results lies in the count-
ability of the number of maximal ideals in these domains.

Theorem 2.1. Let P be a prime ideal in a domain of R and S be a mcs

(set of nonzero elements of R) such that S ∩ P = ∅, then the following
statements are equivalent:
i) RP = RS(= S−1R) is a cqr of R.
ii) S ∩ (b) 6= ∅ for every element b inR\P .
iii) If Q is a prime ideal not contained in P , then S ∩Q 6= ∅.

Proof. (i) → (iii): Let RP = RS and Q be a prime ideal of R which
isn’t contained in P , and q ∈ Q\P , then 1/q ∈ RP . Therefore, 1/q = a/s

for some a ∈ R and b ∈ S. Hence s = aq ∈ Q ∩ S, S ∩Q 6= ∅.
(iii) → (ii): For b 6∈ P and S ∩ (b) = ∅ it reaches contradiction. By
Cohen’s theorem, there exists a prime ideal Q containing (b) such that
S ∩Q = ∅, but Q 6⊆ P , this is a contradiction by (iii).
(ii) → (i): By the hypothesis since S ∩ P = ∅, then S ⊆ R\P i.e., the
quotient ring RS ⊆ RP . Now let x = a/b ∈ RP with a, b ∈ R and b 6∈ P ,
then by (ii) it seems that S ∩ (b) 6= ∅. Therefore for some r ∈ R, we can
put s = br ∈ S. Hence, x = a/b = ar/br ∈ RS . �
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Corollary 2.2. A domain R with a countable number of prime ideals
satisfies in the following properties:
i) R is a G-type domain.
ii) R is an lcqr

Proof. It is obvious that R is a G-type domain, [8,Corollary 1.3].
Now let {P1, P2, ...} be the set of all prime ideals in R. Therefore, for
each P in Spec(R) it must be P = Pi, for some i ∈ I.
Now we are setting F = {Pj : Pj 6⊆ P}. If F = ∅, then this means that R
is local and P is its unique maximal ideal, Therefore, S = R\P consists
of all the units of R, hence

R = RP = S−1R = R1.

Thus we may assume that F 6= ∅ and hence for each Pj 6⊆ P , take
aj ∈ Pj\P and put

T =< {aj : j ∈ J} > .

Clearly T is a cmcs in R. Obviously, for each Q 6⊆ P , we have T∩Q 6= ∅.
Therefore, by parts (i) and (iii) of Theorem 2.1 RP = RT , hence the
proof is completed. �

Corollary 2.3. Let R be a domain and RP be a cqr of R, then P is a
G-type ideal.

Proof. RP is a cqr. Therefore, there exists a cmcs set S in R such that

RP = RS(= S−1R).

Now by [8, Definition 4.1], S is satisfying in property of S∩P = ∅, now by
part (iii) of Theorem 2.1, since for each Q ⊃ P , it’s been S∩Q 6= ∅; hence
P is maximal with respect to its property (S ∩ P = ∅).
Therefore, by Theorem 2.1, P is a G-type ideal of R. �
The following is more immediate.

Corollary 2.4. Every prime ideal in a lcqr domain is a G-type ideal.

Proof. Let P be a prime ideal of R. By hypothesis RP is a cqr of R.
Hence, by Corollary 2.2, P is a G - type ideal of R. �
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Corollary 2.5. Let P be a prime ideal of a domain R and suppose the
localization RP of R is a cqr, then YP ={Q ⊆ P : Q ∈ Spec(R)} is an
intersection of open subsets of Spec(R) with the Zariski topology.

Proof. By our hypothesis, there exists a cmcs set S in R such that

RP = RS(= S−1R).

Now by Theorem 2.1 for each prime ideal Q, which is not contained in
P and Q∩S 6= ∅ (S is countable), there exists {t1, t2, ...} ⊆ S such that

Q ∩ S = {t1, t2, ...}(= SQ), i.e. Y c
P =

⋃
Q

V (SQ).

Therefore YP = (
⋃
Q

V (SQ))c and then YP =
⋃
Q

D(SQ),

where D(SQ) is an open subset of X = Spec(R) with the Zariski topol-
ogy. �

Note. If R is a semilocal ring, i.e., let M1,M2, ...,Mn be all maximal
ideals of R, and for each i, (1 6 i 6 n), if Ai =

∏
j 6=iMj , then there

have been finite numbers of ideals A1, A2, ..., An such that for all i,

Ai 6⊆Mi,

and for each prime ideal P of R, it must be satisfying P 6⊇ Ai, for some
1 6 i 6 n.

Hence in extended position if R is a semilocal ring then there exists a
finite number of ideals A1, A2, ..., An “not necessary maximal” such that
for each arbitrary prime ideal P ∈ Spec(R), P 6⊇ Ai for some i.

Theorem 2.6. Let R be a lcqr domain, then there exists only a finite
number of maximal ideals M1,M2, ...,Mn with the finite number of ideals
A1, A2, ..., An of R such that:

Mi +Ai = R , i = 1, 2, ..., n

and for each prime ideal P ∈ Spec(R) there exists some i, such that
Ai 6⊆ P .



16 A. R. ALIZADEH MOGHADDAM

In other words, for each maximal M, we have M +Ai = R for some i.

Proof. Let X = Spec(R) and {Mi}i∈I be the set of all maximal ideals
in R. Then by Corollary 2.4, we have:

Ymi =
⋂

j∈Fi

Gi
j , i ∈ I

where each Gi
j is an open set in the Zariski topology.

Now we have:

X ⊆
⋃
i∈I

Gi
j =⇒ X ⊆

⋃
i∈I

YMi ⊆
⋃
i∈I

Gi
j .

Since X is compact, therefore:

X = Gi1
j ∪G

i2
j ∪ ... ∪G

in
j = D(Ai1) ∪D(Ai2) ∪ ... ∪D(Ain),

where Gik
j = D(Aik) and Aik is an ideal of R.

Therefore we have:
Mi1 ∈ G

i1
j = D(Ai1),

Mi1 6⊇ Ai1 ,

Mi1 +Ai1 = R,

.

.

.

Min +Ain = R.

Now by the last note for each P ∈ X , for some k, we have

P ∈ Gik
j = D(Aik) and P 6⊇ Aik

The final part is evident. �

Theorem 2.7. In an lcqr domain, any descending chain of prime ideals
is at most countable.
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Proof. If we suppose that Q1 ⊃ Q2 ⊃ ... ⊃ Qω ⊃ Q(ω+1) ⊃ Q(α) ⊃ ...

is a strictly descending chain of uncountable number prime ideals of R,
(ω is the first infinite ordinal and α < ω1) and ω1 is the first uncountable
ordinal, then we seek a contradiction.
Now let P be an ideal with the following condition

P =
⋂
i>1

Qi.

Since P is also a prime ideal of R, so RP is also cqr of R, then there
exists a countable multiplicative closed subset cmcs S ⊆ R such that
RP = RS and P ∩ S = ∅, then by part (iii) of Theorem 2.1 for every
i > 1 since Qi 6⊆ P so we have

Qi ∩ S 6= ∅.

Now we may consider the following chain

S ∩Q1 ⊃ S ∩Q2 ⊃ ... ⊃ S ∩Qω ⊃ S ∩Q(ω+1) ⊃ ... .

Since For each i > 1 , S ∩Qi is a countable set, then we must have

S ∩Qβ = S ∩Qi = S ∩Qi+1, ∀i > β.

For some β < ω1, we may take β to be the least ordinal with this
property. Consequently, we have⋂

i>1

(S ∩Qi) = S ∩Qβ 6= ∅.

But it means that

(
⋂
i>1

Qi) ∩ S = P ∩ S = Qβ ∩ S 6= ∅.

which is a contradiction. �

Corollary 2.8. Every quotient ring of an lcqr domain is also an lcqr.
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Proof. Let R′ = RS be a quotient ring of an lcqr domain R with
respect to a cmcs set S. It is obvious that by canonical homomorphism

φ : R −→ S−1R

with φ(r) = r
1 , every prime ideal P

′
of R

′
is the form of P e which is the

extension of prime ideal P of R such that P ∩ S = ∅.
In addition, by [5], we have

R′P ′ ' RP =
RS

P e
.

Now since R is lcqr, there exists an cmcs T of R such that

T ∩ P = ∅.

So we have RP = RT . Therefore R
′
P ′ ' RP = RT , and hence the proof

is completed. �

Lemma 2.9. Let {Si}i∈I be a countable chain of cmcs sets in R. If
S =

⋃
i∈I Si, which is a cmcs in R , then⋂

i∈I

RSi ⊆ RS .

Proof. It is obvious that S 6= ∅.
Now let 0 6= α ∈

⋂
i∈IRSi be an arbitrary element, then

α ∈ RSi , ∀i ∈ I.

So there exists si ∈ Si and ai ∈ R such that

α = ai/si , ∀i ∈ I.

Now since for all i ∈ I, Si ⊆ S, therefore si ∈ S for each i ∈ I, and so
we have

α ∈ RS .

Hence
⋂

i∈I RSi ⊆ RS . �
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Lemma 2.10. Let {Pi}i∈I be a chain of prime ideals in R and suppose
that for all i ∈ I, RPi is a cqr of R, then R′ =

⋂
i∈I RPi is cqr of R.

Proof. By Theorem 2.1, since for each i ∈ I, RPi is a cqr of R, then
there exists a cmcs, Si in R such that Pi with respect to inclusion is
satisfying Si ∩ Pi = ∅ and we have

RPi = S−1
i R = R[

1
S−1

i

](= RSi), ∀i ∈ I.

Then
⋂

i∈I RPi =
⋂

i∈I RSi .
Now if we define S =

⋃
i∈I Si, then by Lemma 2.1, S is a cmcs in R.

Since for each i ∈ I, Pi = R\Si with respect to inclusion is maximal
which is satisfying Pi ∩ Si = ∅ then ∩Pi = ∩(R\Si) = R\(∪Si) = R\S
and so S = R\ ∩ Pi, where S is a cmcs in R.
Therefore, RS =

⋂
i∈I RPi =

⋂
i∈I RSi . �

Note. Gold(v), is defined as the set of all G-ideals of V .

Theorem 2.11. Let V be a valuation ring. Then, the following state-
ments are equivalent:

i) V is a strong G-type domain.
ii) V is an lcqr domain.
iii) Spec(V ) = Gold(V ).
iv) For every prime ideal P of V either V/P has only a countable number
of prime ideals or the set of all prime ideals properly containing P, say
F, can be written in the form F =

⋃
n∈T Fn, where T is a subset of

Natural number and each Fn is a well-ordered set. (Note: Clearly some
Fn is uncountable).

Proof. (i) → (ii): It’s the proof of lemma (1.3).
(ii) → (iii): It’s the corollary (2.3).
(iii) → (iv) : The first part is the proof of (2 =⇒ 3) of Proposition 1.10
of [10]. For the second part, let F =

⋃
n∈T Fn , and P be a prime ideal

of R such that it’s properly contained in
⋂

Q∈Fn
Q for each n ∈ T , this

means that
⋂

Q∈Fn
Q equal to Q

′ 6= 0 is a prime ideal containing P.
Now if F = {Q ∈ Spec(V ) : P ⊂ Q}, then
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Fn = {Q ∈ F : sn ∈ Q},

where S =< {s1, s2, ...} > is a mcs set in V such that P is maximal
with respect to having the empty intersection with S.
Consequently,

sn ∈
⋂

Q∈Fn

Q = Q
′
,

that is Q
′ ∈ Fn , i.e., Fn is a well-ordered set.

(iv) → (i): The proof is the same as proof of (3 → 1) of Proposition
1.10 of [10]. �

Example 2.12. By the following, we have presented a domain which is
an “lcqr” but not a “StrongG− Typedomain”.
It is well-known that the integer Number of Z is a G-type domain but
it is not a G-domain and each of its prime ideals “P” as the form of
< p >, where p is a prime number of Z. So for every prime ideal of Z
say “P”, there exists a countable multiplicative closed subset “S” of Z
(which contains all prime elements of Z except “p”) such that

Z<p> = ZS .

This means that Z is an “lcqr” domain.
Now if Z′

is an overring of Z contained in Q, then Z′
can be expressed

as follows

Z
′
= Z[

1
p1
,

1
p2
, ...,

1
pk

]

where k is a finite number.
It seems that there does not exist any prime ideal of Z which contains
all prime elements of Z except the prime elements p1, p2, ..., pk.
Therefore, Z can’t be a strong G- type domain.
Now we are producing a G-type domain which is not an ”lcqr”.

Example 2.13. Let V be a valuation G-type domain; constructed as
follows,
suppose that V is an ordered group generated by lexicographic product
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of Hahn groups as: Hi∈I∪ωFi, where I is an uncountable set and for each
i ∈ I and ω > i , Fi is an ordered field of Real number, so V will be a
G-type domain Now if we define:

Hi∈I∪ωFi/Hi∈I\ωFi ' Fω

where Hi∈I\ωFi = Pω, which is a prime ideal of V ; therefore, it could be
VPω not only isn’t an “lcqr” but also it is not a domain [11].

Definition 2.14. A domain R has the countable overring property if
every overring of R is a countably generated ring over R.

Theorem 2.15. If a domain R has the countable overring property, then
R is lcqr

Proof. Let P be an arbitrary prime ideal of R and let RP = R[a1/b1, ...,

an/bn, ...] with ai, bi ∈ R, we may write ai/bi = ri/ti with ti 6∈ P . If
T = {ti : i ∈ I}; clearly T is countable and it can generate an mcs

set S in R such that it is maximal with respect to S ∩ P = ∅. Now
if q is any nonzero element of R such that it does not belong to P

(i.e.,0 6= q ∈ R\P ) then by Cohn’s theorem there exists a prime ideal
Q in Spec(R) such that it contains (q); now if S ∩ Q = ∅; then by
maximality of P with respect to this property, then Q ⊆ P (i.e.,q ∈ P )
which is a contradiction. Therefore, S ∩ (q) 6= ∅, and by part (iii) of
Theorem 2.1 we have RP = RS , so R is lcqr. �

The author suggests that further research in this direction which is likely
to reveal additional properties of Noetherian G-type domains and thus
may contribute to our understanding of how such structures may be
defined on the underlying Gλ-type domains , where λ is any regular
cardinal.
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ire de Mathematiques Supérieures, no. 9 (Été, 1964), Les Presses de
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