Journal of Mathematical Extension Vol. 18, No. 10, (2024) (5)1-14

URL: https://doi.org/10.30495/JME.2024.3121

ISSN: 1735-8299

Original Research Paper

General Local Cohomology Modules and Faltings' Local-Global Principles

M.Y. Sadeghi*

Payame Noor University

Kh. Ahmadi Amoli

Payame Noor University

R. Arian Fazel

Payame Noor University

Abstract. In this article, we study the Local-global Principles for the Artinianness of ordinary local cohomology modules and the finiteness of general local cohomology modules. Let R be a Noetherian ring, Φ be a system of ideals of R and N be an R-module. Assume that $\mathcal S$ is a Serre subcategory of $\operatorname{Mod}(R)$ satisfying the condition C_{Φ} and the Residual Fields condition (briefly $\mathcal R\mathcal F$ condition) and let $\mathcal S_{\mathcal A}$ be the class of Artinian R-modules. For $t\in\mathbb N_0$, we first show that the general local cohomology modules $H^i_\Phi(N)\in\mathcal S$ for every i< t if and only if $H^i_\Phi(N)\in\mathcal S$ for any $\mathfrak b\in\Phi$ and every i< t. Then, for a finite R-module N, we conclude that if $H^i_\Phi(N)\in\mathcal S_{\mathcal A}$ for every i< t, thus $H^i_\Phi(N)\in\mathcal S$ for every i< t. Consequently, we show that the least non-negative integer i in which $H^i_\Phi(N)$ is not Artinian, is a lower bound for all $\mathcal S$ -depth $_\Phi(N)$. Finally, we prove that if $n\in\mathbb N_0$ is such that N is in dimension < n and $\left(\operatorname{Ass}_R(H^{h^n_\Phi(N)}_\Phi(N))\right)_{\geq n}$ is a finite set, then $f^n_\Phi(N)=h^n_\Phi(N)$.

AMS Subject Classification 2020: 13D45, 14B15, 13E10 Keywords and Phrases: Artinian modules, Faltings' Local-global principle, general local cohomology modules, Serre subcategory, system of ideals

Received: July 2024; Accepted: February 2025

*Corresponding Author

1 Introduction

In this paper, R will always denote a non-trivial commutative Noetherian ring and N will denote an R-module. By a finite R-module, we mean an R-module which is finitely generated. For the set of non-negative integers and the category of all R-modules and R-homomorphisms we shall use \mathbb{N}_0 and $\mathrm{Mod}(R)$, respectively.

It is well known that for each $i \geq 0$, for the *i*-th local cohomology *R*-module *N* relative to the ideal \mathfrak{b} , there is a natural *R*-isomorphism as follows:

$$H^{i}_{\mathfrak{b}}(N) \cong \varinjlim_{n \in \mathbb{N}} \operatorname{Ext}_{R}^{i}(R/\mathfrak{b}^{n}, N).$$

Let $\Phi \neq \emptyset$ be a set of ideals of R. Recall that Φ is called a system of ideals if the multiplication of any two ideals of Φ , always, contains an ideal of Φ . For such a system and for any R-module N, we consider the following submodule

$$\Gamma_{\Phi}(N) := \{ x \in N | \mathfrak{b} x = 0 \text{ for some } \mathfrak{b} \in \Phi \}.$$

Then Γ_{Φ} is a covariant, R-linear and left exact functor from $\operatorname{Mod}(R)$ to $\operatorname{Mod}(R)$. When Φ is taken as the power of an ideal, say $\mathfrak b$, then $H^i_{\Phi}(-)$ is naturally equivalent to the ordinary functor $H^i_{\mathfrak b}(-)$. As of now, we refer to $H^i_{\Phi}(N)$ as the general local cohomology module. The ordinary local cohomology and its generalization on a system of ideals, have been studied in [7, 8, 9, 12].

Also, it is well known that, Faltings' Local-global Principle for the finiteness of local cohomology modules, [11, satz1], states that for any integer m > 0, $H^j_{\mathfrak{b}}(N)$ is a finite R-module for every j < m if and only if $H^j_{\mathfrak{b}R_{\mathfrak{p}}}(N_{\mathfrak{p}})$ is a finite $R_{\mathfrak{p}}$ -module for every j < m and any $\mathfrak{p} \in \operatorname{Spec}(R)$. Hence, another formulation of $f_{\mathfrak{b}}(N)$, the finiteness dimension of N with respect to \mathfrak{b} , (see [9, Theorem 9.6.2]), is as follows:

$$f_{\mathfrak{b}}(N) = \inf\{j \in \mathbb{N}_0 | H_{\mathfrak{b}}^j(N) \text{ is not a finite } R\text{-module}\}\$$

= $\inf\{f_{\mathfrak{b}R_{\mathfrak{p}}}(N_{\mathfrak{p}}) | \mathfrak{p} \text{ is a prime ideal of } R\}.$

Then, for any $n \in \mathbb{N}_0$, Bahmanpour et al., in [5], presented the n-th finiteness dimension $f_{\mathfrak{b}}^n(N)$ of N relative to \mathfrak{b} by

$$f_{\mathfrak{b}}^{n}(N) := \inf\{f_{\mathfrak{b}R_{\mathfrak{p}}}(N_{\mathfrak{p}}) | \mathfrak{p} \in \operatorname{Supp}(N/\mathfrak{b}N), \dim R/\mathfrak{p} \ge n\}.$$

As some applications of this notion, it is shown that

$$\inf\{i \in \mathbb{N}_0 | H_{\mathfrak{b}}^i(N) \text{ is not minimax (weakly Laskerian)}\},$$

is equal to $f_{\mathfrak{b}}^1(N)$ $(f_{\mathfrak{b}}^2(N))$. An R-module N is called a minimax R-module, if N/N' is Artinian module for some finite submodule N' of N. The class of minimax modules has been studied by Zink [21], Zöschinger [22, 23] and Rudlof [18]. Moreover, an R-module N is called skinny or weakly Laskerian module, if $\mathrm{Ass}_R N/N'$ is a finite set, for any submodule N' of N (cf. [10] or [14]).

The class of in dimension < n modules is presented in [4]. The authors generalized Faltings' Local-global Principle on a complete local ring R, for any finite R-module N and ideal $\mathfrak b$ of R, as:

$$f_{\mathfrak{b}}^{n}(N) = h_{\mathfrak{b}}^{n}(N) := \inf\{i \geq 0 | H_{\mathfrak{b}}^{i}(N) \text{ is not in dimension } < n\}.$$

Then Mehrvarz et al., in [15] showed that the equality $f_{\mathfrak{b}}^{n}(N) = h_{\mathfrak{b}}^{n}(N)$ is true on an arbitrary Noetherian (not necessarily complete and local) ring, too.

On the other hand, Tang in [20] proved a similar Local-global Principle for the Artinianness of local cohomology modules. He proved that, for any $m \in \mathbb{N}$, the necessary and sufficient condition for $H^i_{\mathfrak{b}}(N)$ to be Artinian for every i < m is $H^i_{\mathfrak{b}R_{\mathfrak{p}}}(N_{\mathfrak{p}})$ to be Artinian for every i < m and any $\mathfrak{p} \in \operatorname{Spec}(R)$, in which R is an arbitrary Noetherian ring, \mathfrak{b} is an ideal of R and N is an finite R-module (see [20, Theorem 2.2]).

In section 2, we deal with the Serre subcategories which satisfy the conditions C_{Φ} and \mathcal{RF} (see Definitions 2.7, 2.13) and the situations that the general local cohomology modules belong to these Serre subcategories. Let \mathcal{S} be a subcategory of $\operatorname{Mod}(R)$. Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence in $\operatorname{Mod}(R)$. \mathcal{S} is said to be a Serre subcategory, whenever $M \in \mathcal{S}$ if and only if $M', M'' \in \mathcal{S}$. Assume that \mathcal{S} is a Serre subcategory of $\operatorname{Mod}(R)$ satisfying the condition C_{Φ} and $t \in \mathbb{N}_0$. As an important achievement in this section, in Proposition 2.12, we show that $H^i_{\Phi}(N)$ belongs to \mathcal{S} for every i < t if and only if $H^i_{\mathfrak{b}}(N)$ belongs to \mathcal{S} for every $\mathfrak{b} \in \Phi$ and every i < t.

Section 3, is about Local-global Principles. As another important result about the ordinary local cohomology modules, Theorem 3.1, shows that if N is an R-module, \mathfrak{b} an ideal of R and $t \in \mathbb{N}_0$ are such that $H^i_{\mathfrak{b}}(N)$ is \mathfrak{b} -cofinite Artinian R-module for every i < t, then $H^i_{\mathfrak{b}}(N) \in \mathcal{S}$ for every i < t and for any Serre subcategory \mathcal{S} , which satisfies the conditions $C_{\mathfrak{b}}$ and \mathcal{RF} . An application of Theorem 3.1, we present some equivalent conditions to the Local-global Principle for Artinianness (see Proposition 3.2). In sequel, assume that \mathcal{S} is an arbitrary Serre subcategory that satisfies the conditions C_{Φ} and \mathcal{RF} , N is a finite R-module and t is a non-negative integer. Set $\mathcal{S}_{\mathcal{A}}$ as the class of Artinian R-modules. In Corollary 3.3, we show that if $H^i_{\Phi}(N)$ belongs to $\mathcal{S}_{\mathcal{A}}$ for every i < t, then $H^i_{\Phi}(N)$ belongs to \mathcal{S} for every i < t. Then, in Proposition 3.7, we show that $\inf\{i \in \mathbb{N}_0 | H^i_{\Phi}(N) \text{ is not Artinian}\}$ is a lower bound for all \mathcal{S} -depth $_{\Phi}(N)$ (see Definition 3.5), i.e.,

$$f$$
-depth _{Φ} $(N) \leq S$ -depth _{Φ} (N) .

As the last important result of this paper, we conclude that $f_{\Phi}^{n}(N) = h_{\Phi}^{n}(N)$, for any $n \in \mathbb{N}_{0}$ (see Theorem 3.10). This generalizes the main results of [4, Theorem 2.5] for an arbitrary Noetherian (not necessary complete local) ring and [15, Theorem 2.10] for an arbitrary system of ideals of R.

2 General local cohomology modules and conditions C_{Φ} and \mathcal{RF}

We begin this section with one of the results of [19] which is used in most results of this paper. Let F, T be two left exact covariant functors from Mod(R) to itself. For

any $j \ge 1$, we shall use the j-th right derived functors of F, H and the composition FH by F^j , T^j and $(FT)^j$, respectively.

Proposition 2.1. (see [19, Proposition 2.2]) Assume that S is a Serre subcategory of $\operatorname{Mod}(R)$, $\mathfrak b$ is an ideal of R and N is an R-module. Let T be a covariant and left exact functor of $\operatorname{Mod}(R)$ to itself such that $(0:_X \mathfrak b) = (0:_{T(X)} \mathfrak b)$ for any R-module X. Assume that T(E) is an injective R-module for any injective R-module E. Let $n \in \mathbb{N}$ and let $\operatorname{Ext}_R^{t-j}(R/\mathfrak b, T^j(N)) \in S$ for t=n,n+1 and every j < n. Then $\operatorname{Ker} \psi \in S$ and $\operatorname{Coker} \psi \in S$, in which

$$\psi: \operatorname{Ext}_R^n(R/\mathfrak{b}, N) \to \operatorname{Hom}_R(R/\mathfrak{b}, T^n(N))$$

is the natural homomorphism. Thus

$$\operatorname{Ext}_R^n(R/\mathfrak{b},N)\in\mathcal{S}$$
 if and only if $\operatorname{Hom}_R(R/\mathfrak{b},T^n(N)\in\mathcal{S}.$

Proof. The assertion follows from [3, Proposition 3.1], by taking $F(-) = \operatorname{Hom}_R(R/\mathfrak{b}, -)$. Because FT(N) = F(N) for any R-module N. \square

Corollary 2.2. Assume that S is a Serre subcategory of Mod(R), Φ is a system of ideals of R and N is an R-Module. Let $n \in \mathbb{N}_0$ be such that $\operatorname{Ext}_R^j(R/\mathfrak{b}, H_{\Phi}^i(N)) \in S$ for every i, j < n. Then $\operatorname{Ext}_R^n(R/\mathfrak{b}, N) \in S$ if and only if $\operatorname{Hom}_R(R/\mathfrak{b}, H_{\Phi}^i(N)) \in S$.

Proof. Apply Proposition 2.1 for $F(N) = \operatorname{Hom}_R(R/\mathfrak{b}, N)$ and $T(N) = \Gamma_{\Phi}(N)$.

As it is mentioned in the introduction, the authors in [4], presented the class of R-modules in dimension < n for an arbitrary integer $n \in \mathbb{N}_0$. An R-module N is said to be in dimension < n, if $\dim \operatorname{Supp}_R(N/N') < n$, for some finite submodule N' of N (also see the definition of the class of $\operatorname{FD}_{\leq n}$ in [1, Definition 2.1]). It is obvious that, the class of in dimension < n modules is a generalization of the class of finitely generated, Artinian, and minimax modules for some $n \in \mathbb{N}_0$ (see [15, Remark 2.2]). Moreover, it is clear that, the class of in dimension < n modules are a Serre subcategory of $\operatorname{Mod}(R)$.

Corollary 2.3. Assume that Φ is a system of ideals of R and $s, n \in \mathbb{N}_0$ are such that the R-modules N and $H^i_{\Phi}(N)$ are in dimension < n for every i < s. Thus, the R-module $\operatorname{Hom}_R(R/\mathfrak{b}, H^s_{\Phi}(N)/N')$ is in dimension < n for any in dimension < n submodule N' of $H^s_{\Phi}(N)$ and all $\mathfrak{b} \in \Phi$. Consequently, $\left(\operatorname{Ass}_R(H^s_{\Phi}(N)/N') \cap V(\mathfrak{b})\right)_{\geq n}$ is a finite set.

Proof. As N is in dimension < n, one can see that the R-module $\operatorname{Ext}_R^i(R/\mathfrak{b},N)$ is in dimension < n for every $i \geq 0$. Now, for any in dimension < n submodule N' of $H_{\Phi}^s(N)$, use Corollary 2.2 and the short exact sequence $0 \to N' \to H_{\Phi}^s(N) \to H_{\Phi}^s(N)/N' \to 0$. \square

We shall use Proposition 2.4 for some further results.

Proposition 2.4. For a Serre subcategory S of Mod(R), an ideal \mathfrak{b} of R and an R-Module X, we have the following:

- (i) $\mathfrak{b}X \in \mathcal{S}$ if and only if $X/(0:_X \mathfrak{b}) \in \mathcal{S}$.
- (ii) $X \in \mathcal{S}$ if and only if there is $k \in \mathbb{N}_0$ such that $(0:_X \mathfrak{b}^k) \in \mathcal{S}$ and $\mathfrak{b}^k X \in \mathcal{S}$.

Proof. (i) Let $\mathfrak{b} = \sum_{i=1}^n Rb_i$ where $b_i \in R$ and $n \in \mathbb{N}$. Suppose that $\mathfrak{b}X \in \mathcal{S}$. Consider the homomorphism $g: X \to (\mathfrak{b}X)^n$ by $g(x) = (\mathfrak{b}_i x)_{i=1}^n$ for every $x \in X$. Thus, the R-module $X/(0:_X \mathfrak{b})$ is isomorphic to a submodule of $(\mathfrak{b}X)^n$. Conversely, consider the homomorphism $f: X^n \to \mathfrak{b}X$ given by $f((x_i)_{i=1}^n) = \sum_{i=1}^n b_i x_i$. Then f is surjective and $(0:_X \mathfrak{b})^n \subseteq \operatorname{Ker} f$, so $\mathfrak{b}X$ is a homomorphic image of $(X/(0:_X \mathfrak{b}))^n$. Now, the assertion follows from $(X/(0:_X \mathfrak{b}))^n \in \mathcal{S}$.

(ii) This part is immediately followed by part (i) and the short exact sequence

$$0 \to (0:_X \mathfrak{b}^k) \to X \to X/(0:_X \mathfrak{b}^k) \to 0$$

Proposition 2.5. Assume that S is a Serre subcategory of Mod(R), Φ is a system of ideals of R and N is an R-module. Suppose that $\mathfrak{b} \in \Phi$ and $k, t \in \mathbb{N}_0$ are such that $\mathfrak{b}^k H^i_{\Phi}(N) \in S$ for every i < t. Thus $H^i_{\Phi}(N) \in S$ for every i < t, if one of the following statements satisfies:

- (i) $\Gamma_{\Phi}(N) \in \mathcal{S}$ and $\operatorname{Ext}_{R}^{i}(R/\mathfrak{b}^{k}, N) \in \mathcal{S}$ for every i < t.
- (ii) $N \in \mathcal{S}$.
- (iii) $\Gamma_{\Phi}(N) \in \mathcal{S}$ and there exists $n \in \mathbb{N}_0$ such that $\mathfrak{b}^n N \in \mathcal{S}$.

Proof. First, suppose that condition (i) holds and use induction on t. For t=0,1, we do not have anything to prove. Now, assume that t>1 and the assertion is valid for every $i \leq t-2$ i.e., the R-modules $H^0_\Phi(N), H^1_\Phi(N), \cdots, H^{t-2}_\Phi(N)$ belong to \mathcal{S} . We show that $H^{t-1}_\Phi(N) \in \mathcal{S}$. Since $\operatorname{Ext}_R^{t-1}(R/\mathfrak{b}^k, N) \in \mathcal{S}$ and $H^i_\Phi(N) \in \mathcal{S}$, for every i < t-1, we have $(0:_{H^{t-1}_\Phi(N)} \mathfrak{b}^k) \in \mathcal{S}$, by Corollary 2.2. On the other hand, by the assumption, $\mathfrak{b}^k H^{t-1}_\Phi(N) \in \mathcal{S}$. Now, the result holds by Proposition 2.4 (ii). Under each condition (ii) and (iii), use part (i) and Proposition 2.4 (ii).

As a corollary of Proposition 2.5, we achieve the following result that generalizes [9, Proposition 9.1.2].

Corollary 2.6. Assume that S is a Serre subcategory of Mod(R), N is an R-module such that $N \in S$ and $t \in \mathbb{N}_0$. Let \mathfrak{b} be an ideal of R such that $\mathfrak{b} \subseteq \sqrt{0: H^i_{\mathfrak{b}}(N)}$ for every i < t. Then $H^i_{\mathfrak{b}}(N)$ belongs to S for every i < t.

Assume that \mathfrak{b} is an ideal of R and S is a Serre subcategory of $\operatorname{Mod}(R)$. The authors in [2], studied the Serre subcategories which satisfy the condition $C_{\mathfrak{b}}$. It is said that S satisfies the condition $C_{\mathfrak{b}}$, if for any \mathfrak{b} -torsion R-module X, the condition $(0:_X \mathfrak{b}) \in S$ implies that $X \in S$ (see [2, Definition 2.1]). The Examples 2.4 and 2.5 of [2], show that all the classes of zero R-modules, Artinian modules, modules

with finite support, \mathfrak{b} -cofinite Artinian modules and the class of all R-modules M with $\dim M \leq s$, where $s \in \mathbb{N}_0$, satisfy the condition $C_{\mathfrak{b}}$. Recall that an R-module X is said to be \mathfrak{b} -cofinite whenever $\operatorname{Supp}_R(X) \subseteq V(\mathfrak{b})$ and $\operatorname{Ext}^i_R(R/\mathfrak{b},X)$ is a finite R-module for every $i \in \mathbb{N}_0$ (see [13]).

Now, in this position, for an arbitrary system of ideals Φ of R, we introduce the condition C_{Φ} and then we shall conclude some results on the general local cohomology modules. An R-module X is said to be a Φ -torsion module if $\Gamma_{\Phi}(X) = X$ and it is said to be a Φ -torsion-free module if $\Gamma_{\Phi}(X) = 0$.

Definition 2.7. Assume that S is a Serre subcategory of Mod(R) and Φ is a system of ideals of R. We say that S satisfies the condition C_{Φ} , precisely when for every Φ -torsion R-module X, the condition $(0:_X \mathfrak{b}) \in S$ for some $\mathfrak{b} \in \Phi$ implies that $X \in S$.

Remark 2.8. By Proposition 2.4 (ii), it can be said that, S satisfies the condition C_{Φ} , whenever for any Φ -torsion R-module N, the condition $(0:_N \mathfrak{a}^k) \in S$ for some $\mathfrak{a} \in \Phi$ and $k \in \mathbb{N}_0$, implies that $\mathfrak{a}^k N \in S$. In addition, it is easy to see that if S satisfies the condition C_{Φ} , then S satisfies the condition $C_{\mathfrak{b}}$, for any $\mathfrak{b} \in \Phi$.

Example 2.9. Let R be a Noetherian ring of finite dimension d. Let Φ be an arbitrary system of ideals of R and $S = \{M \in \operatorname{Mod}(R) | \dim M \leq d\}$. Then, it is clear that S satisfies the condition C_{Φ} .

The next examples show that the class of Artinian R-modules does not satisfy the condition C_{Φ} , for some system of ideals Φ .

Example 2.10. ([6, Example 3.7]) Let R be a Gorenstein ring of finite dimension d such that has infinite maximal ideal \mathfrak{m} with $ht \mathfrak{m} = d$. Let

 $\Psi = \{ \mathfrak{m} \in \operatorname{Max}(R) | \operatorname{ht} \mathfrak{m} = d \} \text{ and } \Phi = \{ \mathfrak{a} | \mathfrak{a} \text{ is an ideal of } R \text{ and } \dim R/\mathfrak{a} \leq 0 \}.$

Then, it is easy to see that Φ is a system of ideals of R and $\Psi \subseteq \Phi$. By [6, Example 3.7], we have

$$H^i_\Phi(R) = \left\{ \begin{array}{ll} \bigoplus_{\mathfrak{m} \in \Psi} E(R/\mathfrak{m}) & if \ i = d \\ 0 & if \ i \neq d. \end{array} \right.$$

Thus, $H_{\Phi}^d(R)$ is not Artinian R-module. On the other hand, since $\operatorname{Ext}_R^d(R/\mathfrak{a},R)$ is an Artinian R-module for all $\mathfrak{a} \in \Phi$, so $(0:_{H_{\Phi}^d(R)}\mathfrak{a}) = \operatorname{Hom}_R(R/\mathfrak{a}, H_{\Phi}^d(R))$ is Artinian R-module for all $\mathfrak{a} \in \Phi$, by Corollary 2.2. Hence, the class of Artinian R-modules does not satisfy the condition C_{Φ} .

Example 2.11. Let \mathbb{Z} be the ring of integers and let p be a prime number of \mathbb{Z} . Set $\Phi = \{(0), p\mathbb{Z}\}$. Then, Φ is a system of ideals of \mathbb{Z} . It is clear that $\Gamma_{\Phi}(\mathbb{Z}) = \mathbb{Z}$ and so $H_{\Phi}^{i}(\mathbb{Z}) = 0$ for all $i \geq 1$, by [12, Lemma 2.4]. Since $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/p\mathbb{Z}, \mathbb{Z})$ is Artinian \mathbb{Z} -module and \mathbb{Z} is not Artinian, thus the class of Artinian \mathbb{Z} -modules does not satisfy the condition C_{Φ} .

As a generalization of [2, Theorem 2.9] and [6, Corollary 2.14], we present the following proposition which is one of the useful results in this article.

Proposition 2.12. Assume that Φ is a system of ideals of R and $t \in \mathbb{N}_0$. For any Serre subcategory S of Mod(R) which satisfies the condition C_{Φ} and any R-module N the following conditions are equivalent:

- (i) $H_{\Phi}^{i}(N) \in \mathcal{S}$ for every i < t;
- (ii) $\operatorname{Ext}_{R}^{j}(R/\mathfrak{b}, H_{\Phi}^{i}(N)) \in \mathcal{S} \text{ for any } \mathfrak{b} \in \Phi \text{ and every } i, j < t.$
- (iii) $\operatorname{Ext}_R^i(R/\mathfrak{b}, N) \in \mathcal{S}$ for any $\mathfrak{b} \in \Phi$ and every i < t;
- (iv) $H^i_{\mathfrak{b}}(N) \in \mathcal{S}$ for any $\mathfrak{b} \in \Phi$ and every i < t.

Proof. (i) \Rightarrow (ii) Let $\mathfrak{b} \in \Phi$ and consider the following resolution of R/\mathfrak{b}

$$A_{\bullet}: \cdots \longrightarrow A_s \longrightarrow A_{s-1} \longrightarrow \cdots \longrightarrow A_1 \longrightarrow A_0 \longrightarrow 0,$$

in which A_i are free R-modules with finite ranks for every $i \geq 0$.

Then $\operatorname{Ext}_R^j(R/\mathfrak{b}, H_{\Phi}^i(N)) = H^j(\operatorname{Hom}_R(\mathcal{A}_{\bullet}, H_{\Phi}^i(N))$ is a subquotient of direct sum of finite copies of $H_{\Phi}^i(N)$ for every i, j. Now, the assertion holds by the fact that \mathcal{S} is a Serre subcategory.

- (ii) \Rightarrow (iii) Use Corollary 2.2.
- (iii) \Rightarrow (iv) As S satisfies the condition $C_{\mathfrak{b}}$ for every $\mathfrak{b} \in \Phi$, thus this implication is true, by Remark 2.8 and [2, Theorem 2.9].
- (iv) \Rightarrow (i) We show that $H^i_\Phi(N) \in \mathcal{S}$ by induction on t. For t=0, we do not have anything to show. Suppose that t=1. By hypothesis, $\Gamma_{\mathfrak{b}}(N)=H^0_{\mathfrak{b}}(N)\in \mathcal{S}$, and so $(0:_{\Gamma_{\Phi}(N)}\mathfrak{b})=(0:_{\Gamma_{\mathfrak{b}}(N)}\mathfrak{b})=(0:_{\Gamma_{\mathfrak{b}}(N)}\mathfrak{b})\in \mathcal{S}$. Therefore, the assertion follows as \mathcal{S} satisfies the condition C_Φ . Now, let t>1 and assume that the assertion is settled for every $i\leq t-2$. We prove that $H^{t-1}_\Phi(N)\in \mathcal{S}$. Since, by hypothesis, $H^i_{\mathfrak{b}}(N)\in \mathcal{S}$ for any ideal \mathfrak{b} in Φ and every $i\leq t-1$, $\operatorname{Ext}^i_R(R/\mathfrak{b},N)\in \mathcal{S}$ for every $i\leq t-1$, by [2, Theorem 2.9]. By using inductive hypothesis, $H^i_\Phi(N)\in \mathcal{S}$ for every $i\leq t-2$. Therefore $(0:_{H^{t-1}_\Phi(N)}\mathfrak{b})\in \mathcal{S}$, by Corollary 2.2. Now, the assertion holds as \mathcal{S} satisfies the condition C_Φ . \square

Definition 2.13. Let R be a Noetherian ring. A Serre subcategory S of Mod(R) is said to satisfy the *Residual Fields condition* (briefly \mathcal{RF} condition) if $R/\mathfrak{n} \in S$ for any $\mathfrak{n} \in Max(R)$.

Example 2.14. (i) It is obvious that all of the classes of Noetherian R-modules, Artinian R-modules, R-modules with finite support and the class of all R-modules X with $\dim_R X \leq n$, where $n \in \mathbb{N}_0$, satisfy the \mathcal{RF} condition.

(ii) Assume that R is a non-local Noetherian ring and $\mathfrak b$ is an ideal of R. Let $\mathfrak n \in \operatorname{Max}(R)$ be such that $\mathfrak n \notin \operatorname{V}(\mathfrak b)$. Set

 $S := \{ M \in \text{Mod}(R) \mid M \text{ is an } \mathfrak{b}\text{-torsion } R\text{-module} \}.$

Clearly, \mathcal{S} does not satisfy the \mathcal{RF} condition. However, the next lemma, (part iii), shows that when (R, \mathfrak{n}) is a local ring, any non-zero Serre subcategory \mathcal{S} of $\operatorname{Mod}(R)$ satisfies the \mathcal{RF} condition.

Lemma 2.15. Assume that S is an arbitrary Serre subcategory and that $S_{\mathcal{FL}}$ is the class of the finite length R-modules. Then

- (i) S is non-zero if and only if there is $\mathfrak{n} \in Max(R)$ such that $R/\mathfrak{n} \in S$.
- (ii) $S_{\mathcal{FL}} \subseteq S$ if and only if S satisfies the condition \mathcal{RF} .
- (iii) If R is a local ring and S is non-zero, then S satisfies the condition \mathcal{RF} .

Proof. (i)(\Rightarrow) Let $0 \neq M \in \mathcal{S}$ and $0 \neq x \in M$. Thus, there exists $\mathfrak{n} \in \operatorname{Max}(R)$ such that $(0:_R Rx) \subseteq \mathfrak{n}$. Now, as $Rx \in \mathcal{S}$, considering the natural epimorphism

$$Rx \cong R/(0:_R Rx) \to R/\mathfrak{n},$$

we get $R/\mathfrak{n} \in \mathcal{S}$.

- (\Leftarrow) It is obvious.
- (ii) Assume that $S_{\mathcal{FL}} \subseteq S$ and \mathfrak{n} is an arbitrary maximal ideal of R. Since R/\mathfrak{n} has finite length, R/\mathfrak{n} belongs to S. For inverse, let $L \in S_{\mathcal{FL}}$ have the length l. Thus, there exists a chain

$$0 = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_l = L$$

of R-submodules of N in which L_j/L_{j-1} is isomorphic to R/\mathfrak{n} for some $\mathfrak{n} \in \operatorname{Max}(R)$ and all $1 \leq j \leq l$. Therefore, the proof is completed by induction on l.

(iii) The assertion follows from (i) and (ii).

3 Faltings' Local-global Principles

We begin this section with the following theorem, as an important result of the article. This is applied in the proof of Proposition 3.2.

Theorem 3.1. Assume that \mathfrak{b} is an ideal of R, N is an R-module and $t \in \mathbb{N}_0$. Thus a necessary and sufficient condition for $H^i_{\mathfrak{b}}(N)$ to be a \mathfrak{b} -cofinite Artinian R-module is that $H^i_{\mathfrak{b}}(N) \in \mathcal{S}$ for every i < t and any Serre subcategory \mathcal{S} satisfies the conditions $C_{\mathfrak{b}}$ and \mathcal{RF} .

Proof. (\Rightarrow) Suppose that $H^i_{\mathfrak{b}}(N)$ is \mathfrak{b} -cofinite Artinian R-module for every i < t and \mathcal{S} is an arbitrary Serre subcategory such that satisfies the conditions $C_{\mathfrak{b}}$ and \mathcal{RF} . Using induction on t, we prove that $H^i_{\mathfrak{b}}(N) \in \mathcal{S}$ for every i < t. When t is zero, we do not have anything to prove. Let t = 1. Since $\ell_R(0:_{\Gamma_{\mathfrak{b}}(N)}\mathfrak{b}) < \infty$, $(0:_{\Gamma_{\mathfrak{b}}(N)}\mathfrak{b}) \in \mathcal{S}$, by Lemma 2.15 (ii). Thus, $\Gamma_{\mathfrak{b}}(N) \in \mathcal{S}$ as \mathcal{S} satisfies the condition $C_{\mathfrak{b}}$.

Now, assume that t>1 and the result is true for $i=0,\cdots,t-2$. Using Proposition 2.12 and Corollary 2.2 for the category of b-cofinite Artinian R-modules

and $\Phi = \{\mathfrak{b}^j | j \geq 0\}$, since $H^i_{\mathfrak{b}}(N)$ is \mathfrak{b} -cofinite Artinian R-module for every $i \leq t-2$, $\ell_R(0:_{H^{t-1}_{\mathfrak{b}}(N)} \mathfrak{b}) < \infty$ and so similar to the argument of the case t=1, we get $(0:_{H^{t-1}_{\mathfrak{b}}(N)} \mathfrak{b}) \in \mathcal{S}$.

 (\Leftarrow) Choose S as the category of \mathfrak{b} -cofinite Artinian R-modules. \square

The following result presents more equivalent conditions to the Local-global Principle for the Artinianness of ordinary local cohomology modules than those have been proven in [20, Theorem 2.2].

Proposition 3.2. Assume that \mathfrak{b} is an ideal, N is an R-module and $t \in \mathbb{N}_0$ is such that the R-module $\operatorname{Ext}^i_R(R/\mathfrak{b},N)$ is finite for every i < t. Then the following conditions are equivalent:

- (i) $H_{\mathfrak{b}}^{i}(N)$ is Artinian for every i < t;
- (ii) $H^i_{\mathfrak{b}}(N)$ is \mathfrak{b} -cofinite Artinian for every i < t;
- (iii) $(H^i_{\mathfrak{b}}(N))_{\mathfrak{p}}$ is Artinian for every i < t and any prime ideal \mathfrak{p} of R;
- (iv) Supp $(H_{\mathfrak{b}}^{i}(N)) \subseteq \operatorname{Max}(R)$ for every i < t;
- (v) $H_{\mathfrak{b}}^{i}(N)$ belongs to S for every i < t and any Serre subcategory S, which satisfies the conditions $C_{\mathfrak{b}}$ and \mathcal{RF} ;
- (vi) $\operatorname{Ext}_R^i(R/\mathfrak{b}, N)$ belongs to $\mathcal S$ for every i < t and any Serre subcategory $\mathcal S$ which satisfies the conditions $C_{\mathfrak{b}}$ and $\mathcal R\mathcal F$.

Proof. The conditions (i) to (iv) are equivalent by [6, Theorem 3.2]. Also, conditions (ii) and (v) are equivalent by Theorem 3.1. Finally, (v) and (vi) are equivalent by Proposition 2.12, considering $\Phi = \{\mathfrak{b}^i | i \geq 0\}$.

Corollary 3.3. Assume that Φ is a system of ideals of R, N is a finite R-module and $\mathcal{S}_{\mathcal{A}}$ is the subcategory of Artinian R-modules of $\operatorname{Mod}(R)$. Let $t \in \mathbb{N}_0$ be such that $H^i_{\Phi}(N) \in \mathcal{S}_{\mathcal{A}}$ for every i < t. Then $H^i_{\Phi}(N) \in \mathcal{S}$ for every i < t and any Serre subcategory \mathcal{S} of $\operatorname{Mod}(R)$, which satisfies the conditions C_{Φ} and \mathcal{RF} . Specially, for $\Phi = \{\mathfrak{b}^i | i \geq 0\}$, where \mathfrak{b} is an arbitrary ideal of R.

Proof. Since $H^i_{\Phi}(N) \in \mathcal{S}_{\mathcal{A}}$ for every i < t, $H^i_{\mathfrak{b}}(N) \in \mathcal{S}_{\mathcal{A}}$ for every i < t and any $\mathfrak{b} \in \Phi$, by applying [6, Corollary 2.7] for the class of Artinian R-modules. Therefore, Propositions 3.2 (part $i \Rightarrow v$) implies that $H^i_{\mathfrak{b}}(N) \in \mathcal{S}$ for every i < t and any $\mathfrak{b} \in \Phi$. Now, the assertion follows from Propositions 2.12 (part $iv \Rightarrow i$).

Corollary 3.4. Assume that \mathfrak{b} is an ideal of R such that $\dim R/\mathfrak{b} = 0$ and N is a finite R-module. Then $H^i_{\mathfrak{b}}(N) \in \mathcal{S}$ for any Serre subcategory \mathcal{S} satisfies the conditions $C_{\mathfrak{b}}$ and \mathcal{RF} and every $i \in \mathbb{N}_0$.

Proof. As $\operatorname{Supp}_R(H^i_{\mathfrak{b}}(N)) \subseteq \operatorname{Max}(R)$ for every $i \geq 0$, the result holds easily by Proposition 3.2. \square

Let M be an R-module. As an interesting generalization of various regular sequences on M to a Serre subcategory $\mathcal S$ of $\operatorname{Mod}(R)$, the authors in [2, Definition 2.6], introduced the concept of $\mathcal S$ -sequences on M. Then, in [2, Lemma 2.14 and Definition 2.15], for an ideal $\mathfrak a$ of R and a Serre subcategory $\mathcal S$ satisfying the condition $C_{\mathfrak a}$ with $M/\mathfrak aM \notin \mathcal S$, they showed that the lengths of all maximal $\mathcal S$ -sequences on M in $\mathfrak a$, are equal. They denoted this number by $\mathcal S$ -depth $_{\mathfrak a}(M)$ and in [2, Theorem 2.18], they proved that

$$S$$
-depth _{\mathfrak{a}} $(M) = \min\{i \geq 0 | H^i_{\mathfrak{a}}(M) \notin \mathcal{S}\}.$

In this stage, we first introduce the concept of S-depth_{Φ}(N), in which N is an R-module, Φ is a system of ideals of R and S is a Serre subcategory of Mod(R) satisfies the condition C_{Φ} . Then, in Proposition 3.7, we show that for any Serre subcategory S satisfying the conditions C_{Φ} and \mathcal{RF} , the following inequality holds:

$$\inf\{j \in \mathbb{N}_0 | H_{\Phi}^j(N) \text{ is not Artinian }\} \leq \mathcal{S}\text{-depth}_{\Phi}(N).$$

Definition 3.5. Assume that Φ is a system of ideals of R, N is an R-module and S is a Serre subcategory of Mod(R) satisfying the condition C_{Φ} . We define S-depth_{Φ}(N) as:

$$S$$
-depth _{Φ} $(N) = \inf\{j \geq 0 | H_{\Phi}^{j}(N) \notin S\}$

if the infimum exists, ∞ otherwise.

Remark 3.6. Let S be mentioned in Definition 3.5. According to Proposition 2.12 and the paragraph before Definition 3.5, it is obvious that if N is a finite R-module and $\mathfrak{b} \in \Phi$ is such that $N/\mathfrak{b}N$ does not belong to S, then S-depth $_{\Phi}(N) \in \mathbb{N}_0$ and

$$S$$
-depth _{Φ} $(N) = \min\{S$ -depth _{Φ} $(N) | \mathfrak{b} \in \Phi\}.$

In addition, for an arbitrary ideal \mathfrak{b} of R, with choosing suitable Serre subcategories \mathcal{S} which satisfy the condition $C_{\mathfrak{b}}$ and $\Phi = \{\mathfrak{b}^i | i \geq 0\}$ in Definition 3.5, we can obtain the concepts of $\operatorname{depth}_{\mathfrak{b}}(N)$, f-depth_{\mathfrak{b}}(N) and g-depth_{\mathfrak{b}}(N). Recall that, by [20, Theorem 3.4], [16, Theorem 3.1] and [17, Proposition 5.2], we have

$$f$$
-depth_b $(N) = \inf\{i \ge 0 | H_b^i(N) \text{ is not Artinian}\},$

and

$$\operatorname{g-depth}_{\mathfrak{h}}(N) = \inf\{i \geq 0 | \operatorname{Supp}_{R}H^{i}_{\mathfrak{h}}(N) \text{ is not a finite set}\}.$$

The next result indicates that f-depth_{Φ}(N), i.e., the least integer $j \in \mathbb{N}_0$ that $H^j_{\Phi}(N)$ is not Artinian, is a lower bound for S-depth_{Φ}(N), for all Serre subcategory S of Mod(R) satisfying the conditions C_{Φ} and \mathcal{RF} .

Proposition 3.7. Assume that Φ is a system of ideals of R and N is a finite R-module. Let S_A be the category of Artinian R-modules and S be a Serre subcategory of Mod(R) satisfying the conditions C_{Φ} and $R\mathcal{F}$. Then

$$f$$
-depth _{Φ} $(N) = \inf\{j \ge 0 | H_{\Phi}^{j}(N) \notin \mathcal{S}_{\mathcal{A}}\} \le \mathcal{S}$ -depth _{Φ} (N) .

Specially, for any ideal \mathfrak{b} of R that $N/\mathfrak{b}N \notin \mathcal{S}$,

$$f\text{-depth}_{\mathfrak{h}}(N) = \inf\{j \in \mathbb{N}_0 | \operatorname{Ext}_{R}^{j}(R/\mathfrak{b}, N) \notin \mathcal{S}_{\mathcal{A}}\} \leq \mathcal{S}\text{-depth}_{\mathfrak{h}}(N).$$

Proof. The assertions are obtained from Corollary 3.3 and Proposition 3.2.

Corollary 3.8. Suppose that (R, \mathfrak{n}) is a local ring. Let N be a finite R-module and \mathfrak{b} be an ideal of R. Then for any non-zero Serre subcategory S satisfying the condition $C_{\mathfrak{b}}$ and $N/\mathfrak{b}N \notin S$, we get

$$f$$
-depth_b $(N) \leq S$ -depth_b (N) .

Specially,

$$\operatorname{depth}_{\mathfrak{b}}(N) \leq \operatorname{f-depth}_{\mathfrak{b}}(N) \leq \operatorname{g-depth}_{\mathfrak{b}}(N).$$

Proof. The assertions will be obtained from Proposition 3.7 and Lemma 2.15 (i). \Box

As it is mentioned in the introduction, the most important result of [15] is its Theorem 2.10, which shows that the equality $f_{\mathfrak{b}}^{n}(N) = h_{\mathfrak{b}}^{n}(N)$ holds for any finite R-module N and any ideal \mathfrak{b} on an arbitrary Noetherian ring R. Following, Theorem 3.10, as the last important result of this article, generalizes the main results of [4, Theorem 2.5], [15, Theorem 2.10] and [19, Theorem 2.17]. To do this, the following definition is needed.

Definition 3.9. Assume that Φ is a system of ideals of R and N is an R-module. Let $n \in \mathbb{N}_0$ and $\Phi_{\mathfrak{p}} := \{\mathfrak{b}R_{\mathfrak{p}} | \mathfrak{b} \in \Phi\}$ for any $\mathfrak{p} \in \operatorname{Spec}(R)$. We define

$$h_{\Phi}^{n}(N) := \inf\{j \geq 0 | H_{\Phi}^{j}(N) \text{ is not in dimension } < n\}$$

and

$$f_{\Phi}^{n}(N) := \inf\{f_{\Phi_{\mathfrak{p}}}(N_{\mathfrak{p}}) | \mathfrak{p} \in \operatorname{Supp}_{R}(N) \text{ and } \dim R/\mathfrak{p} \geq n\}.$$

Theorem 3.10. Assume that R is a Noetherian ring and that Φ is a system of ideals of R. Let $n \in \mathbb{N}_0$ be such that the R-module N is in dimension < n. Suppose that the set $\left(\operatorname{Ass}_R H_{\Phi}^{h_{\Phi}^n(N)}(N)\right)_{\geq n}$ is finite. Then $h_{\Phi}^n(N) = f_{\Phi}^n(N)$.

Proof. Put $s := h_{\Phi}^n(N)$. For every i < s, $\dim \operatorname{Supp}(H_{\Phi}^i(N)/N') < n$ for some finite submodule N' of $H_{\Phi}^i(N)$. So for any $\mathfrak{q} \in (\operatorname{Spec}(R))_{\geq n}$, we obtain $(H_{\Phi}^i(N)/N')_{\mathfrak{q}}$ is zero. Consequently, $H_{\Phi_{\mathfrak{q}}}^i(N_{\mathfrak{q}})$ is a finite $R_{\mathfrak{q}}$ -module. Hence $s \leq f_{\Phi}^n(N)$. Now, we prove that $s = f_{\Phi}^n(N)$. On the contrary, suppose that $s < f_{\Phi}^n(N)$. Assume that

$$(Ass_R H_{\Phi}^s(N))_{>n} = \{\mathfrak{q}_1, \mathfrak{q}_2, ..., \mathfrak{q}_r\}.$$

For any $1 \leq j \leq r$, $\mathfrak{q}_j \in (\operatorname{Spec}(R))_{\geq n}$. Thus, as $s < f_{\Phi}^n(N)$, $(H_{\Phi}^s(N))_{\mathfrak{q}_j}$ is a finite $R_{\mathfrak{q}_j}$ -module. So that for every $1 \leq j \leq r$, there exists a finite R-submodule M_j of $H_{\Phi}^s(N)$ such that $(H_{\Phi}^s(N))_{\mathfrak{q}_j} \cong (M_j)_{\mathfrak{q}_j}$. Put $L_1 := M_1 + M_2 + \ldots + M_r$. Then L_1 is a finite R-submodule (and Φ -torsion) of $H_{\Phi}^s(N)$ and we get

$$(\operatorname{Ass}_R H_{\Phi}^s(N)/L_1)_{\geq n} \cap (\operatorname{Ass}_R H_{\Phi}^s(N))_{\geq n} = \emptyset.$$

Next, we prove that the set $(\operatorname{Ass}_R H_{\Phi}^s(N)/L_1)_{\geq n}$ is finite, too. According to [7, Lemma 2.1] and since the set $(\operatorname{Ass}_R H_{\Phi}^s(N))_{\geq n}$ is finite, there are ideals $\mathfrak{b}_1, \mathfrak{b}_2, ..., \mathfrak{b}_r \in \Phi$ such that

$$(\operatorname{Ass}_R H_{\Phi}^s(N))_{\geq n} \subseteq \bigcup_{j=1}^r (\operatorname{Ass}_R H_{\mathfrak{b}_j}^s(N))_{\geq n} \subseteq \bigcup_{j=1}^r (\operatorname{V}(\mathfrak{b}_j))_{\geq n}.$$

As Φ is a system of ideals of R, there is $\mathfrak{b} \in \Phi$ such that $\mathfrak{b} \subseteq \prod_{j=1}^r \mathfrak{b}_j$ and thus

$$(\operatorname{Ass}_R H_{\Phi}^s(N))_{\geq n} \subseteq \bigcup_{j=1}^r (\operatorname{V}(\mathfrak{b}_j))_{\geq n} \subseteq (\operatorname{V}(\mathfrak{b}))_{\geq n}.$$

We claim that $(\operatorname{Supp}_R H_{\Phi}^s(N))_{\geq n} \subseteq (\operatorname{V}(\mathfrak{b}))_{\geq n}$. For this purpose, let \mathfrak{q} be an arbitrary element of $(\operatorname{Supp}_R H_{\Phi}^s(N))_{\geq n}$. Then, there is $\mathfrak{p} \in (\operatorname{Ass}_R H_{\Phi}^s(N))_{\geq n}$ such that $\mathfrak{p} \subseteq \mathfrak{q}$. So $\mathfrak{p} \in (\operatorname{V}(\mathfrak{b}))_{\geq n}$. Since $\mathfrak{b} \subseteq \mathfrak{p} \subseteq \mathfrak{q}$ and $\dim R/\mathfrak{q} \geq n$, we get $\mathfrak{q} \in (\operatorname{V}(\mathfrak{b}))_{\geq n}$ as required. Therefore

$$(\operatorname{Ass}_R H_{\Phi}^s(N)/L_1)_{\geq n} \subseteq (\operatorname{Supp}_R H_{\Phi}^s(N)/L_1)_{\geq n} \subseteq (\operatorname{Supp}_R H_{\Phi}^s(N))_{\geq n} \subseteq (\operatorname{V}(\mathfrak{b}))_{\geq n}.$$

Also, as for every i < s, $H_{\Phi}^{i}(N)$ is an R-module in dimension < n, by Corollary 2.3, $(\operatorname{Ass}_{R}(H_{\Phi}^{s}(N)/L_{1}) \cap \operatorname{V}(\mathfrak{b}))_{\geq n}$ is a finite set and so, $(\operatorname{Ass}_{R}H_{\Phi}^{s}(N)/L_{1})_{\geq n}$ is a finite set as well. Now, as

$$(\operatorname{Ass}_R H_{\Phi}^s(N)/L_1)_{\geq n} \cap (\operatorname{Ass}_R H_{\Phi}^s(N))_{\geq n} = \emptyset,$$

from [15, Lemma 2.5], we conclude that

$$\bigcap\nolimits_{\mathfrak{q}\in (\operatorname{Ass}_R H_\Phi^s(N))_{\geq n}}\mathfrak{q}\subsetneqq \bigcap\nolimits_{\mathfrak{q}\in (\operatorname{Ass}_R H_\Phi^s(N)/L_1)_{\geq n}}\mathfrak{q}.$$

Using a similar argument, there exists a submodule L_2/L_1 of $H_{\Phi}^s(N)/L_1$ such that

$$(\operatorname{Ass}_R H_{\Phi}^s(N)/L_2)_{\geq n} \cap (\operatorname{Ass}_R H_{\Phi}^s(N)/L_1)_{\geq n} = \emptyset,$$

and so

$$\bigcap_{\mathfrak{q}\in (\mathrm{Ass}_R\,H^s_\Phi(N)/L_1)_{>n}}\mathfrak{q} \subsetneqq \bigcap_{\mathfrak{q}\in (Ass_RH^s_\Phi(N)/L_2)_{>n}}\mathfrak{q}.$$

Proceeding in the same way, we can find a strictly chain of ideals of R as follows:

$$\bigcap_{\mathfrak{q}\in (\operatorname{Ass}_R H_\Phi^s(N))_{>n}}\mathfrak{q} \subsetneqq \bigcap_{\mathfrak{q}\in (\operatorname{Ass}_R H_\Phi^s(N)/L_1)_{>n}}\mathfrak{q} \subsetneqq \bigcap_{\mathfrak{q}\in (\operatorname{Ass}_R H_\Phi^s(N)/L_2)_{>n}}\mathfrak{q} \subsetneqq \dots$$

which is not stable and this is a contradiction. Therefore $s = f_{\Phi}^{n}(N)$.

Corollary 3.11. Assume that R is a Noetherian ring and that $\mathfrak b$ is an ideal of R. Let N be a finite R-module. Then for every $n \in \mathbb N_0$, $f_{\mathfrak a}^{\mathfrak a}(N) = h_{\mathfrak a}^{\mathfrak a}(N)$.

Proof. Apply $\Phi = \{\mathfrak{b}^j | j > 0\}$ and $s = h_{\mathfrak{b}}^n(M)$ in Theorem 3.10 and Corollary 2.3.

Acknowledgements

The authors are deeply grateful to the referee for his/her careful reading of the paper and valuable suggestions.

References

- M. Aghapournahr and K. Bahmanpour, Cofiniteness of weakly Laskerian local cohomology modules, *Bull. Math. Soc. Sci. Math. Roumanie*, **105** (2014), no. 4, 347-356.
- [2] M. Aghapournahr and L. Melkersson, Local cohomology and Serre subcategories, J. Algebra, 320 (2008), no. 3, 1275-1287.
- [3] M. Aghapournahr and L. Melkersson, A natural map in local cohomology, Ark. Mat., 48 (2010), no. 2, 243-251.
- [4] D. Asadollahi and R. Naghipour, Faltings' Local-global Principle for the finiteness of local cohomology modules, *Comm. Algebra*, **43** (2015), no. 3, 953-958.
- [5] K. Bahmanpour, R. Naghipour and M. Sedghi, Minimaxness and cofiniteness properties of local cohomology modules, *Comm. Algebra*, 41 (2013), no. 8, 2799-2814.
- [6] M. Behrouzian and M. Aghapournahr, Lower bounds of certain general local cohomology modules, *Comm. Algebra*, **48** (2020), no. 6, 2406-2417.
- [7] M. H. Bijan-Zadeh, Torsion theories and local cohomology over Commutative Noetherian ring, J. London Math. Soc. (2), 19 (1979), no. 3, 402-410.
- [8] M. H. Bijan-Zadeh, A common generalization of Local cohomology theories, Glasg. Math. J., 21 (1980), no. 2, 173-181.
- [9] M. P. Brodmann and R. Y. Sharp, Local Cohomology: an Algebraic Introduction with Geometric Applications, Cambridge Univ. Press, Cambridge (1998).
- [10] K. Divaani-Azar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc., 133 (2005), no. 3, 655-660.
- [11] G. Faltings, Der Endlichkeitssatz in der lokalen kohomologie, *Math. Ann.*, **255** (1981), no. 1, 45-56.
- [12] A. Hajikarimi, Cofiniteness with respect to a Serre subcategory, *Math. Notes*, **89** (2011), 121-130.
- [13] R. Hartshorn, Affine duality and cofiniteness, Invent. Math., 9 (1970), 145-164.

- [14] K. Khashyarmanesh, On the finiteness properties of extension and torsion functors of local cohomology modules, Proc. Amer. Math. Soc., 135 (2007), 1319-1327.
- [15] A. A. Mehrvarz, R. Naghipour and M. Sedghi, Faltings' Local-global Principle for the finiteness of local cohomology modules over Noetherian rings, Comm. Algebra, 43 (2015), no. 11, 4860-4872.
- [16] L. Melkersson, Some applications of a criterion for Artinianness of a module, J. Pure Appl. Algebra, 101 (1995), no. 3, 291-303.
- [17] L.T. Nhan, On generalized regular sequences and the finiteness for associated primes of local cohomology modules, Comm. Algebra, 33 (2005), no. 3, 793-806.
- [18] P. Rudlof, On minimax and related modules, Can. J. Math., 44 (1992), 154-166.
- [19] M.Y. Sadeghi, Kh. Ahmadi Amoli and M. Chaghamirza, General local cohomology modules in view of low points and high points, Ukrainian Math. J., 75 (2023), 698-711.
- [20] Z. Tang, Local-global Principle for the Artinianness of local cohomology modules, Comm. Algebra, 40 (2012), no. 1, 58-63.
- [21] T. Zink, Endlichkeitsbedingungen für modulnüber einem Noetherschen ring, Math. Nachr., 64 (1974), 239-252, (in German).
- [22] H. Zöschinger, Minimax-moduln, J. Algebra, 102 (1986), 1-32.
- [23] H. Zöschinger, Über die maximalbedingung für radikalvolle untermoduln, Hokkaido Math. J., 17 (1988), 101-116.

MirYousef Sadeghi

Assistant Professor of Mathematics

Department of Mathematics, Payame Noor University (PNU), Tehran, Iran. E-mail: my.sadeghi@pnu.ac.ir

Khadijeh Ahmadi Amoli

Associate Professor of Mathematics

Department of Mathematics, Payame Noor University (PNU), Tehran, Iran E-mail: khahmadi@pnu.ac.ir

Reza Arian Fazel

Student of Mathematics

Department of Mathematics, Payame Noor University (PNU), Tehran, Iran E-mail: r.a.f19861986@gmail.com