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differentiable functions in all arguments. Our aim is to minimize the
quadratic objective functional

J [x, u] =
1
2

∫ tf

t0

(xT (t)Qx(t) + uT (t)Ru(t))dt, (2)

subject to the non-linear system (1), for Q ∈ R
n×n and R ∈ R

m×m, pos-
itive semi-definite and positive definite matrices, respectively. Hamilto-
nian for system (1),(2) define as follows (see [4, 15]):

H(x, u, λ) =
1
2
[xT Qx + uT Ru] + λT [f(t, x) + g(t, x)u]. (3)

The following extreme necessary conditions are also sufficient for opti-
mality, because the performance index (2) is convex,

u∗ = argminuH(x, u, λ),

λ̇ = −Hx(x, u∗, λ),

ẋ = f(t, x) + g(t, x)u∗,
x(t0) = x0, x(tf ) = xf . (4)

Since the Hamiltonian function H(x, u, λ) must choose its maximum
with respect to u(.) at u∗(.), so one can find that (see[19] for more
details),

u∗ = −R−1gT (t, x)λ. (5)

So equivalently (4) can be written in the following form where λ(t) ∈ Rn

is the co-state vector with the ith component λi(t), i = 1, 2, · · · , n and
g(t, x) =

(
g1(t, x) · · · gn(x, t)

)T with gi(t, x) ∈ R
m, i = 1, 2, · · · , n.

λ̇ = −(Qx + (
∂f(t, x)

∂x
)T λ +

n∑
i=1

λi[−R−1gT (t, x)λ]T
∂gi(t, x)

∂x
),

ẋ = f(t, x) + g(t, x)[−R−1gT (t, x)λ],

x(t0) = x0, x(tf ) = xf . (6)

Now we deal with such a TPBVP in (6) instead of non-linear OCP in
(1),(2). For solving such a TPBVP, first we use a shooting-method-like



50 R. ZARE, M. H. FARAHI, AND J. IZADIAN

procedure, so we obtain the following IVP:

λ̇ = −(Qx + (
∂f(t, x)

∂x
)T λ +

n∑
i=1

λi[−R−1gT (t, x)λ]T
∂gi(t, x)

∂x
)

ẋ = f(t, x) + g(t, x)[−R−1gT (t, x)λ]

x(t0) = x0, λ(t0) = α. (7)

Then we apply VIM to solve the IVP (6). Where α ∈ R is an unknown
parameter which can be approximated by imposing final condition in
(6) as seen in Section 4.

3. Variational Iteration Method

Consider the following general problem:

L(u(t)) + N(u(t)) = g(t),

where L is a linear operator, N is a nonlinear operator and g(t) is a
known analytical function. The variational iteration method constructs
an iterative sequence called correction functional as

un+1(t) = un(t) +
∫ t

t0

µ(s)
(
L(un(s)) + N(ũn(s)) − g(s)

)
ds, (8)

where µ is the general Lagrange multiplier that can be identified opti-
mally via the variational theory , ũn(s) is considered as the restricted
variation, i.e. δũn(s) = 0 and the index n denotes the nth iteration(for
more details, see [1] and [6]).

4. Suboptimal Control Design

Consider the OCP of the non-linear system (1) with the quadratic cost
function (2). Then, the Nth order suboptimal trajectory-control pair is
obtained as follows:{

xN (t) = xn(t),
uN (t) = −R−1gT (t, x)λn(t).

(9)
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Then the following quadratic performance index (QPI) can be calculated
as

J (N) =
1
2

∫ tf

t0

[(x(N)(t))T Qx(N)(t) + (u(N)(t))T Ru(N)(t)]dt. (10)

The Nth-order suboptimal trajectory-control pair in (9) has desirable
accuracy if for two given positive constants ε1 > 0 and ε2 > 0, the
following conditions hold jointly:

| J (N) − J (N−1)

J (N)
|< ε1,

‖ x(tf ) − xf ‖< ε2. (11)

where ‖ . ‖ is a suitable norm on R
n and x(tf ) is the value of the

corresponding state trajectory at the final time tf .

5. A Numerical Example

Consider the following non-linear OCP (see [4, 15]):

minJ =
∫ 1

0
u2(t)dt

s.t ˙x(t) =
1
2
x2(t)sinx(t) + u(t) , t ∈ [0, 1]

x(0) = 0 , x(1) = 0.5. (12)

According to (1) and (2) we have f(t, x(t)) =
1
2
x2(t)sinx(t), g(t, x(t)) =

1, Q = 0, R = 1, t0 = 0 and tf = 1. As mentioned in Section 2, we solve
the following IVP:

ẋ(t) =
1
2
x2(t)sinx(t) − λ(t),

λ̇ = −λ(t)x(t)sinx(t) − 1
2
λ(t)x2(t)cosx(t) , t ∈ [0, 1]

x(0) = 0 , λ(0) = α. (13)
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λn+1(t) = λn(t) − ∫ t
0

(
λ̇n(s) + λn(t)xn(s) sinxn(s)

+1
2λn(s)x2

n(s) cos xn(s)
)
ds. (17)

As first iteration with initial approximations x0(t) = x(0) = 0 and
λ0(t) = λ(0) = α, we have⎧⎪⎨
⎪⎩

x1(t) = x0(t) −
∫ t
0

(
ẋ0(s) − 1

2x2
0(s) sinx0(s) + λ0(s)

)
ds = −αt

λ1(t) = λ0(t) −
∫ t
0

(
λ̇0(s) + λ0(s)x0(s) sinx0(s)

+1
2λ0(s)x2

0(s) cos x0(s)ds = α. (18)

By imposing final state condition we have

0.5 = x(1) ≈ x1(1) = −α,

α ≈ −0.5,

thus
x1(t) = 1

2 t
λ1(t) = −1

2

.

If we suppose ε1 = 7 × 10−2 and ε2 = 2 × 10−2 as tolerance error
bounds, convergence is achieved after two iterations, i.e. | J(2)−J(1)

J(2) |=
6.25 × 10−2 < ε1 and ‖ x(1) − 0.5 ‖= 1.52 × 10−2 < ε2. So we have

x(t) ≈ x2(t)

u(t) = −λ(t) ≈ −λ2(t).

Simulation curves of x(t) and u(t) got from second step of variational
iteration method are shown in Fig 1. Also, as you see in Fig 1, we com-
pared the results of VIM with the solutions obtained using the colloca-
tion method [1], modal series [15] and homotopy perturbation method
[4]. Our results are very close to all three of them.
Problem (12) has also been solved by Rubio [19] via the measure theory
in which to find an acceptable solution, a linear programming problem
with 1000 variables and 20 constraints should be solved.
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