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Solving Non-Linear Quadratic Optimal Control
Problems by Variational Iteration Method

1

Theory of optimal control has been used with great success not only
in traditional areas such as aerospace engineering (5], robotics [22] and
chemical engineering but also in areas as diverse as economics to biomedicine
[14]. But in general, solving optimal control problems (OCP) by classic
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Abstract. In this article, we give an analytical approximate solu-
tion for non-linear quadratic optimal control problems using the vari-
ational iteration method (VIM). First by means of the Pontryagins
maximum principle the non-linear two-point boundary-value problem
(TPBVP), transformed into an initial value problem (IVP), then we
construct variational iterations correction functional to find the approx-
imate solution. Finally, an example is given to illustrate the efficiency
and applicability of the proposed method.
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control theory is difficult. One new strategy which recently is used by
some authors is to transform the optimal control problem to another
problem, based on Pontryagins maximum principle (PMP), such that
implementing PMP, the OCP reduces to a TPBVP. Yousefi et al. [23]
used the original or basic Variational Iteration Method (VIM) for linear
quadratic OCPs. They transfer the linear TPBVP obtained from PMP
to an initial value problem (IVP) and then implement the basic VIM to
get a feedback controller. The variational iteration method as an approx-
imation method for solving linear and nonlinear problems has been the
centre of attention of many authors. This method was introduced by the
Chinese mathematician Ji-Huan He [6] first, by modifying the general
Lagrange multiplier method. The main idea in the variational iteration
method is to construct an iterative sequence of functions converging to
an exact solution [21]. Since the method works without discretization,
it is not affected by round of error. The variational iteration method
has been applied for solving a wide range of problems successfully, such
as partial differential equations [13, 17], fractional differential equations
(12, 18], delay differential equations (7], etc. The variational iteration
method is used in [3] to solve the Fokker-Planck equation. He in [9]
solved large kinds of equations by VIM such that Blasius equation. In
[2], the variational iteration method is employed to solve the Burgers
and coupled Burgers equations and in [17] it was applied to Helmholtz
equation. In current work we solve the nonlinear quadratic OCP by VIM.

2. Non-Linear Quadratic OCPs and Solution Guide-
lines

Consider the non-linear control system
&(t) = f(t,2(t)) + g(t, z()u(t), t € [to.ty],
z(to) = wo, x(t5) =xy, (1)

where z(t) € R" is the state variable, u(t) € R™ the control variable
and zg and xy the given initial and final states at fy and fy, respec-
tively. also, f(t,x(t)) € R™ and g(t,z(t)) € R™*™ are two continuously
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differentiable functions in all arguments. Our aim is to minimize the
quadratic objective functional

1

T = 5 /t " 2T ()Qa(t) + uT (1) Ru(t))dt, )

subject to the non-linear system (1), for @ € R"*™ and R € R™*™_ pos-
itive semi-definite and positive definite matrices, respectively. Hamilto-
nian for system (1),(2) define as follows (see [4, 15]):

H(z,u,)) = %[xTQx TR+ N[t 2) 4 gt ). (3)

The following extreme necessary conditions are also sufficient for opti-
mality, because the performance index (2) is convex,

u* = argmin, H (z,u, \),

A= —H,(z,u*,\),

b= f(t,2) + glt, 2,

z(to) = o, x(ty) = xy. (4)

Since the Hamiltonian function H(x,u,A) must choose its maximum
with respect to wu(.) at u*(.), so one can find that (see[19] for more
details),

u = —R g7 (t,z)\ (5)

So equivalently (4) can be written in the following form where A(t) € R™
is the co-state vector with the ith component \;(¢), i = 1,2,--- ,n and
g(t,z) = (gl(t,a:) . -gn(m,t))T with g;(t,x) e R™, i =1,2,--- n.

S= @+ (Dyry 5y R, 20,
=1
T = f(t7 l‘) + g(t7 x)[_RilgT(tﬂ x))\],
x(to) = wo, x(ty) = xy. (6)

Now we deal with such a TPBVP in (6) instead of non-linear OCP in
(1),(2). For solving such a TPBVP, first we use a shooting-method-like
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procedure, so we obtain the following IVP:

A=—(Qu+ (aféi;x) )X+ zn: MR (¢, x)A]Taggi’ 7))
1=1
&= f(t,2) + g(t,2)[~R'g" (t, )N
z(to) = wo, Alto) = a. (7)

Then we apply VIM to solve the IVP (6). Where « € R is an unknown
parameter which can be approximated by imposing final condition in
(6) as seen in Section 4.

3. Variational Iteration Method
Consider the following general problem:

L(u(t)) + N(u(t)) = g(t),

where L is a linear operator, N is a nonlinear operator and g(t) is a
known analytical function. The variational iteration method constructs
an iterative sequence called correction functional as

t

wna () = un(®) + [ ) (Dlunls)) + Nn(s)) = s)) s, (8)
to

where p is the general Lagrange multiplier that can be identified opti-

mally via the variational theory , @,(s) is considered as the restricted

variation, i.e. du,(s) = 0 and the index n denotes the nth iteration(for

more details, see [1] and [6]).

4. Suboptimal Control Design

Consider the OCP of the non-linear system (1) with the quadratic cost
function (2). Then, the Nth order suboptimal trajectory-control pair is
obtained as follows:

l’N(t) = l’n(t),
{uN(t) = _R_IQT(t,$))\n(t). (9)
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Then the following quadratic performance index (QPI) can be calculated
as

1 [y
T = 3 / (@™ ()" Qe (1) + (™ (1) Ru™M(2)]dt.  (10)
to
The Nth-order suboptimal trajectory-control pair in (9) has desirable
accuracy if for two given positive constants e; > 0 and es > 0, the
following conditions hold jointly:

JWN) _ g(N-1)
T I<e
l(ty) =y [I< e (11)
where || . || is a suitable norm on R"™ and xz(ty) is the value of the

corresponding state trajectory at the final time .

5. A Numerical Example

Consider the following non-linear OCP (see [4, 15]):

1
minJ:/ u?(t)dt
0

st a(t) = %mQ(t)sinaz(t)Jru(t) . teo]
z(0)=0 , z(1)=0.5. (12)
According to (1) and (2) we have f (¢, z(t)) = %:cQ(t)sina;(t), g(t,z(t)) =

1,Q=0,R=1,t =0and ty = 1. As mentioned in Section 2, we solve
the following IVP:

A= —=A\(t)x(t)sinz(t) —
z(0)=0 , A0)=a. (13)
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where a € R is an unknown parameter. Also the optimal control law is
given by
u'(t) = =A(1).

Now we construct the connection functional (8) for system (13) as fol-
lows:

:1:?1+1 (t) = xn(t) + f(; ,\'J] (33?1('5) = %IEL(S) Sil'l 33-"_(-5) + /\-_.,_(-S))d&',
An+1(t) = An(t) + fg 12 (/\ﬂ_(s) + An(8)zn(s) sinz,(s) (14)
+%/\n(s)a:ﬁ(s) cos :r:?,_(s))ds.

By taking variation with respect to independent variables z,(¢) and
An(t), we get

8xpy1 = 0zp + 5“[(; m (:i:ﬂ — %:1,,% sin @, + /\,,_)ds =0z + Oy,

—- foi dxpfiyds =0

A1 =0, + 0 fot 112 (:\n(s) + Anxy sinxy, + %)\nxi cos mn)ds

= 0Ap + Spo, — ['[: dAnfiods = 0.

(15)

Note that (— %:rf, sin z,+\, ) in first equation and (\,z,, sin z,+ %/\ﬂ:r;% COS Ty,)
in the second equation are considered as restricted variations , i.e.
5(-%1‘% sinz, + A,) = 0 and §(\, 2, sinz, + %/\n-’ﬂi cos oy, ) = 0, so mak-
ing the above correction functionals stationary implies the following sta-

tionary conditions

dxy 11— *”‘1(3)|s=f. =0
5:1371 . ;}.1(5) =0
OAp i1 — ,ug(s)‘s:t =0
0Ny ¢ pia(s) =0

(16)

The general Lagrange multipliers, therefore, can be readily identified

p=—1,
H2 = —1L.

As a result, we obtain the following iteration formulas:
£, ‘ .
Tnt1(t) = za(t) — [y (&n(s) — %ii(‘:‘) sinz,(s) + An(s))ds,
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An+1(t) fo( An(t)zn(s) sinzn(s)
+3 A (s)x (s) cosa:n( ))ds. (17)

As first iteration with initial approximations xo(t) = z(0) = 0 and
Ao(t) = A(0) = o, we have

x1(t) = wo(t) — f(f (2o(s) — 3x3(s) sinzo(s) + Ao(s))ds = —at
Ar(t) = Mo(t) — f3 (Ao(s) + Ao(s)zo(s) sinzo(s)
—l—%)\o(s)x%(s) cos zo(s)ds = a. (18)

By imposing final state condition we have

0.5 =z(1) = z1(1) = —a,

a~ —0.5,
thus .
Ai(t)=—3
If we suppose ¢ = 7 x 1072 and e = 2 x 1072 as tolerance error

. . . . . (2) (1)
bounds, convergence is achieved after two iterations, i.e. | < J |=

6.25 x 1072 < ¢ and || (1) — 0.5 |= 1.52 x 1072 < €. So we have

u(t) = =A(t) = —Aa(t).

Simulation curves of z(t) and wu(t) got from second step of variational
iteration method are shown in Fig 1. Also, as you see in Fig 1, we com-
pared the results of VIM with the solutions obtained using the colloca-
tion method [1], modal series [15] and homotopy perturbation method
[4]. Our results are very close to all three of them.

Problem (12) has also been solved by Rubio [19] via the measure theory
in which to find an acceptable solution, a linear programming problem
with 1000 variables and 20 constraints should be solved.
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Figure 1. Simulation curves of z(.) and u(.) got from second step of
variational iteration method.

Tablel represents simulation results of the example for two steps of VIM.
In Table 2 rapidity of VIM is compared with modal series method [15]
and homotopy perturbation method [4].

Table 1: Simulation results of the example for two step of VIM

: : J@-j(-1)

i J@ (KL () —
0 0.25 =
1 0.25 o -
2 0.2353 6.25x 102 1.52 x 1072

Table 2: Result of the VIM and two other methods

Method Number of steps (n) Performance index value

HPM 5 0.2353

Modal series 5 0.2353

VIM 2 0.2353
6. Conclusion

In this article, we successfully applayed VIM to solve non-linear quadratic
OCPs. We saw the optimal control law and the optimal state trajectory
were determined rapidly and easily with few iterations.
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