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1 Introduction

For the last two decades, classical calculus has been extended to modern
fuzzy and fuzzy fractional calculus, like differential equations to frac-
tional order and fuzzy fractional order. The fuzzy fractional calculus
has been given much attentions by the researchers due to its significant
applications and realistic description of many physical and biological
phenomenon [15, 18, 12, 13, 14, 21]. Some real-life problems have been
model by partial differential equations, because during the study of natu-
ral phenomena, we often faced several variables simultaneously[9, 10, 17].
Even some time partial differential equations is not the best option to
study real life problems due to fuzziness in the problems.

Over the past decades, a significant development in fractional cal-
culus has been used widely by the researchers. Fractional operators are
much better at explaining the physical phenomena (Biological popula-
tion models, predator-prey models, infectious diseases models, etc) more
accurately compared to ordinary operators. The time-fractional cauchy
reaction-diffusion equation is a fractional partial differential equation
that deals with the study of fluid velocity and convection temperature
dynamics [1, 3, 16]. The concepts of fuzzy fractional integral, Caputo
partial differentiability based on generalized Hukurara differentiability
for the fuzzy multivariable functions, and fuzzy fractional partial differ-
ential equations are examined by H. Viet Long et al. [19]. The fuzzy
Caputo-Katugampola fractional differential equations in fuzzy space are
considered in [11], and under generalized Lipschitz condition, the exis-
tence and uniqueness of the solution are proved.

In the following, We consider generalized Hukuhara partial differen-
tiability of the solution and an analytical fuzzy triangular solution of
time-fractional Cauchy Reaction-Diffusion equation with fuzzy triangu-
lar initial conditions, is achieved using the fuzzy Sumudu transform.

The rest of this paper is organized as follows. In Section 2, some
notations and preliminaries used throughout the paper is introduced.
In Section 3, we define the definition of fuzzy Sumudu transform and
prove some properties. We obtain an analytical fuzzy triangular solution
for the time-fractional Cauchy Reaction-Diffusion equation by the fuzzy
Sumudu transform based on the type of Caputo gH-differentiability in
Section 4. Some examples are given in the final section to illustrate our
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theory.

2 Basic Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
used throughout this paper. We use E to show the fuzzy numbers space,
and T is the set of all triangular fuzzy numbers, which is defined by an
ordered triple A = (a1, a2, a3), where a1 ≤ a2 ≤ a3.

For 0 < r ≤ 1 denote [A]r =

{
δ ∈ Rn

∣∣∣A(δ) ≥ r

}
= [A−(r), A+(r)].

The r-level set [A]r is a closed interval for all r ∈ [0, 1], and for every
triangular fuzzy numberA = (a1, a2, a3), we have A−(r) = a1+(a2−a1)r
and A+(r) = a3 − (a3 − a2)r.

The Hausdorff distance between fuzzy numbers is given by D : E×
E −→ R+ ∪ {0} as in [4]

D(A, B) = sup
r∈[0, 1]

d
(
[A]r, [B]r

)
= sup

r∈[0, 1]
max

{
|A−(r)− B−(r)|, |A+(r)− B+(r)|

}
where d is the Hausdorff metric [4].

Now consider A = (a1, a2, a3) And B = (b1,b2, b3) are two triangular
fuzzy numbers. The generalized Hukuhara difference, A⊖gHB, is defined
as follows

A⊖gH B =
(
min{a1 − b1, a3 − b3}, a2 − b2,max{a1 − b1, a3 − b3}

)
(1)

Let J ⊆ R2 and ψ : J → E is a fuzzy function. A fuzzy function

ψ(δ, t) =
(
ψ1(δ, t), ψ2(δ, t), ψ3(δ, t)

)
is called a triangular fuzzy function

provided that ψ1(δ, t), ψ2(δ, t) and ψ3(δ, t) are real-valued functions such
that ψ1(δ, t) ≤ ψ2(δ, t) ≤ ψ3(δ, t) for all (δ, t) ∈ J.

2.1 Fuzzy Differentiation

Definition 2.1. ([8]) The first generalized Hukuhara partial derivative
( [gH-p]-derivative for short) of a fuzzy value function ψ(δ, t) : J → E



4 S. KHAKRANGIN, et al.

at (δ0, t0) ∈ J concerning variable t is a function ∂ψ(δ0,t0)
∂t such that

∂ψ(δ0, t0)

∂t
= lim

k→0

ψ(δ0, t0 + k)⊖gH ψ(δ0, t0)

k
,

provided that ∂ψ(δ0,t0)
∂t ∈ E.

Definition 2.2. (See [8]) Let ψ(δ, t) and ∂ψ(δ,t)
∂t are triangular fuzzy

functions and [gH-p]-differentiable at (δ, t) ∈ J. Moreover. there aren’t
any switching points on J and ψ1(δ, t), ψ2(δ, t) and ψ3(δ, t) are differen-
tiable at (δ0, t0). Then is called

(i). ψ(δ, t) is [(i) − p]-differentiable with respect to t at (δ, t) ∈ J if
∂ψ(δ,t)
∂t =

(
∂ψ1(δ,t)

∂t , ∂ψ2(δ,t)
∂t , ∂ψ3(δ,t)

∂t

)
.

(ii). ψ(δ, t) is [(ii) − p]-differentiable with respect to t at (δ, t) ∈ J if
∂ψ(δ,t)
∂t =

(
∂ψ3(δ,t)

∂t , ∂ψ2(δ,t)
∂t , ∂ψ1(δ,t)

∂t

)
.

Definition 2.3. (See [2], [20]) Let ψ(δ, t) be a fuzzy function which
[gH-p]-differentiable for t up to order one. The generalized Hukuhara
fractional Caputo derivative ψ(δ, t) of order α is defined as follows

C
gHD

α
t ψ(δ, t) =

1

Γ(1− α)

∫ t

0

∂ψ(δ, ξ)

∂ξ

1

(t− ξ)α
dξ,

where 0 < α ≤ 1.
Let ψ(δ, t) is a triangular fuzzy function and [gH-p]-differentiable,

then

• ψ(δ, t) is (1)−Caputo gH-differentiable w.r.t t, if C
gHD

α
t ψ(δ, t) ∈ T

for all (δ, t) ∈ J and

C
gHD

α
1ψ(δ, t) =

(
CDαψ1(δ, t),

CDαψ2(δ, t),
CDαψ3(δ, t)

)
.

• ψ(δ, t) is (2)−Caputo gH-differentiable w.r.t t, if C
gHD

α
t ψ(δ, t) ∈ T

for all (δ, t) ∈ J and

C
gHD

α
2ψ(δ, t) =

(
CDαψ3(δ, t),

CDαψ2(δ, t),
CDαψ1(δ, t)

)
.
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2.2 Fuzzy Integration

Let ψ : J → T be a triangular continuous fuzzy function. Based on the
results in [5] and [8], we have

∫ b

a
ψ(δ, t)dt =

(∫ b

a
ψ1(δ, t)dt,

∫ b

a
ψ2(δ, t)dt,

∫ b

a
ψ3(δ, t)dt

)
. (2)

Moreover,

∫ ∞

a
ψ(δ, t)dt = lim

P→∞

∫ P

a
ψ(δ, t)dt.

In fact

∫ ∞

a
ψ(δ, t)dt = lim

P→∞

(∫ P

a
ψ1(δ, t)dt,

∫ P

a
ψ2(δ, t)dt,

∫ P

a
ψ3(δ, t)dt

)
,

provided that the limits exist as a finite numbers.

Lemma 2.4. Consider a and b, a.b > 0 are real constants. If ψ(δ, t)
and φ(δ, t) are triangular fuzzy functions, then,

i).
∫∞
0

(
a ψ(δ, t)⊕ b φ(δ, t)

)
dt = a

∫∞
0 ψ(δ, t)dt⊕ b

∫∞
0 φ(δ, t)dt.

ii).
∫∞
0

(
a ψ(δ, t)⊖gH b φ(δ, t)

)
dt = a

∫∞
0 ψ(δ, t)dt⊖gH b

∫∞
0 φ(δ, t)dt.

Proof. Since the proofs of case (i) and (ii) are similar, here we will
prove case (ii). Let us consider a and b are positive real constants. By
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equation (1) and equation (2) we have∫ ∞

0

(
a ψ(δ, t)⊖gH b φ(δ, t)

)
dt =∫ ∞

0

(
min

{
aψ1(δ, t)− bφ1(δ, t), aψ3(δ, t)− bφ3(δ, t)

}
,

aψ2(δ, t)− bφ2(δ, t),

max
{
aψ1(δ, t)− bφ1(δ, t), aψ3(δ, t)− bφ3(δ, t)

})
dt,

=

(
min

{
a

∫ ∞

0
ψ1(δ, t)dt− b

∫ ∞

0
φ1(δ, t)dt,

a

∫ ∞

0
ψ3(δ, t)dt− b

∫ ∞

0
φ3(δ, t)dt

}
, (3)

a

∫ ∞

0
ψ2(δ, t)dt− b

∫ ∞

0
φ2(δ, t)dt

, max
{
a

∫ ∞

0
ψ1(δ, t)dt− b

∫ ∞

0
φ1(δ, t)dt

, a

∫ ∞

0
ψ3(δ, t)dt− b

∫ ∞

0
φ3(δ, t)dt

})
= a

∫ ∞

0
ψ(δ, t)dt⊖gH b

∫ ∞

0
φ(δ, t)dt (4)

Now, consider a and b are negative real constants. Therefore∫ ∞

0
aψ(δ, t)dt =

∫ ∞

0

(
aψ3(δ, t), aψ2(δ, t), aψ1(δ, t)

)
dt

=
(
a

∫ ∞

0
ψ3(δ, t)dt, a

∫ ∞

0
ψ2(δ, t)dt, a

∫ ∞

0
ψ1(δ, t)dt

)
= a

(∫ ∞

0
ψ1(δ, t)dt,

∫ ∞

0
ψ2(δ, t)dt,

∫ ∞

0
ψ3(δ, t)dt

)
= a

∫ ∞

0
ψ(δ, t)dt (5)

Similar to Eq.(3) and using Eq.(5), for negative constants a and b, we
observe that∫ ∞

0

(
aψ(δ, t)dt⊖gH bφ(δ, t)

)
dt = a

∫ ∞

0
ψ(δ, t)dt⊖gH b

∫ ∞

0
φ(δ, t)dt
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That is, proving the claim. □

Proposition 2.5. ([19]) Let ψ(δ, t) be a continuous fuzzy function.

i). If ψ is [i-p]-differentiable w.r.t t, with no switching point on R×[a,b]
then ∂ψ

∂t is integrable on [a,b] and

∫ b

a

∂ψ(δ, t)

∂t
dt = ψ(δ, b)⊖ ψ(δ, a).

ii). If ψ is [ii-p]-differentiable w.r.t t, with no switching point on R ×
[a,b] then ∂ψ

∂t is integrable on [a,b] and

∫ b

a

∂ψ(δ, t)

∂t
dt = (−1)ψ(δ, a)⊖ (−1)ψ(δ, b).

Proposition 2.6. Let h(t) be a positive and decreasing continuous real
valued function and ψ is a [gH-p]-differentiable respect to t at every
(δ, t) ∈ J such that there are not any switching points on J.

i). Suppose that k(δ, t) = h(t)ψ(δ, t) and ψ(δ, t) is [i-p]-differentiable
w.r.t t, then k(δ, t) is [i-p]-differentiable w.r.t t and

∫ b

a
h(t)

∂ψ(δ, t)

∂t
dt = k(δ, b)⊖ k(δ, a)⊕

∫ b

a
(−1)h′(t)ψ(δ, t)dt

ii). If k(δ, t) = h(t)ψ(δ, t) and ψ(δ, t) is [ii-p]-differentiable w.r.t t, then
k(δ, t) is [ii-p]-differentiable w.r.t t and

∫ b

a
h(t)

∂ψ(δ, t)

∂t
dt = (−1)k(δ, a)⊖ (−1)k(δ, b)⊖gH

∫ b

a
h′(t)ψ(δ, t)dt.
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Proof. Let ψ(δ, t) is [i-p]-differentiable w.r.t t. h(t) be a positive and
decreasing continuous real valued function, then h(t) > 0 and h′(t) < 0

h(t)
∂ψ(δ, t)

∂t
⊖ ((−1)h′(t))ψ(δ, t)

= h(t)
(∂ψ1(δ, t)

∂t
,
ψ2(δ, t)

∂t
,
ψ3(δ, t)

∂t

)
⊖(−h′(t))

(
ψ1(δ, t), ψ2(δ, t), ψ3(δ, t)

)
=

(
h(t)

∂ψ1(δ, t)

∂t
, h(t)

ψ2(δ, t)

∂t
, h(t)

ψ3(δ, t)

∂t

)
⊖
(
− h′(t)ψ1(δ, t),−h′(t)ψ2(δ, t),−h′(t)ψ3(δ, t)

)
=

(
h(t)

∂ψ1(δ, t)

∂t
+ h′(t)ψ1(δ, t),h(t)

ψ2(δ, t)

∂t

+h′(t)ψ2(δ, t), h(t)
ψ3(δ, t)

∂t
+ h′(t)ψ3(δ, t)

)
=
∂k(δ, t)

∂t
.

Therefore k(δ, t) be [i-p]-differentiable w.r.t t and

∂k(δ, t)

∂t
= h(t)

∂ψ(δ, t)

∂t
⊖ ((−1)h′(t))ψ(δ, t). (6)

Take the integral both side of equation (6). Using Proposition 2.5
and taking into account the fact that k(δ, t) is [i-p]-differentiable w.r.t t∫ b

a
h(t)

∂ψ(δ, t)

∂t
dt = k(δ, b)⊖ k(δ, a)⊕

∫ b

a
−h′(t)ψ(δ, t)dt.

The other case can be proved in the same way. □

3 The Fuzzy Sumudu Transform

In this section, the fuzzy Sumudu transform is defined for a fuzzy func-
tion, and some properties for this fuzzy transform will be proved. Let A
be a set defined as

A =
{
ψ(δ, t)| ∃M, τ1 and/or τ2 > 0 such that

D
(
ψ(δ, t), 0

)
< Me

|t|
τj for t ∈ (−1)j × [0,∞)

}
,
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where D is Hausdorff distance, the constant M should be a finite, while
τ1 and τ2 donot have to exist simultaneously and each can be infinite.

For every ψ(δ, t) ∈ A, the Sumudu transform with respect to t,
St[ψ(δ, t)] is defined by

St[ψ(δ, t)] =


∫∞
0 ψ(δ, ξt) exp[−t]dt, 0 ≤ ξ < τ2,∫∞
0 ψ(δ, ξt) exp[−t]dt, −τ1 < ξ ≤ 0.

(7)

If a fuzzy function is defined for non-negative t, the fuzzy Sumudu trans-
form of this function is just defined for non-negative ξ [6]. All equations
in this paper will be defined for t ≥ 0, and henceforward ξ belongs to
[0, τ2).

Let ω = ξt, then for every fuzzy function ψ(δ, t) defined for t ≥ 0,
equation (7) can be written as

St[ψ(δ, t)] =
1

ξ

∫ ∞

0
exp

(−ω
ξ

)
ψ(δ, ω)dω = U(δ, ξ), ξ ∈ [0, τ2). (8)

Provided the integral exists for some ξ.

Definition 3.1. Let h(t) be a real-valued piecewise continuous function,
and ψ(δ, t) is a triangular fuzzy continuous function. The convolution
of two functions h(t) and ψ(δ, t) for t > 0 is given by

(ψ ∗ h)(δ, t) =

∫ t

0
ψ(δ, ζ)h(t− ζ)dζ.

Lemma 3.2. Consider ψ(δ, t) and ϕ(δ, t) are fuzzy functions whose the
fuzzy Sumudu transform exist. Let a and b are two real constants such
that a, b ≥ 0 (or a, b ≤ 0) . Hence

i). a St[ψ(δ, t)]⊖gH b St[ϕ(δ, t)] = St[a ψ(δ, t)⊖gH b ϕ(δ, t)].

ii). a St[ψ(δ, t)]⊕ b St[ϕ(δ, t)] = St[a ψ(δ, t)⊕ b ϕ(δ, t)].
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Proof. Using equation (8) and Lemma 2.4 , we conclude that

a St[a ψ(δ, t)]⊖gH b St[ϕ(δ, t)]

=
1

ξ

∫ ∞

0
a exp

(−t

ξ

)
ψ(δ, t)dt⊖gH

1

ξ

∫ ∞

0
b exp

(−t

ξ

)
ϕ(δ, t)dt

=
1

ξ

∫ ∞

0

(
a exp

(−t

ξ

)
ψ(δ, t)⊖gH b exp

(−t

ξ

)
ϕ(δ, t)

)
dt

=
1

ξ

∫ ∞

0
exp

(−t

ξ

)(
a ψ(δ, t)⊖gH b ϕ(δ, t)

)
dt

= St[a ψ(δ, t)⊖gH b ϕ(δ, t)].

The proof for part (ii) will be obtained similarly. □

Theorem 3.3. Let ψ(δ, t) be [gH-p]-differentiable in J with respect to t
provided that the type of [gH-p]-differentiability does not change in J.
i). If ψ(δ, t) is [i-p]-differentiable with respect to t then

St[
∂ψ(δ, t)

∂t
] =

1

ξ

(
St[ψ(δ, t)]⊖ ψ(δ, 0)

)
.

ii). If ψ(δ, t) is [ii-p]-differentiable with respect to t then

St[
∂ψ(δ, t)

∂t
] =

1

ξ

(
(−1)ψ(δ, 0)⊖gH (−1)St[ψ(δ, t)]

)
.

Proof.Let ψ(δ, t) be [i-p]-differentiable with respect to t. According to
the definition of the fuzzy Sumudu transform for a fuzzy function and
Proposition 2.6, we have

St[
∂ψ(δ, t)

∂t
] =

∫ ∞

0

1

ξ
exp

(−t

ξ

)∂ψ(δ, t)
∂t

dt

= lim
p→∞

∫ p

0

1

ξ
exp

(−t

ξ

)∂ψ(δ, t)
∂t

dt

= lim
p→∞

[
1

ξ
exp

(−p
ξ

)
ψ(δ, p)⊖ 1

ξ
ψ(δ, 0)

⊕ 1

ξ2

∫ p

0
exp

(−t

ξ

)
ψ(δ, t)dt

]
=

1

ξ

[
St[ψ(δ, t)]⊖ ψ(δ, 0)

]
.
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Now, let ψ(δ, t) be [ii-p]-differentiable with respect to t. So, as in
the procedure outlined above

St[
∂ψ(δ, t)

∂t
] =

∫ ∞

0

1

ξ
exp

(−t

ξ

)∂ψ(δ, t)
∂t

dt

= lim
p→∞

[
− 1

ξ
ψ(δ, 0)⊖ −1

ξ
exp

(−p
ξ

)
ψ(δ, p)

⊖gH
−1

ξ2

∫ p

0
exp

(−t

ξ

)
ψ(δ, t)dt

]
=

1

ξ

(
− ψ(δ, 0)⊖gH (−1)St[ψ(δ, t))

]
.

So, the desired result was obtained. □

Theorem 3.4. (Convolution Theorem) Assume that ψ(δ, t) is a tri-
angular fuzzy continuous function on [0,∞) and h(t) is a real-valued
piecewise continuous function on [0,∞). Then

St[ψ ∗ h] = ξ

(
St[ψ(δ, t)]⊙ St[h(t)]

)
.

Proof. By using the definition of the fuzzy Sumudu transform, we have

St[ψ(δ, t)]⊙ St[h(t)] =

(
1

ξ

∫ ∞

0
exp

(−ζ
ξ

)
ψ(δ, ζ)dζ

)
(
1

ξ

∫ ∞

0
exp

(−σ
ξ

)
h(σ)dσ

)
=

1

ξ2

∫ ∞

0

(∫ ∞

0
exp

(−1

ξ
(ζ + σ)

)
ψ(δ, ζ)dζ

)
h(σ)dσ.

Let σ is fix in the interior integral and substitute t = ζ+σ and dζ = dt,
then

St[ψ(δ, t)]⊙ St[h(t)] =
1

ξ2

∫ ∞

0

[ ∫ ∞

σ
exp

(−t

ξ

)
ψ(δ, t− σ)dt

]
h(σ)dσ

=
1

ξ2

∫ ∞

0

[ ∫ ∞

σ
exp

(−t

ξ

)
ψ(δ, t− σ)h(σ)dt

]
dσ.
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Using this fact that ψ(δ, t) =
(
ψ1(δ, t), ψ2(δ, t), ψ3(δ, t)

)
and equation

(2) yield to

St[ψ(δ, t)]⊙ St[h(t)]

=
1

ξ2

(∫ ∞

0

[ ∫ ∞

σ
exp

(−t

ξ

)
ψ1(δ, t− σ)h(σ)dt

]
dσ,∫ ∞

0

[ ∫ ∞

σ
exp

(−t

ξ

)
ψ2(δ, t− σ)h(σ)dt

]
dσ,∫ ∞

0

[ ∫ ∞

σ
exp

(−t

ξ

)
ψ3(δ, t− σ)h(σ)dt

]
dσ

)
.

Now, using Theorem 3.2 in [8], we can reverse the order of integration

St[ψ(δ, t)]⊙ St[h(t)] =

=
1

ξ2

(∫ ∞

0

[ ∫ t

0
exp

(−t

ξ

)
ψ1(δ, t− σ)h(σ)dσ

]
dt,∫ ∞

0

[ ∫ t

0
exp

(−t

ξ

)
ψ2(δ, t− σ)h(σ)dσ

]
dt,∫ ∞

0

[ ∫ t

0
exp

(−t

ξ

)
ψ3(δ, t− σ)h(σ)dσ

]
dt

)
=

1

ξ

(
1

ξ

∫ ∞

0
exp

(−t

ξ

)[∫ t

0
ψ1(δ, t− σ)h(σ)dσ

]
dt,

1

ξ

∫ ∞

0
exp

(−t

ξ

)[∫ t

0
ψ2(δ, t− σ)h(σ)dσ

]
dt,

1

ξ

∫ ∞

0
exp

(−t

ξ

)[∫ t

0
ψ3(δ, t− σ)h(σ)dσ

]
dt

)
.

Then we obtain

St[ψ(δ, t)]⊙ St[h(t)] =
1

ξ

(
1

ξ

∫ ∞

0
exp

(−t

ξ

)[∫ t

0
ψ(δ, t− σ)h(σ)dσ

]
dt

)
=

1

ξ
St[ψ ∗ h].

□
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Theorem 3.5. If 0 < α ≤ 1 and ψ(δ, t), ∂ψ(δ,t)∂t are fuzzy continuous on
[0,∞). Moreover C

gHD
α
t ψ(δ, t) is fuzzy continuous on [0,∞). Then

i). If ψ(δ, t) is (1)-Caputo gH-differentiable, then

St[
C
gHD

α
1ψ(δ, t)] = ξ−αSt[ψ(δ, t)]⊖ ξ−αψ(δ, 0).

ii). If ψ(δ, t) is (2)-Caputo gH-differentiable, then

St[
C
gHD

α
2ψ(δ, t)] = (−1)ξ−αψ(δ, 0)⊖ (−1)ξ−αSt[ψ(δ, t)].

Proof. By Definition 2.3 we have

C
gHD

α
1ψ(δ, t) =

1

Γ(1− α)

∫ t

0
(t− τ)−α

∂ϕ(δ, τ)

∂τ
dτ

=
1

Γ(1− α)

(
t−α ∗ ∂ϕ(δ, t)

∂t

)
.

According to the assumptions of the theorem in case (i), ψ(δ, t) is (1)-
Caputo gH-differentiable. Applying the fuzzy Sumudu transform for
both sides of the above equation and by Theorem 3.4 conclude that

St[
C
gHD

α
1ψ(δ, t)] =

1

Γ(1− α)

(
St[t

−α]⊙ St[
∂ϕ(δ, t)

∂t
]
)
.

Given that St[t
−α] = ξ−αΓ(1− α) [6] and Theorem 3.3 can be conclude

that

St[
C
gHD

α
1ψ(δ, t)] = ξ−αSt[ψ(δ, t)]⊖ ξ−αψ(δ, 0).

Furthermore, a similar approach can be applied to (2)-Caputo gH-differentiable
function. □

Example 3.6. Let ψ(δ, t) = kf(δ, t) such that k is a fuzzy triangular
number and f(δ, t) is a real-valued continuous function, then

St

[
ψ(δ, t)

]
=

1

ξ

∫ ∞

0
exp

(−t

ξ

)
kf(δ, t)dt

= k
1

ξ

∫ ∞

0
exp

(−t

ξ

)
f(δ, t)dt

= kSt

[
f(δ, t)

]
Table A.1 in the article [6] can be used to get St

[
f(δ, t)

]
.



14 S. KHAKRANGIN, et al.

4 The Fuzzy Sumudu Transform Iterative Method
(FSTIM)

In this section, we present the derivation of a fuzzy solution for the fuzzy
time-fractional partial differential with fuzzy initial condition as

C
gHD

α
t ψ(δ, t) = Lψ(δ, t)⊕ g(δ, t), (t > 0, δ ∈ R), 0 < α ≤ 1

ψ(δ, 0) = ϕ(δ),

(9)

where C
gHD

α
t be the fuzzy Caputo fractional partial derivative with

respect to t, L is a linear operator, g(δ, t) =
(
g1(δ, t), g2(δ, t), g3(δ, t)) is

a given fuzzy continuous function and ϕ(δ) =
(
ϕ1(δ), ϕ2(δ), ϕ3(δ)) is the

fuzzy initial condition.

Let us apply the fuzzy Sumudu transform on both sides of equation
(9)

St

[
C
gHD

α
t ψ(δ, t)

]
= St

[
Lψ(δ, t)

]
⊕ St

[
g(δ, t)

]
. (10)

• Let ψ(δ, t) is (1)-Caputo gH-differentiable. Theorem 3.5 concludes
that

St[ψ(δ, t)] = ψ(δ, 0)⊕ ξαSt[Lψ(δ, t)]⊕ ξαSt[g(δ, t)]. (11)

We apply the inverse Sumudu transform on both sides of the equa-
tion (11)

ψ(δ, t) = S−1
t

[
ψ(δ, 0)

]
⊕ S−1

t

[
ξαSt

[
Lψ(δ, t)

]]
⊕ S−1

t

[
ξαSt

[
g(δ, t)

]]
.

Assume that
f(δ, t) = ϕ(δ)⊕ S−1

t

[
ξαSt

[
g(δ, t)

]]
,

K(ψ(δ, t)) = S−1
t

[
ξαSt

[
Lψ(δ, t)

]]
.
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So, equation (11) can be rewritten as follows,

ψ(δ, t) = f(δ, t)⊕K(ψ(δ, t)), (12)

where f(δ, t) is a known fuzzy function, and K is a linear operator
of ψ. Now, suppose that the solution of equation (9) is as follows

ψ(δ, t) =
∞∑
i=0

ψi(δ, t).

K is a linear operator, then

K
( ∞∑
i=0

ψi(δ, t)
)
=

∞∑
i=0

K(ψi(δ, t)).

Consequently, equation (12) can be rewritten as

∞∑
i=0

ψi(δ, t) = ψ0(δ, t)⊕
∞∑
i=0

K(ψi(δ, t)),

and the following recursive equation is obtained
ψ0(δ, t) = f(δ, t)

ψm+1(δ, t) = K(ψm(δ, t)), m = 0, 1, ...
(13)

Finally, the (1)-Caputo gH-differentiable solution of equation (9)
is given as

ψ(δ, t) = f(δ, t)⊕
∞∑
m=1

ψm(δ, t). (14)

• Let ψ(δ, t) be (2)-Caputo gH-differentiable. By the process dis-
cussed in detail in the previous part, we obtain the following re-
cursive equation

ψ0(δ, t) = ϕ(δ)⊖ (−1)S−1
t

[
ξαSt

[
g(δ, t)

]]
,

ψm+1(δ, t) = ⊖(−1)K(ψm(δ, t)), m = 0, 1, ...

(15)
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Finally, the (2)-Caputo gH-differentiable solution of equation (9)
is given as

ψ(δ, t) = ψ0(δ, t)⊕
∞∑
m=1

ψm(δ, t). (16)

5 Examples

In this section, the proposed method is utilized to study some examples
of the fuzzy time-fractional Cauchy equations. The computations asso-
ciated with the examples are performed using Mathematica software.

Example 5.1. Consider the following time-fractional Cauchy equation C
gHD

α
t ψ(δ, t) =

∂2ψ(δ,t)
∂δ2

⊕ ∂
∂δ (δψ(δ, t))

ψ(δ, 0) =
(
0.1, 4.5, 7.8

) (17)

Let ψ(δ, t) be (1)-Caputo gH-differentiable. Applying the fuzzy Sumudu
transform with respect to t on both sides of of equation (17)

ψ0(δ, t) =
(
0.1, 4.5, 7.8

)
,

ψ1(δ, t) = S−1
t

[
ξαSt

[∂2ψ0(δ, t)

∂δ2

]]
⊕ S−1

t

[
ξαSt

[ ∂
∂δ

(δ
(
0.1, 4.5, 7.8

)
)
]]

= S−1
t

[
ξα

(
0.1, 4.5, 7.8

)]

=

(
0.1, 4.5, 7.8

)
tα

Γ(α+ 1)
,

ψ2(δ, t) = S−1
t

[
ξαSt

[ ∂2
∂δ2

((0.1, 4.5, 7.8)tα
Γ(α+ 1)

)]]

⊕ S−1
t

[
ξαSt

[ ∂
∂δ

(δ

(
0.1, 4.5, 7.8

)
tα

Γ(α+ 1)
)
]]

=

(
0.1, 4.5, 7.8

)
t2α

Γ(2α+ 1)
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ψ3(δ, t) = S−1
t

[
ξαSt

[ ∂
∂δ

(δ

(
0.1, 4.5, 7.8

)
t2α

Γ(2α+ 1)
)
]]

=

(
0.1, 4.5, 7.8

)
t3α

Γ(3α+ 1)

...

ψm(δ, t) =

(
0.1, 4.5, 7.8

)
tmα

Γ(mα+ 1)

Therefore, the (1)-Caputo gH-differentiable solution of the problem (17)
is

ψ(δ, t) =
(
0.1, 4.5, 7.8

)
⊕

(
0.1, 4.5, 7.8

)
tα

Γ(α+ 1)
⊕ · · · ⊕

(
0.1, 4.5, 7.8

)
tmα

Γ(mα+ 1)

=
(
0.1, 4.5, 7.8

)
Eα(t

α) (18)

where is Eα(z) the Mittag-Leffler function [7]

Eα(z) =
∞∑
i=0

zj

Γ(αj + 1)
.

The r−cut of this solution, ψ(δ, t; r) = [0.1 + 4.4r, 7.8− 3.3r]Eα(t
α), for

different values of α and 0 ≤ r ≤ 1, are showed in Figures 1.

(a). α = 1
2 . (b). α = 1

3 . (c). α = 1.

Figure 1: Plots of ψ(δ, t; r) = [0.1+4.4r, 7.8− 3.3r]Eα(t
α) for different

values of α and r ∈ [0, 1].
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Example 5.2. Consider the following time-fractional Cauchy reaction-
diffusion equation

C
gHD

1
2
t ψ(δ, t) =

∂2ψ(δ,t)
∂δ2

⊖gH

(
0.4√
π
, 10.6√

π
, 19√

π

)
δDawsonF(

√
t)

ψ(δ, 0) =
(
0.4δ, 10.6δ, 19δ

) (19)

where Dawson function is defined as DawsonF(z) = exp(−z2)
∫ z
0 exp(t2)dt.

Applying the fuzzy Sumudu transform with respect to t on both sides
of equation (19). We want to find a (2)-Caputo differentiable solution,
then, we will use equations (15) and (16)

St[ψ(δ, t)] = ψ(δ, 0)

⊖ (−1)ξ
1
2

(
St

[∂2ψ(δ, t)
∂δ2

]
⊖gH St

[( 0.4√
π
,
10.6√
π
,

19√
π

)
δDawsonF(

√
t)
])

= ψ(δ, 0)⊕ (−1)ξ
1
2St

[( 0.4√
π
,
10.6√
π
,

19√
π

)
δDawsonF(

√
t)
])

⊖ (−1)ξ
1
2St

[∂2ψ(δ, t)
∂δ2

]
we have

St

[( 0.4√
π
,
10.6√
π
,

19√
π

)
δDawsonF(

√
t)
]
=

(0.2δ√ξ
1 + ξ

,
5.3δ

√
ξ

1 + ξ
,
9.5δ

√
ξ

1 + ξ

)
Under process discussed in detail in Section 4, we obtain the following
recursive equation

ψ0(δ, t) =
(
0.4δ, 10.6δ, 19δ

)
⊕ (−1)S−1

t

[(
0.2δξ

1 + ξ
,
5.3δξ

1 + ξ
,
9.5δξ

1 + ξ

)]]
=

(
0.4δ, 10.6δ, 19δ

)
⊕

(
0.2δ(exp(−t)− 1), 5.3δ(exp(−t)− 1), 9.5δ(exp(−t)− 1)

)
,

ψm+1(δ, t) = ⊖(−1)S−1
t

[
ξαSt

[∂2ψm(δ, t)
∂δ2

]]
, m = 0, 1, ...



ON THE FUZZY SOLUTION OF TIME-FRACTIONAL ... 19

We have ψm+1(δ, t) = 0 and, by iteration, the following exact (2)-Caputo
gH-differentiable solution is obtained

ψ(δ, t) =
(
0.2δ(exp(−t) + 1), 5.3δ(exp(−t) + 1), 9.5δ(exp(−t) + 1)

)
.

(a). ψ(δ, t). (b). C
gHD

1
2
t ψ(δ, t).

Figure 2: Plots of ψ(δ, t) and C
gHD

1
2
t ψ(δ, t) for r =

1
2 .

To illustrate the behavior of the (2)-Caputo gH-differentiable solu-
tion , ψ(δ, t; r) = [0.2 + 5.1r, 9.5 − 4.2r]δ(exp(−t) + 1), ψ(δ, t; r) and

C
gHD

1
2
t ψ(δ, t; r) are presented in Figure 2 (a) and (b) for r = 1

2 , respec-
tively. As can be see in Figure 2(b), the position of lower cut(blue) and

upper cut(red) for C
gHD

1
2
t ψ(δ, t) is changed. It shows that, ψ(δ, t) is

(2)-Caputo gH-differentiable with respect to t.

Example 5.3. Consider the following time-fractional Cauchy reaction-
diffusion equation

C
gHD

α
t ψ(δ, t) =

∂2ψ(δ,t)
∂δ2

⊖gH
∂
∂δ (exp(−δ)ψ(δ, t))

ψ(δ, 0) =
(
exp(δ), 6.5 exp(δ), 11 exp(δ)

) (20)

Using the general recurrence relation (13), the (1)-Caputo differentiable
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solution of equation (20) is obtained by

ψ0(δ, t) =
(
exp(δ), 6.5 exp(δ), 11 exp(δ)

)
,

ψ1(δ, t) =

(
exp(δ), 6.5 exp(δ), 11 exp(δ)

)
tα

Γ(α+ 1)
,

ψ2(δ, t) =

(
exp(δ), 6.5 exp(δ), 11 exp(δ)

)
t2α

Γ(2α+ 1)

...

ψm(δ, t) =

(
exp(δ), 6.5 exp(δ), 11 exp(δ)

)
tmα

Γ(mα+ 1)

and

ψ(δ, t) =
(
exp(δ), 6.5 exp(δ), 11 exp(δ)

)
(
1 +

tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+ · · ·+ tmα

Γ(mα+ 1)

)
=

(
exp(δ), 6.5 exp(δ), 11 exp(δ)

)
Eα(t

α)

(a). ψ(δ, t). (b). C
gHD

1
2
t ψ(δ, t).

Figure 3: Plots of ψ(δ, t) and C
gHD

1
2
t ψ(δ, t) for r =

1
2 .
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To illustrate the behavior of the (1)-Caputo gH-differentiable solu-

tion of this fuzzy Cauchy problem, ψ(δ, t) and C
gHD

1
2
t ψ(δ, t) are presented

in Figure 3 (a) and (b) for r = 1
2 , respectively. As can be seen in Figure 3

(b), the position of lower cut(blue) and upper cut(red) for C
gHD

1
2
t ψ(δ, t)

does not change. It show that, ψ(δ, t) is (1)-Caputo gH-differentiable
with respect to t.

6 Conclusions

In this article, we have considered the time-fractional Cauchy Reaction-
Diffusion equation in the fuzzy concept. We have studied this equa-
tion under the generalized Hukuhara Caputo partial differentiability.
To find the analytical solution of the proposed equation, we have used
the fuzzy Sumudu transform method. The final results, show that the
fuzzy Sumudu transform method is very efficient and more realistic to
solve the time-fractional Cauchy Reaction-Diffusion equation.
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