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1 Introduction and Basic Definitions

The concept of a group generalizes to hypergroups by Marty [11]. One
of the most important subclass of hypergroups is known as polygroups
For details about polygroups we refer to [2, 4, 15, 18]. In [11], Heidari

et al. introduced the notion of topological polygroups, also see [12].

Also, the concept of a group generalizes to hypergroups by Dornte [3].
Davvaz and Vougiouklis [5] bring forward the class of n-ary hypergroups,
which is a generalization of hypergroups and n-ary groups, for more
information also see [0, 7]. Special subclass of n-ary hypergroups is n-
ary polygroups. In Ghadiri and Waphare [10] introduced this subclass.
For more details see [1, 19, 16].

Definition 1.1. [10] An n-ary polygroup (in short nAP) is a multi-
valued system M = (P, f,e,”!), where e € P, ~! is a unitary operation
on P, f is an n-ary hyperoperation on P, i.e.,

f:PxXPx..xP— PP)
—_—

n- times

and for all 1 < 4,5 <n, x1,...,Ton_1,x € P, we have
- . _ i1 i—1 _
(1) fh QY20 = Fla ), fa e,
(2) e is a unique element such that f(e,....e,z,¢e,...,e) = z,e ! =e,

(3) x € f(a) = f(21,..., ) implies ; € (z; Y, ...,z 25,1, :U;ll)

A non-empty subset S of an nAP P is called an n-ary subpolygroup
(in short nASP) if, together with the hyperoperation defined on the nAP,
it forms an nAP itself.

The motivation for this study stems from the desire to generalize
classical algebraic structures, such as groups and polygroups, to the n-
ary and topological setting. While binary hyperstructures have been
widely studied, the n-ary case—especially when combined with topol-
ogy—remains under explored despite its potential applications in ab-
stract algebra, theoretical physics, and systems with multi-valued logic
or interactions. Understanding topological nAP their fundamental rela-
tions allows us to capture more complex algebraic behaviors and topo-
logical features that cannot be modelled by binary operations alone.
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This broader framework not only enriches the theory of hyperstructures
but also creates new connections between algebra and topology.

2 On Topological nAP and Examples

Definition 2.1. An nAP P is zero-dimensional if it has a base 2 con-
sisting of nAP s which are both open and closed in P.

Definition 2.2. A topological nAP P is paracompact if every open
covering of P can be refined by locally finite open covering.

Definition 2.3. An nAP P is locally o-compact if for every point x of
P, there exists an open neighborhood V such that the closure of V' is
o-compact.

Definition 2.4. A family v of nAP P is star-finite if every element of
~ intersects only finitely many elements of ~.

Definition 2.5. A nAP P is said to be strongly paracompact if every
open covering of P can be refined by a star-finite open cover in.

Every regular Lindelof nAP P is strongly paracompact and since
o-compact nAP are Lindelof. All regular o-compact nAP are strongly
paracompact.

Definition 2.6. A topological nAP P is said to be disconnected if there
exists Uy,...,U, nASP of P such that U1 U...U, = P and U1N...NU,, = ¢.
In this case, we say that (Ui, ...,U,) is a disconnection on P.

A topological nAP P is connected if the only closed and open nASP
are ¢ and P.

Definition 2.7. A topological nAP P is said to be connected if it is not
disconnected.

For a topological nAP P we denote by C(P) the connected compo-
nent of ep and we call it briefly CC of P.

Proposition 2.8. Every totally disconnected (in short TD) locally com-
pact Hausdorff nAP P is zero-dimensional.
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Proof. Since P is regular, we can assume that P is compact. Fix a
point a € P, and let ¢ be the family of all open and closed nASP of P
which contain a. Put @ =[)q clearly, @ closed in P and a € Q). Notice
also that the family ¢ is closed under finite intersections. O

Theorem 2.9. Fvery locally o-compact topological nAP P is strongly
paracompact.

Proof. Take a symmetric open neighborhood V' of the identity e in P
such that F' =V is o-compact, and put H = UF™. Clearly, H is nASP
of P, and the interior of H contains V. Therefore, H is an open and
closed nASP of P. It is also clear that each F™ is compact, therefore,
the space H is o-compact and hence lindelof. The space P is the free
topological of the n-ary subspaces homomorphic to H. O

Theorem 2.10. Every connected locally o-compact topological nAP P
18 0- compact.

Proof. We repeat the argument in the proof of theorem 2.9. The open
closed nASP H of P constructed there has to coincide with P, since H
is a non-empty and the n-spaceP is connected. Since H is o-compact.
It follows that P is o-compact. O

Example 2.11. Every compact nAP P is totally bounded. Indeed, We
know that an nAP P is totally bounded if every cover of P has a finite
subcover. Since every cover is an open cover, we conclude that every
compact nAP P is totally bounded.

Example 2.12. Let P be a set and S be a non-empty subset of P, for
every ap, as, ...,a, € P we define f(ay,...,a,) = S. Then, P is a left big
in the nAP (P, f,e,”!) if and only if P = S.

Example 2.13. Any compact nAP is locally compact, because if an
nAP P is compact, then it is a compact neighborhood of every point.

Example 2.14. Any discrete nAP P is locally compact, because the
singleton can serve as compact neighborhood.

Example 2.15. If P is locally compact, then P is compactly generated.
To see this, let A be an nASP of P such that all compact nASP C' of
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P, A,NC is open in P. Let z € A, and choose any neighborhood U of z
that lies in a compact nASP C of P, i.e., U is open in C, ANC is open
inC', so ANCNU is open in CNU. This yields that AN U is open in
U. SO ANU is open in P.

Example 2.16. Every open nASP of a locally compact Hausdorff nAP
is locally compact. To see this, let P be a locally compact Hausdorff
nAP and Y an open nASP of P. Since P is locally compact Hausdorff
n-ary polygroup, it is a regular nAP and Y is regular nAP. Choose a
random 2 € Y and U C Y such that U C Y with € U, we can do this
because Y is regular since U is the closure of an open nAP in a locally
compact nAP we know that U is a compact in P. Therefore for every
open cover of U, there exists a finite subcover of U. Because Y is open
in P, the intersection of(any open cover of U in P )and Y would still be
an open cover of U in P therefore there exists a finite subcover for this
open cover contained in Y. therefore U is compact in Y which implies
that Y is locally compact.

3 Connected Topological nAP s

Lemma 3.1. Let P = (P, f,e,”!,7) be a topological nAP.

(1) If C4,...,Cy are connected nAP s in P then, also f(C1,...,Cy) is
connected.

(2) If C is connected nAP in P then, the nAP C~! is connected.

Proof. (1) The nASP C; x ... x Cp, of P x ... X P is connected. Now,
the map f: P X ... x P — P*(P) defined (21, ..., x5) — f(21, ..., Tn)
is continuous and f(C7 x ... x Cy,) is connected.

(2) C~! is a continuous image of C' under the continuous map x
z~!. Since C is connected, it follows that C~! is connected. O

Theorem 3.2. Let P be a topological nAP and let C be the component
of identity e then, C is a closed normal nASP of P.

Proof. Since inversion is a homomorphism of P, C~! is a connected
nAP containing e, hence, C~! C C. If ay, ..., ap—1 are points of C then,
also afl,...,aflil € C. Therefore, f(ai,...,an—1,C) is connected nAP
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containing e, and so f(a1,....,an—1,C) C C. Thus, f(C,C,...,C) C C,
so that C is an nASP of P. If a € P then, f(a,C,a ',e,) C Cis a
connected nAP containing e, so that f(a,C,a™!,e,) C C. This implies
that C is a normal nASP of P. Therefore, C is closed. O

Theorem 3.3. Let P be a topological nAP and let C be the component
of the identity in P. Then, for all ay,...,an—1 € P, f(a1,...,an—1,C) =
f(Cia,...;an—1) is a component of ai,...,an_1.

Proof. The mapping = — f(a1,...,an—1,2) is a homomorphism of P,
and C is a normal nASP of P. O

Definition 3.4. Suppose that K is an nASP of P. We define the relation
=;, on P"=1) by

(23") =k (13") <= f(k,23") = f(k,43"),

for (z3"),(y5*) € P(™=D. The class of (x3,...,x,,) € PV is denoted
by
{(y3") | F(Kw3")
= f(K,z8"),y2,...,ym € P}

(m—1)

and we set
K

= {K[z}],z2,....,.xm € P}. Also, we define the

relation =" on P as follows:

=Ky o Jay,..,am € P wit z,y € f(K,a}),
for every z,y € P.

Theorem 3.5. [17] Let N be a normal nASP of a topological nAP P
(m—1)

and every open subset of P be a complete part. Then, (T, o,N,~1)

is a topological nAP , where ®(N a1, ey, ..., N[am,es]) = {N[t,es] | t €

fla™)}.
Theorem 3.6. Let P be a topological nAP and let C be the component

(n—1)
is a TD Hausdorff nAP.

of the identity in P. Then, —
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pn—1)
Proof. Let {C[z,e.] : x € P} be an nASP of — which is properly

containing {C'}. We will show that {Cz,e,] : * € P} is disconnected
pn-1) pn-1)

(n=1) onto o and

in

. Let 7 be the natural mapping of P

let A nASP of P("~1)_ It is easy to verify that 7(ANC[z,e,]) = 7(A) N
{C[z,es] : @ € P}. The nAP Clx,e,] properly contains C, and so is
disconnected:
C[P,es] = (U1 NC[P,es]) U...U (U, NC[P, es]), where
(UNC[P,e])N...0(U,NC[P, e4]) = ¢, neither set is void, and Uy, ..., U,
are open in P. Thus,
{Clz,e] :x € P} = (w(U1)N{Clx,es] : . € P}HU...U(m(Up)N{Cz, e4] :
n—1
x € P}), where w(U;),...,m(U,) are open in £7 and 7 is an open
mapping. For x € P, we have Clz,e,] = (U3 N Clz,e.]) U...U (U, N
Cl[z, e4]). Thus, since C[x, e,] is connected, either Clz, e.] C U1NC|z, e4]
or ... or Clz,es] C Uy N Clz,es]. Consequently, U; N Clzx, eyl,...,Up N
C[z, e] are union of n-ary cosets of C' and so they have disjoint images
under 7. Thus,

(m(Ur) N{Cz,es]|z € P})N...n(w(Up) N{Clz, es]|x € P}) = ¢,
so that {C[x, e, : © € P} is disconnected. O

Theorem 3.7. Let P be a topological nAP, C the component of e, and
[e.¢]

U be a neighborhood of e. Then, C C |J U,. In particular, if P is
n=1

oo
connected, then P = |J U,.

n=1
Proof. If V is a symmetric neighborhood of e such that V' C U, then

oo

J V™ is open and close, since P is connected, it follows that C' C
no:ol o

yvrc yom O

n=1 n=1

Theorem 3.8. Let P be a locally compact nAP and C be the component
of the identity element in P. Then, C is the intersection of all open
nASP of P.
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Proof. Obviously, C' is contained in the intersection of all open nASPs
of P(=1_ Suppose that  is an arbitrary element of P with = ¢ C. Take

(n—1)
nAP P

. It is TD and locally compacted. So, there is a compact
(n—1)
that does not contain the element

nASP {Clz,e] : u € U} of P

C
pn-1)
Clz, es] of o We may take U to be a neighborhood of e in P~ 1,

Then, C[U, e,] is open nASP of P~V not containing z. [

Corollary 3.9. Let P be a locally compact. The below conditions are
equivalent:

(1) P is connected;

(2) P has no proper open nASP;

o0
(3) For any neighborhood U of e, we have |J U™ = P
n=1
Proof. According to Theorem 3.7 and Theorem 3.8, the result is
straightforward. 0

Theorem 3.10. Let P be a locally compact nAP and let C' be the com-
pn-1)
(n—1)

ponent of e. If s compactly generated, then P s compactly

generated.

Proof. The proof follows in a direct manner from the preceding results
and requires no additional technical tools. O

Theorem 3.11. Let P be a topological nAP and let N be an nASP of

p(n—1)
P. If N and N

Proof. Assume that P = U1 U...UU,, where Uy, ..., U,are n-ary disjoint
non-void n-ary open sets. Since N is connected, each coset of N is
either an n-ary subset of Uy or an n-ary subset U,,. Thus, the relation

p(n—1)
N = {Nlz,e.] : N[z,e.] CU1}U...U{N|z,es] : N[z,e.] C Up} =
(n—1)

{N[z,es],x € U1} U...U{NJz,es],x € Up} expresses

(n=1) s connected.

are connected then, P

as the union
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of disjoint non-void n-ary open sets. This contradicts the hypothesis
p(n—1)

that is connected. O

Theorem 3.12. Let P be a topological nAP and N be a closed normal
nASP of P. The following statements are equivalent:

(n—1)
N

(n—1)

(n—1)

(1) If both N and are connected then, also P is connected.

P
(2) If both N and are TD, then, also P is TD.

Proof. (1) Let A # ¢ be an n-ary closed and open set of P. Since
each coset Nla,e,] is connected, it follows that either Nla,es] C A or
Nla,e.] N A = ¢. Hence, 7~ 1(7(A)) = A. This implies that w(A) is

(n—1)
a non-empty n-ary close and open set of the connected nAP

p(n—1)
Thus, 7(A) = .consequently A = P(»=1),
(2) Assume that C' is connected n-ary set in P. Then, 7(C) is
(n—1)
a connected set of ———, so w(C) is a singleton. Consequently, C' is

contained in some coset N[z, e,]. Since N[z, e.] is TD as well, we deduce
that C is singleton. This shows P("~1 is TD. O

pn—1)

Lemma 3.13. If P is a topological nAP, then the nAP m

TD.

18

p(n—1)
Proof. Suppose that 7 from P(™1 to

is the canonical map,
pn-1)
C(Pn=1))
N pn=1)
e - Y epeny
Hence, N is connect. Since it contains C(P"~1), it follows that N =

(n—1)

P
C(P™=1). Therefore, m is TD. O For a topological nAP P

denote by a(P) the n-ary set of points z € P connected to e, by an arc,
i.e., a continuous map g : [0, 1] — P such that ¢g(0) = e, and ¢g(1) = =.

and N is the inverse image of C( ) under . Next, we have
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Theorem 3.14. Let P be a topological nAP the arc component a(P) of
P is an nASP of P.

Proof. We have f(a(P),...,a(P)) C a(P). Similarly, by using the
continuity of the inverse x — 271, we obtain that a(P) C a(P)~!. This
prove that a(P) is an nASP of P. [

Definition 3.15. Let P be a topological nAP denote by Q(p) the quasi
component of the natural element e, of P and call it quasi-component
of P.

Corollary 3.16. Let P be a locally compact nAP. Then, Q(P) = C(p).

Proof. C(P) is an intersection of open nASPs. Hence, C(p) contains
Q(P) which is true coincide with the intersection of all n-ary sets of P
containing e,. The inclusion C'(P) C Q(P) is always true. [

Proposition 3.17. Let P be a topological nAP. The quasi-component
Q(P) is a closed normal nASP of P.

Proof. Let zi,...,z, € Q(P). To prove that f(zi,...,z,) C Q(P).
We need to verify that f(z1,...,2,) C O for every n-ary close set O
containing e,. Let O be an n-ary set, then z1,...,z, € O. Obvi-
ously, f(O,z;',...,25") is n-ary close set containing e, hence x; €
f(O,z;Y ..., x5 "), This implies that f(z1,...,2,) € O. Hence, Q(P)
is stable under multiplication.

Each close set O containing e, the set O~! has the same property. Thus,
Q(P) is stable we write the operation a — a~!. This implies that Q(P)
is an nASP. Moreover, for every a € P and for every close set O con-
taining e also its image f(a,0,a~!, e, under the conjugations a close set
containing e,. So Q(P) is stable also under conjugation. Therefore,
Q(P) is n-ary normal and closed. [

Definition 3.18. When A is an n-ary subset of an nAP, (A) denotes the
intersection of all nASPs containing A. We call (A) the nASP generated
by A.

Proposition 3.19. Let P be a topological nAP and A n-ary subset of
P. If A is connected and e € A then, (A) is connected.
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Proof. Suppose that A is connected and e € A. We see that for all

n=0,1,..,C, = (AUA™1)" is connected (note that AUA~" is connected
o

since e € AUA™Y). But e € () Cy, so it follows that (A) = U ,C, is

n=0
connected as well. O

Proposition 3.20. If P is a connected nAP and U n-ary non-empty
open subset of P then, P is the nAP generated by U. In otherworld,
P=(U)

Proof. Since (U) is an nASP of P containing an n-ary non-empty open
subset, we conclude that it is an nASP, (U) cannot be proper and it
follows that (U) = P. O

4 Fundamental Relations and Related Results

Definition 4.1. For all n > 1, we define the relation 3, on a semihy-
pergroup (H, o) as follows:

n
xBny if there exists ay,...,a, in H such that{z,y} C [] a;
i=1

and we set 8 = |J Bn, where p; = {(x,z) | x € H} is the diagonal

n>1
relation on H.
This relation was introduced by Koskas [13] and studied by many
authors, for instance [3, 4, 9, 20], and many others.

Definition 4.2. Let A be a subset of topological space X and ~ be an
equivalence relation on X. Then, the saturation of A with respect to
~is theset A = {z € X|3a € A,z ~ a}. If A = A then, A is called
saturated.

Let (P, f,e,”',7) be a topological nAP and 3* be the fundamental

relation on P. Then, (ﬁj) is a topological space,where T is the quo-

P
tient topology induce by the natural mapping 7 : P — § That is
P, . P e —1(A) - :
A C = is open in — if and only if 771 is open in P.
* *

B B

11
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Lemma 4.3. Let (P, f,e,”",7) be a topological nAP and 3* be the fun-
damental relation on P. Then, every saturation subset of P is a complete
part.

Proof. Suppose that that A is a saturated subset of P such that AN
[[ai; # ¢ for a nonzero natural number n and for some z1,...,x, € P.
Hence, there exists a € AN ] a;. Then, for every x € [[, x;, we
have zf*a. Thus, x € A=A There, A is a complete part. O

Lemma 4.4. Let (P, f,e,”! 1) be a topological nAP such that every
n-ary open subset of P is a complete part. Then, the natural mapping

m: P — § 1S an open mapping.
Proof. The proof follows in a direct manner from the preceding results
and requires no additional technical tools. O

Theorem 4.5. Let (P, f, e, ,7) be a topological nAP such that every

open subset of P is a complete part. Then, </B*,Bf;,6*(e),—l,r> 18

topological n-group.

Proof. We know (éj*, Bf*, B*(e),T) is n-group. We show that the map-
ping
(B*(a1), ..., B*(an)) — ﬁf*(ﬂ*(al), vy B (an)) and §*(z) = (8*(2)) 7" =

B*(z~') are continuous.
P
Suppose that A is open in 5 such that Bf*(al), vy ¥ (ap)) = B*(a) €
A for every a € f(8*(z1),...,8%(zn)). So f(ai,....,an) C
f—l
B
of P such that a; € V4,...,a, € V,, and f(V4,...,V,,) € 7= 1(A). Thus,

-1
B*
(A) is open in P, it follows that there are open subsets Vi,...,V,,

(A). Since

5{(5*(1/1), ey, 3%(Vi)) € Aand g*(V4), ..., 5*(V},) are open in g* Hence,
5f* is continuous. Now, suppose that 3*(z)~! = g*(z7!) € ;D* Then,

x~' € 771(A). Thus, there exists an open subset U of P such that
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vt e U Crl(A). Sorn(z!) e m(Ut) C A. And n~1(U) is open
P

in— O
6*

Corollary 4.6. Let P be a topological nAP such that every saturated
P

subset of P is open. Then, (ﬁ, Bf;, B*(e), —1,T) is a topological n-group.

Definition 4.7. Let G be an n-group and {A,} be a collection of dis-

joint non-empty sets. Let P = |J Ay, and for z1,...,2, € P define
geP
flx1,.yxy) = Agll"'gln’ where z1 € Agng .. and z, € Ay, . Then,

(P, f,e,”') is an nAP, and it is called (G, P) nAP.

Lemma 4.8. Let (G, 0, T) be a topological n-ary group and {Ay} be a col-
lection of disjoint non-empty sets, and let P = UA,. Then, (P, f,e,”, 7p)
is a topological nAP, where P is a (G,P), nAP and 7p = {UA,,u €
UlU € T} U{o}.

Proof. One can show 7p is a topology on P. Suppose that Ay = |J A.
uelU
is an open subset of P such that f(z1,...,z,) C Ay for z1,...,z, € P.

Since U is open in P and gy ,...,gz, € U, it follows that there exists
open subsets Vi,...,V, of P containing g, ..., gz,, respectively, such
that V;..V,, C U. So Ay,,..., Ay, are open in P containing zq, ..., Zp,
respectively, and f(Ay,, ..., Ay, ) € Ay. Thus, f is continuous. Similarly,
—1 is continuous. U

Theorem 4.9. Let (G,o0,7) be a topological n-group and {A4} be col-

lection of disjoint non-empty sets, and let P = |J Ay. Then, the fun-
geG
damental nAP P and G are topological isomorphic.

Proof. Let P = |J Ay. For every z € P, there is g, € G such that
geG

P
x € Ag,. Now, we define 1) : 7 — G by ¥(8*(z)) = g». We observe

that ¢ is a group isomorphism. Clearly, ¥ (p(Ay)) = U for all open
subset U of P. Hence, we conclude that ¢ is open as well as continuous.
O

13
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P
Proposition 4.10. Let (G,0) be a topological n-group, and let N be

an n-ary normal subgroup of G. Then, %_1 = {Plx,el|z € G} is
topological n-space with respect to the quotient topology induce by natural
(n—1) Gn—1)

mapping Gn=1) — . Furthermore, every open subset of

is the form {Nu,es] : u € U} for some open subset U of G.

Proof. Let (P, f) be an n-ary group, and let N be a non-normal nASP of
(n—1) pn—1)
= {N[z,e]|x € P}. Then, (T,F,N[e], —-1)

p(n—1)

P. If we denote

is an nAP, where for all N[z1, ex], ..., N[z, ex] of , we have

F(N[z1, e, ..., N[zp, ex]) = {N[z,e]|z € f(21,...,20)}

(n—1)

Let 8* be the fundamental relation of the nAP ,F,N,—1). Then,

pn—1)
g is a topological n-space with respect to the quotient topology
pn—1)
pn—1) N
induce by natural mapping 7 : ~ B where 7(Nz, e.]) =

p(n—1)

B*(N[z,es]). by Theorem 4.9, A C g is open if and only if
7= 1(A) = {Nu, e]|u € U} for some open subset U of P*~1 ]

Theorem 4.11. Let (P, f) be an n-ary group, and let H be an n-ary

(n=1)

non-normal subgroup of P. Consider f* on the nAP ,F,Nle.],”1).
Then, there exists an n-ary normal sungroup N of P such that the n-ary
P (n—1)
— P n—1
groups g and N are isomorphic.

Proof. Suppose that N is the n-ary subgroup of P generated by the set
{f(P~',h,P,e,)|p € P,h € H}. Then, N is an n-ary normal subgroup
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pn-1)
of P. Now, we define ® : B — N by 5*([x,ex]) = N([z, ex]).

Then, ® is well define. Indeed, if f*(H[x,e.]) = B*(H|[y,e«]), then
there exists n € N and ay, ..., a, € P such that {H[z,e.]| = H|y, e} C
F(Hlay, e, ..., Hlan, ex]). So N[z,e.] = N[y, es]. Thus, we get

O(B*(H[z,e.])) = (B (Hlz, e4])).
Also, @ is homomorphism. Indeed, for every z1,...,x, € H, we have

F /
@(ﬁ(ﬁ*(ff[ﬂﬁhe*])a ooy B (Hwn, €4]) = F' (N[z1, €4], .., N[z1, 64]) =
F’(B*(H[xl,e*], e, 3*(H[z1,e4]). Obviously, ® is onto. It remains to
show that @ is injective. If 5*(H|[x,e.]) € Ker®®, then z € N. Hence,
there exists n € N and Pi,..., P41 € P and hy,...,h, € H such that

T = F;';lf(Pi_l, hi, gi,e). Thus, we have

{H[z,e.], Hleu]} © F(Hlgy " ex, Hlgr, €], o Hlgy s €], Hlgn, e4])-

Hence, H[z,e.|f*H[e.]. So, Ker® is trivial. Therefore, ® is an isomor-
phism. O

Theorem 4.12. Let (P, f) be a topological n-group, and let H be an
n-ary non normal subgroup of P. Let B* be the fundamental relation

P(n—1
of the nAP <L

H
pn—1)

,F,Hle.],”t). Then, the natural mapping 7 :

H B

1S open.

p(n—1)
Proof. Suppose that A is open in

Then, there is an open

subset V in PV such that A = {H[v,e,]lv € V}. First, we verify
that 7= (7 (A)) = {H[n,v,e]|n € N,v € V}. Let H[z,e,] € 7~ 1(m(A)).
So there is v € V such that m(H|z,e.]) = m(H][v,es]). It implies that
{H[z,e.], H[v,e.|} C F(Hla,ex]), ..., H[ak, ex]) for k € N and for some
ai,....,ar € P. Therefore H[z,e,] € [H[n,v,es]]ln € N,v e V}.

For the converse, let v € V and n € N. Then, there are kK € N and
ai,...,ar € P and hy,...,ht € H and we have

{H[n,v,e], H[v,ei]} C F(H[afl, es, ...,H[a;l,e*],H[alzl,e*]).

15
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Thus, H[n,v,e.]B*H[v,e]. So H[n,v,e.] € 7 (({H[v,es]lv € V})).
p-1)

Hence, we conclude that 7(A) is open in g . This yields that

P
7 (7w (A)) = {H[n,v,e]|n € N,v € V} is open in
cisely, f(V,N,e,) is open in PV, O

(n—1)

. More pre-

5 Conclusion

In this work, we have extended the study of polygroups to the setting
of nm-ary hyperoperations equipped with topological structures. After
laying out the foundational definitions, we introduced the concept of
topological nAP and analyzed their continuity properties. Our focus on
connected topological nAP highlighted how topological connectedness
imposes structural constraints and enriches the algebraic framework.
Moreover, we examined the role of the fundamental relation in con-
necting the algebraic and topological aspects of these hyperstructures.
The compatibility between this equivalence relation and the underlying
topology sheds light on the decomposition of nAPs into simpler compo-
nents. These results not only generalize known properties from binary
hyperstructures to the n-ary case but also open up avenues for further
research in topological hyperalgebraic systems and their applications.
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