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Abstract. In this paper, we investigate the topological aspects of n-ary
polygroups, a generalization of classical group-like structures within the
framework of algebraic hyperstructures. We introduce the definition of
n-ary polygroups. Then develop the theory of n-ary topological poly-
groups by equipping these structures with compatible topologies, and
examine their continuity properties. Special attention is given to the
subclass of connected n-ary topological polygroups, where we explore
the influence of topological connectedness on the algebraic behavior. In
particular, we prove some results about the quotient topological n-ary
polygroups. Finally, we study the connection between the fundamen-
tal relation—a key concept in the theory of hyperstructures—and the
topology of n-ary polygroups, providing new insights into their struc-
tural decomposition. Our results contribute to a deeper understanding
of the interplay between topology and generalized algebraic operations.
By using the notion of fundamental relation we make a connection be-
tween topological n-ary polygroups and topological n-ary groups.
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1 Introduction and Basic Definitions

The concept of a group generalizes to hypergroups by Marty [14]. One
of the most important subclass of hypergroups is known as polygroups
For details about polygroups we refer to [2, 4, 15, 18]. In [11], Heidari
et al. introduced the notion of topological polygroups, also see [12].

Also, the concept of a group generalizes to hypergroups by Dörnte [8].
Davvaz and Vougiouklis [5] bring forward the class of n-ary hypergroups,
which is a generalization of hypergroups and n-ary groups, for more
information also see [6, 7]. Special subclass of n-ary hypergroups is n-
ary polygroups. In Ghadiri and Waphare [10] introduced this subclass.
For more details see [1, 19, 16].

Definition 1.1. [10] An n-ary polygroup (in short nAP) is a multi-
valued system M = ⟨P, f, e,−1 ⟩, where e ∈ P , −1 is a unitary operation
on P , f is an n-ary hyperoperation on P , i.e.,

f : P × P × ...× P︸ ︷︷ ︸
n- times

−→ P∗(P )

and for all 1 ≤ i, j ≤ n, x1, ..., x2n−1, x ∈ P , we have

(1) f(xi−1
1 , f(n+i−1

i ), x2n−1
n+i ) = f(xj−1

1 ), f(xn+j−1
j , x2n−1

n+j ),

(2) e is a unique element such that f(e, ..., e, x, e, ..., e) = x, e−1 = e,

(3) x ∈ f(xn1 ) = f(x1, ..., xn) implies xi ∈ (x−1
i−1, ..., x

−1
1 , x, x−1

n , ...x−1
i+1).

A non-empty subset S of an nAP P is called an n-ary subpolygroup
(in short nASP) if, together with the hyperoperation defined on the nAP,
it forms an nAP itself.

The motivation for this study stems from the desire to generalize
classical algebraic structures, such as groups and polygroups, to the n-
ary and topological setting. While binary hyperstructures have been
widely studied, the n-ary case—especially when combined with topol-
ogy—remains under explored despite its potential applications in ab-
stract algebra, theoretical physics, and systems with multi-valued logic
or interactions. Understanding topological nAP their fundamental rela-
tions allows us to capture more complex algebraic behaviors and topo-
logical features that cannot be modelled by binary operations alone.
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This broader framework not only enriches the theory of hyperstructures
but also creates new connections between algebra and topology.

2 On Topological nAP and Examples

Definition 2.1. An nAP P is zero-dimensional if it has a base Ω con-
sisting of nAP s which are both open and closed in P .

Definition 2.2. A topological nAP P is paracompact if every open
covering of P can be refined by locally finite open covering.

Definition 2.3. An nAP P is locally σ-compact if for every point x of
P , there exists an open neighborhood V such that the closure of V is
σ-compact.

Definition 2.4. A family γ of nAP P is star-finite if every element of
γ intersects only finitely many elements of γ.

Definition 2.5. A nAP P is said to be strongly paracompact if every
open covering of P can be refined by a star-finite open cover in.

Every regular Lindelof nAP P is strongly paracompact and since
σ-compact nAP are Lindelof. All regular σ-compact nAP are strongly
paracompact.

Definition 2.6. A topological nAP P is said to be disconnected if there
exists U1,...,Un nASP of P such that U1∪ ...Un = P and U1∩ ...∩Un = ϕ.
In this case, we say that (U1, ..., Un) is a disconnection on P .

A topological nAP P is connected if the only closed and open nASP
are ϕ and P .

Definition 2.7. A topological nAP P is said to be connected if it is not
disconnected.

For a topological nAP P we denote by C(P ) the connected compo-
nent of eP and we call it briefly CC of P .

Proposition 2.8. Every totally disconnected (in short TD) locally com-
pact Hausdorff nAP P is zero-dimensional.
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Proof. Since P is regular, we can assume that P is compact. Fix a
point a ∈ P , and let q be the family of all open and closed nASP of P
which contain a. Put Q =

⋂
q clearly, Q closed in P and a ∈ Q. Notice

also that the family q is closed under finite intersections. □

Theorem 2.9. Every locally σ-compact topological nAP P is strongly
paracompact.

Proof. Take a symmetric open neighborhood V of the identity e in P
such that F = V is σ-compact, and put H = ∪Fn. Clearly, H is nASP
of P , and the interior of H contains V . Therefore, H is an open and
closed nASP of P . It is also clear that each Fn is compact, therefore,
the space H is σ-compact and hence lindelof. The space P is the free
topological of the n-ary subspaces homomorphic to H. □

Theorem 2.10. Every connected locally σ-compact topological nAP P
is σ- compact.

Proof. We repeat the argument in the proof of theorem 2.9. The open
closed nASP H of P constructed there has to coincide with P , since H
is a non-empty and the n-spaceP is connected. Since H is σ-compact.
It follows that P is σ-compact. □

Example 2.11. Every compact nAP P is totally bounded. Indeed, We
know that an nAP P is totally bounded if every cover of P has a finite
subcover. Since every cover is an open cover, we conclude that every
compact nAP P is totally bounded.

Example 2.12. Let P be a set and S be a non-empty subset of P , for
every a1, a2, ..., an ∈ P we define f(a1, ..., an) = S. Then, P is a left big
in the nAP (P, f, e,−1 ) if and only if P = S.

Example 2.13. Any compact nAP is locally compact, because if an
nAP P is compact, then it is a compact neighborhood of every point.

Example 2.14. Any discrete nAP P is locally compact, because the
singleton can serve as compact neighborhood.

Example 2.15. If P is locally compact, then P is compactly generated.
To see this, let A be an nASP of P such that all compact nASP C of
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P , A,∩C is open in P . Let x ∈ A, and choose any neighborhood U of x
that lies in a compact nASP C of P , i.e., U is open in C, A∩C is open
in C, so A ∩ C ∩ U is open in C ∩ U . This yields that A ∩ U is open in
U . SO A ∩ U is open in P .

Example 2.16. Every open nASP of a locally compact Hausdorff nAP
is locally compact. To see this, let P be a locally compact Hausdorff
nAP and Y an open nASP of P . Since P is locally compact Hausdorff
n-ary polygroup, it is a regular nAP and Y is regular nAP. Choose a
random x ∈ Y and U ⊆ Y such that U ⊆ Y with x ∈ U , we can do this
because Y is regular since U is the closure of an open nAP in a locally
compact nAP we know that U is a compact in P . Therefore for every
open cover of U , there exists a finite subcover of U . Because Y is open
in P , the intersection of(any open cover of U in P )and Y would still be
an open cover of U in P therefore there exists a finite subcover for this
open cover contained in Y . therefore U is compact in Y which implies
that Y is locally compact.

3 Connected Topological nAP s

Lemma 3.1. Let P = ⟨P, f, e,−1 , τ⟩ be a topological nAP.

(1) If C1, ..., Cn are connected nAP s in P then, also f(C1, ..., Cn) is
connected.

(2) If C is connected nAP in P then, the nAP C−1 is connected.

Proof. (1) The nASP C1 × ... × Cn of P × ... × P is connected. Now,
the map f : P × ... × P −→ P∗(P ) defined (x1, ..., xn) 7−→ f(x1, ..., xn)
is continuous and f(C1 × ...× Cn) is connected.

(2) C−1 is a continuous image of C under the continuous map x 7→
x−1. Since C is connected, it follows that C−1 is connected. □

Theorem 3.2. Let P be a topological nAP and let C be the component
of identity e then, C is a closed normal nASP of P .

Proof. Since inversion is a homomorphism of P , C−1 is a connected
nAP containing e, hence, C−1 ⊆ C. If a1, ..., an−1 are points of C then,
also a−1

1 , ..., a−1
n−1 ∈ C. Therefore, f(a1, ..., an−1, C) is connected nAP
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containing e, and so f(a1, ...., an−1, C) ⊂ C. Thus, f(C,C, ..., C) ⊂ C,
so that C is an nASP of P . If a ∈ P then, f(a,C, a−1, e∗) ⊂ C is a
connected nAP containing e, so that f(a,C, a−1, e∗) ⊂ C. This implies
that C is a normal nASP of P . Therefore, C is closed. □

Theorem 3.3. Let P be a topological nAP and let C be the component
of the identity in P . Then, for all a1, ..., an−1 ∈ P , f(a1, ..., an−1, C) =
f(C, a1, ..., an−1) is a component of a1, ..., an−1.

Proof. The mapping x 7−→ f(a1, ..., an−1, x) is a homomorphism of P ,
and C is a normal nASP of P . □

Definition 3.4. Suppose thatK is an nASP of P . We define the relation
≡k on P (m−1) by

(xm2 ) ≡k (ym2 ) ⇐⇒ f(k, xm2 ) = f(k, ym2 ),

for (xm2 ),(ym2 ) ∈ P (m−1). The class of (x2, ..., xm) ∈ P (m−1) is denoted
by

K[xm2 ] = {(ym2 ) | f(K, ym2 )
= f(K,xm2 ), y2, ..., ym ∈ P}

and we set
P (m−1)

K
= {K[xm2 ], x2, ..., xm ∈ P}. Also, we define the

relation =K on P as follows:

x =K y ⇔ ∃a2, ..., am ∈ P wit x, y ∈ f(K, am2 ),

for every x, y ∈ P .

Theorem 3.5. [17] Let N be a normal nASP of a topological nAP P

and every open subset of P be a complete part. Then, ⟨P
(m−1)

N
,⊙, N,−I ⟩

is a topological nAP , where ⊙(N [a1, e∗], ..., N [am, e∗]) = {N [t, e∗] | t ∈
f(am1 )}.

Theorem 3.6. Let P be a topological nAP and let C be the component

of the identity in P . Then,
P (n−1)

C
is a TD Hausdorff nAP.
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Proof. Let {C[x, e∗] : x ∈ P} be an nASP of
P (n−1)

C
, which is properly

containing {C}. We will show that {C[x, e∗] : x ∈ P} is disconnected

in
P (n−1)

C
. Let π be the natural mapping of P (n−1) onto

P (n−1)

C
, and

let A nASP of P (n−1). It is easy to verify that π(A∩C[x, e∗]) = π(A)∩
{C[x, e∗] : x ∈ P}. The nAP C[x, e∗] properly contains C, and so is
disconnected:
C[P, e∗] = (U1 ∩ C[P, e∗]) ∪ ... ∪ (Un ∩ C[P, e∗]), where
(U1∩C[P, e∗])∩...∩(Un∩C[P, e∗]) = ϕ, neither set is void, and U1, ..., Un

are open in P . Thus,
{C[x, e∗] : x ∈ P} = (π(U1)∩{C[x, e∗] : x ∈ P})∪...∪(π(Un)∩{C[x, e∗] :

x ∈ P}), where π(U1), ..., π(Un) are open in
P (n−1)

C
, and π is an open

mapping. For x ∈ P , we have C[x, e∗] = (U1 ∩ C[x, e∗]) ∪ ... ∪ (Un ∩
C[x, e∗]). Thus, since C[x, e∗] is connected, either C[x, e∗] ⊆ U1∩C[x, e∗]
or ... or C[x, e∗] ⊆ Un ∩ C[x, e∗]. Consequently, U1 ∩ C[x, e∗],...,Un ∩
C[x, e∗] are union of n-ary cosets of C and so they have disjoint images
under π. Thus,

(π(U1) ∩ {C[x, e∗]|x ∈ P}) ∩ ... ∩ (π(Un) ∩ {C[x, e∗]|x ∈ P}) = ϕ,

so that {C[x, e∗] : x ∈ P} is disconnected. □

Theorem 3.7. Let P be a topological nAP, C the component of e, and

U be a neighborhood of e. Then, C ⊂
∞⋃
n=1

Un. In particular, if P is

connected, then P =
∞⋃
n=1

Un.

Proof. If V is a symmetric neighborhood of e such that V ⊂ U , then
∞⋃
n=1

V n is open and close, since P is connected, it follows that C ⊂
∞⋃
n=1

V n ⊂
∞⋃
n=1

Un. □

Theorem 3.8. Let P be a locally compact nAP and C be the component
of the identity element in P . Then, C is the intersection of all open
nASP of P .
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Proof. Obviously, C is contained in the intersection of all open nASPs
of P (n−1). Suppose that x is an arbitrary element of P with x ̸∈ C. Take

nAP
P (n−1)

N
. It is TD and locally compacted. So, there is a compact

nASP {C[x, e∗] : u ∈ U} of
P (n−1)

C
that does not contain the element

C[x, e∗] of
P (n−1)

C
. We may take U to be a neighborhood of e in P (n−1).

Then, C[U, e∗] is open nASP of P (n−1) not containing x. □

Corollary 3.9. Let P be a locally compact. The below conditions are
equivalent:

(1) P is connected;

(2) P has no proper open nASP;

(3) For any neighborhood U of e, we have
∞⋃
n=1

Un = P .

Proof. According to Theorem 3.7 and Theorem 3.8, the result is
straightforward. □

Theorem 3.10. Let P be a locally compact nAP and let C be the com-

ponent of e. If
P (n−1)

C
is compactly generated, then P (n−1) is compactly

generated.

Proof. The proof follows in a direct manner from the preceding results
and requires no additional technical tools. □

Theorem 3.11. Let P be a topological nAP and let N be an nASP of

P . If N and
P (n−1)

N
are connected then, P (n−1) is connected.

Proof. Assume that P = U1∪ ...∪Un, where U1, ..., Unare n-ary disjoint
non-void n-ary open sets. Since N is connected, each coset of N is
either an n-ary subset of U1 or an n-ary subset Un. Thus, the relation
P (n−1)

N
= {N [x, e∗] : N [x, e∗] ⊂ U1} ∪ ... ∪ {N [x, e∗] : N [x, e∗] ⊂ Un} =

{N [x, e∗], x ∈ U1} ∪ ...∪ {N [x, e∗], x ∈ Un} expresses
(n−1)

N
as the union



CONNECTED TOPOLOGICAL n-ARY POLYGROUPS AND
FUNDAMENTAL RELATIONS 9

of disjoint non-void n-ary open sets. This contradicts the hypothesis

that
P (n−1)

N
is connected. □

Theorem 3.12. Let P be a topological nAP and N be a closed normal
nASP of P . The following statements are equivalent:

(1) If both N and
P (n−1)

N
are connected then, also P (n−1) is connected.

(2) If both N and
P (n−1)

N
are TD, then, also P is TD.

Proof. (1) Let A ̸= ϕ be an n-ary closed and open set of P . Since
each coset N [a, e∗] is connected, it follows that either N [a, e∗] ⊆ A or
N [a, e∗] ∩ A = ϕ. Hence, π−1(π(A)) = A. This implies that π(A) is

a non-empty n-ary close and open set of the connected nAP
P (n−1)

N
.

Thus, π(A) =
P (n−1)

N
.consequently A = P (n−1).

(2) Assume that C is connected n-ary set in P . Then, π(C) is

a connected set of
P (n−1)

N
, so π(C) is a singleton. Consequently, C is

contained in some coset N [x, e∗]. Since N [x, e∗] is TD as well, we deduce
that C is singleton. This shows P (n−1) is TD. □

Lemma 3.13. If P is a topological nAP, then the nAP
P (n−1)

C(P (n−1))
is

TD.

Proof. Suppose that π from P (n−1) to
P (n−1)

N
is the canonical map,

and N is the inverse image of C(
P (n−1)

C(P (n−1))
) under π. Next, we have

N

C(N)
∼= C(

P (n−1)

C(P (n−1))
).

Hence, N is connect. Since it contains C(P (n−1)), it follows that N =

C(P (n−1)). Therefore,
P (n−1)

C(P (n−1))
is TD. □ For a topological nAP P

denote by a(P ) the n-ary set of points x ∈ P connected to ep by an arc,
i.e., a continuous map g : [0, 1] −→ P such that g(0) = ep and g(1) = x.
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Theorem 3.14. Let P be a topological nAP the arc component a(P ) of
P is an nASP of P .

Proof. We have f(a(P ), ..., a(P )) ⊆ a(P ). Similarly, by using the
continuity of the inverse x→ x−1, we obtain that a(P ) ⊆ a(P )−1. This
prove that a(P ) is an nASP of P . □

Definition 3.15. Let P be a topological nAP denote by Q(p) the quasi
component of the natural element ep of P and call it quasi-component
of P .

Corollary 3.16. Let P be a locally compact nAP. Then, Q(P ) = C(p).

Proof. C(P ) is an intersection of open nASPs. Hence, C(p) contains
Q(P ) which is true coincide with the intersection of all n-ary sets of P
containing ep. The inclusion C(P ) ⊆ Q(P ) is always true. □

Proposition 3.17. Let P be a topological nAP. The quasi-component
Q(P ) is a closed normal nASP of P .

Proof. Let x1, ..., xn ∈ Q(P ). To prove that f(x1, ..., xn) ⊆ Q(P ).
We need to verify that f(x1, ..., xn) ⊆ O for every n-ary close set O
containing ep. Let O be an n-ary set, then x1, ..., xn ∈ O. Obvi-
ously, f(O, x−1

n , ..., x−1
2 ) is n-ary close set containing e, hence x1 ∈

f(O, x−1
n , ..., x−1

2 ). This implies that f(x1, ..., xn) ⊆ O. Hence, Q(P )
is stable under multiplication.
Each close set O containing e, the set O−1 has the same property. Thus,
Q(P ) is stable we write the operation a→ a−1. This implies that Q(P )
is an nASP. Moreover, for every a ∈ P and for every close set O con-
taining e also its image f(a, o, a−1, e∗ under the conjugations a close set
containing ep. So Q(P ) is stable also under conjugation. Therefore,
Q(P ) is n-ary normal and closed. □

Definition 3.18. When A is an n-ary subset of an nAP, ⟨A⟩ denotes the
intersection of all nASPs containing A. We call ⟨A⟩ the nASP generated
by A.

Proposition 3.19. Let P be a topological nAP and A n-ary subset of
P . If A is connected and e ∈ A then, ⟨A⟩ is connected.
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Proof. Suppose that A is connected and e ∈ A. We see that for all
n = 0, 1, ..., Cn = (A∪A−1)n is connected (note that A∪A−1 is connected

since e ∈ A ∪ A−1). But e ∈
∞⋂
n=0

Cn, so it follows that ⟨A⟩ = ∪∞
n=0Cn is

connected as well. □

Proposition 3.20. If P is a connected nAP and U n-ary non-empty
open subset of P then, P is the nAP generated by U . In otherworld,
P = ⟨U⟩

Proof. Since ⟨U⟩ is an nASP of P containing an n-ary non-empty open
subset, we conclude that it is an nASP, ⟨U⟩ cannot be proper and it
follows that ⟨U⟩ = P . □

4 Fundamental Relations and Related Results

Definition 4.1. For all n > 1, we define the relation βn on a semihy-
pergroup (H, ◦) as follows:

xβny if there exists a1, . . . , an in H such that{x, y} ⊆
n∏

i=1
ai

and we set β =
⋃
n≥1

βn, where β1 = {(x, x) | x ∈ H} is the diagonal

relation on H.

This relation was introduced by Koskas [13] and studied by many
authors, for instance [3, 4, 9, 20], and many others.

Definition 4.2. Let A be a subset of topological space X and ∼ be an
equivalence relation on X. Then, the saturation of A with respect to
∼ is the set Â = {x ∈ X|∃a ∈ A, x ∼ a}. If Â = A then, A is called
saturated.

Let ⟨P, f, e,−1 , τ⟩ be a topological nAP and β∗ be the fundamental

relation on P . Then, (
P

β∗
, τ) is a topological space,where τ is the quo-

tient topology induce by the natural mapping π : P −→ P

β∗
. That is

A ⊆ P

β∗
is open in

P

β∗
if and only if π−1(A) is open in P .
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Lemma 4.3. Let ⟨P, f, e,−1 , τ⟩ be a topological nAP and β∗ be the fun-
damental relation on P . Then, every saturation subset of P is a complete
part.

Proof. Suppose that that A is a saturated subset of P such that A ∩∏
ai ̸= ϕ for a nonzero natural number n and for some x1, ..., xn ∈ P .

Hence, there exists a ∈ A ∩
∏n

i=1 ai. Then, for every x ∈
∏n

i=1 xi, we

have xβ∗a. Thus, x ∈ Â = A. There, A is a complete part. □

Lemma 4.4. Let ⟨P, f, e,−1 , τ⟩ be a topological nAP such that every
n-ary open subset of P is a complete part. Then, the natural mapping

π : P −→ P

β∗
is an open mapping.

Proof. The proof follows in a direct manner from the preceding results
and requires no additional technical tools. □

Theorem 4.5. Let ⟨P, f, e,−1 , τ⟩ be a topological nAP such that every

open subset of P is a complete part. Then, ⟨ P
β∗
,
f

β∗
, β∗(e),−1, τ⟩ is

topological n-group.

Proof. We know (
P

β∗
,
f

β∗
, β∗(e), τ) is n-group. We show that the map-

ping

(β∗(a1), ..., β
∗(an)) −→

f

β∗
(β∗(a1), ..., β

∗(an)) and β
∗(x) 7→ (β∗(x))−1 =

β∗(x−1) are continuous.

Suppose that A is open in
P

β∗
such that

f

β∗
(a1), ..., β

∗(an)) = β∗(a) ∈

A for every a ∈ f(β∗(x1), ..., β
∗(xn)). So f(a1, ..., an) ⊆

f−1

β∗
(A). Since

f−1

β∗
(A) is open in P , it follows that there are open subsets V1, ..., Vn

of P such that a1 ∈ V1, ..., an ∈ Vn and f(V1, ..., Vn) ⊆ π−1(A). Thus,
f

β∗
(β∗(V1), ..., β

∗(Vn)) ⊆ A and β∗(V1), ..., β
∗(Vn) are open in

P

β∗
. Hence,

f

β∗
is continuous. Now, suppose that β∗(x)−1 = β∗(x−1) ∈ P

β∗
. Then,

x−1 ∈ π−1(A). Thus, there exists an open subset U of P such that
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x−1 ∈ U−1 ⊆ π−1(A). So π(x−1) ∈ π(U−1) ⊆ A. And π−1(U) is open

in
P

β∗
□

Corollary 4.6. Let P be a topological nAP such that every saturated

subset of P is open. Then, (
P

β∗
,
f

β∗
, β∗(e),−1, τ) is a topological n-group.

Definition 4.7. Let G be an n-group and {Ag} be a collection of dis-
joint non-empty sets. Let P =

⋃
g∈P

Ag, and for x1, ..., xn ∈ P define

f(x1, ..., xn) = Agx1 ...gxn
, where x1 ∈ Agx1

... and xn ∈ Agxn . Then,
⟨P, f, e,−1 ⟩ is an nAP, and it is called (G,P ) nAP.

Lemma 4.8. Let ⟨G, ◦, τ⟩ be a topological n-ary group and {Ag} be a col-
lection of disjoint non-empty sets, and let P = ∪Ag. Then, ⟨P, f, e,−1 , τP ⟩
is a topological nAP, where P is a (G,P ), nAP and τP = {∪Au, u ∈
U |U ∈ τ} ∪ {ϕ}.

Proof. One can show τP is a topology on P . Suppose that AU =
⋃

u∈U
Au

is an open subset of P such that f(x1, ..., xn) ⊆ AU for x1, ..., xn ∈ P .
Since U is open in P and gx1

, ..., gxn
∈ U , it follows that there exists

open subsets V1, ..., Vn of P containing gx1 , ..., gxn , respectively, such
that V1...Vn ⊆ U . So AV1 , ..., AVn are open in P containing x1, ..., xn,
respectively, and f(AV1 , ..., AVn) ⊆ AU . Thus, f is continuous. Similarly,
−1 is continuous. □

Theorem 4.9. Let (G, ◦, τ) be a topological n-group and {Ag} be col-
lection of disjoint non-empty sets, and let P =

⋃
g∈G

Ag. Then, the fun-

damental nAP P and G are topological isomorphic.

Proof. Let P =
⋃
g∈G

Ag. For every x ∈ P , there is gx ∈ G such that

x ∈ Agx . Now, we define ψ :
P

β∗
−→ G by ψ(β∗(x)) = gx. We observe

that ψ is a group isomorphism. Clearly, ψ(φ(AU )) = U for all open
subset U of P . Hence, we conclude that ψ is open as well as continuous.
□
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Proposition 4.10. Let (G, ◦) be a topological n-group, and let
P

N
be

an n-ary normal subgroup of G. Then, Gn−1

N = {P [x, e∗]|x ∈ G} is
topological n-space with respect to the quotient topology induce by natural

mapping G(n−1) −→ G(n−1)

N
. Furthermore, every open subset of

G(n−1)

N
is the form {N [u, e∗] : u ∈ U} for some open subset U of G.

Proof. Let (P, f) be an n-ary group, and letN be a non-normal nASP of

P . If we denote
P (n−1)

N
= {N [x, e∗]|x ∈ P}. Then, (P

(n−1)

N
,F,N [e],−1)

is an nAP, where for all N [x1, e∗], ..., N [xn, e∗] of
P (n−1)

N
, we have

F (N [x1, e∗], ..., N [xn, e∗]) = {N [z, e∗]|z ∈ f(x1, ..., xn)}.

Let β∗ be the fundamental relation of the nAP
P (n−1)

N
,F,N,−1). Then,

P (n−1)

N
β∗

is a topological n-space with respect to the quotient topology

induce by natural mapping π :
P (n−1)

N
−→

P (n−1)

N
β∗

, where π(N [x, e∗]) =

β∗(N [x, e∗]). by Theorem 4.9, A ⊆

P (n−1)

N
β∗

is open if and only if

π−1(A) = {N [u, e∗]|u ∈ U} for some open subset U of P (n−1) □

Theorem 4.11. Let (P, f) be an n-ary group, and let H be an n-ary

non-normal subgroup of P . Consider β∗ on the nAP ⟨P
(n−1)

N
,F,N [e∗],

−1 ⟩.
Then, there exists an n-ary normal sungroup N of P such that the n-ary

groups

P
(n−1)

H
β∗

and
P (n−1)

N
are isomorphic.

Proof. Suppose that N is the n-ary subgroup of P generated by the set
{f(P−1, h, P, e∗)|p ∈ P, h ∈ H}. Then, N is an n-ary normal subgroup
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of P . Now, we define Φ :

P (n−1)

H
β∗

−→ P (n−1)

N
by β∗([x, e∗]) = N([x, e∗]).

Then, Φ is well define. Indeed, if β∗(H[x, e∗]) = β∗(H[y, e∗]), then
there exists n ∈ N and a1, ..., an ∈ P such that {H[x, e∗] = H[y, e∗]} ⊆
F (H[a1, e∗], ...,H[an, e∗]). So N [x, e∗] = N [y, e∗]. Thus, we get

Φ(β∗(H[x, e∗])) = Φ(β∗(H[x, e∗])).

Also, Φ is homomorphism. Indeed, for every x1, ..., xn ∈ H, we have

Φ(
F

β∗
(β∗(H[x1, e∗]), ..., β

∗(H[xn, e∗]) = F
′
(N [x1, e∗], ..., N [x1, e∗]) =

F
′
(β∗(H[x1, e∗], ..., β

∗(H[x1, e∗]). Obviously, Φ is onto. It remains to
show that Φ is injective. If β∗(H[x, e∗]) ∈ KerΦΦ, then x ∈ N . Hence,
there exists n ∈ N and P1, ..., Pn+1 ∈ P and h1, ..., hn ∈ H such that
x = πni=1f(P

−1
i , hi, gi, e). Thus, we have

{H[x, e∗], H[e∗]} ⊆ F (H[g−1
1 , e∗], H[g1, e∗], ...,H[g−1

n , e∗], H[gn, e∗]).

Hence, H[x, e∗]β
∗H[e∗]. So, KerΦ is trivial. Therefore, Φ is an isomor-

phism. □

Theorem 4.12. Let (P, f) be a topological n-group, and let H be an
n-ary non normal subgroup of P . Let β∗ be the fundamental relation

of the nAP ⟨P (n− 1)

H
,F,H[e∗],

−1 ⟩. Then, the natural mapping π :

P (n−1)

H
−→

P (n−1)

H
β∗

is open.

Proof. Suppose that A is open in
P (n−1)

H
. Then, there is an open

subset V in P (n−1) such that A = {H[v, e∗]|v ∈ V }. First, we verify
that π−1(π(A)) = {H[n, v, e∗]|n ∈ N, v ∈ V }. Let H[x, e∗] ∈ π−1(π(A)).
So there is v ∈ V such that π(H[x, e∗]) = π(H[v, e∗]). It implies that
{H[x, e∗], H[v, e∗]} ⊆ F (H[a1, e∗]), ...,H[ak, e∗]) for k ∈ N and for some
a1, ...., ak ∈ P . Therefore H[x, e∗] ∈ [H[n, v, e∗]]|n ∈ N, v ∈ V }.

For the converse, let v ∈ V and n ∈ N . Then, there are k ∈ N and
a1, ..., ak ∈ P and h1, ..., hk ∈ H and we have

{H[n, v, e∗], H[v, e∗]} ⊆ F (H[a−1
1 , e∗], ...,H[a−1

k , e∗], H[a−1
k , e∗]).
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Thus, H[n, v, e∗]β
∗H[v, e∗]. So H[n, v, e∗] ∈ π−1(({H[v, e∗]|v ∈ V })).

Hence, we conclude that π(A) is open in

P (n−1)

H
β∗

. This yields that

π−1(π(A)) = {H[n, v, e∗]|n ∈ N, v ∈ V } is open in
P (n−1)

H
. More pre-

cisely, f(V,N, e∗) is open in P (n−1). □

5 Conclusion

In this work, we have extended the study of polygroups to the setting
of n-ary hyperoperations equipped with topological structures. After
laying out the foundational definitions, we introduced the concept of
topological nAP and analyzed their continuity properties. Our focus on
connected topological nAP highlighted how topological connectedness
imposes structural constraints and enriches the algebraic framework.
Moreover, we examined the role of the fundamental relation in con-
necting the algebraic and topological aspects of these hyperstructures.
The compatibility between this equivalence relation and the underlying
topology sheds light on the decomposition of nAPs into simpler compo-
nents. These results not only generalize known properties from binary
hyperstructures to the n-ary case but also open up avenues for further
research in topological hyperalgebraic systems and their applications.
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