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1 Introduction

In this paper, the core of our findings relies heavily on the excellent re-
sults presented by Garćıa [31, 30] concerning the investigation of mild
solution existence for neutral integro-differential equations within Ba-
nach spaces structured as follows:

d
dς

[
ξ(ς) +

∫ ς
0 N(ς, κ)ξ(κ)dκ

]
= ℵ(ς)

[
ξ(ς) +

∫ ς
0 β(ς, κ)ξ(κ)dκ

]
+Φ(ς, ξ(ϑ(ς))), for ς ≥ 0,

ξ(0) = ξ0 ∈ Ξ,

(1)

where ξ(·) is the state variable taking values in a Banach space (Ξ, ∥·∥Ξ),
and Φ : Θ × Ξ → Ξ, (Θ = [0,κ]) is a continuous function. The oper-
ators ℵ(ς) : G(ℵ(ς)) ⊂ Ξ → Ξ and β(ς, κ) are closed linear opera-
tors on Ξ, with dense domain G(ℵ(ς)), which is independent of ς, and
G(ℵ(κ)) ⊂ G(β(ς, κ)). The operator N(ς) is the neutral term in a family
of bounded linear operators on Ξ. The function ϑ(·) : [0,κ] → [0,κ] is
continuous and satisfies 0 ≤ ϑ(ς) ≤ ς.

Next, we investigate the existence of mild solutions for neutral integro-
differential equations with a nonlocal initial condition having the form:

d
dς

[
ξ(ς) +

∫ ς
0 N(ς, κ)ξ(κ)dκ

]
= ℵ(ς)

[
ξ(ς) +

∫ ς
0 β(ς, κ)ξ(κ)dκ

]
+Φ(ς, ξ(ϑ(ς))), for ς ≥ 0,

ξ(0) + g(ξ) = ξ0 ∈ Ξ,

(2)

where g : C(Θ,Ξ) → Ξ is continuous function and the set C(Θ,Ξ) is
given later.

Integro-differential equations can describe natural phenomena across
various fields, including electronics, fluid dynamics, biological models,
and chemical kinetics. Classical differential equations cannot explain
these phenomena, see [9, 10]. Integro-differential equations have re-
cently gained popularity among physicists, mathematicians, and engi-
neers. For more general results on differential equations, see [6, 4, 2, 3]
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and the references therein. Volterra suggests that the dynamics of elas-
tic materials can be described by a partial integro-differential response
diffusion equation, as shown below: In [43], the author proposes using
a partial integro-differential response diffusion equation to describe the
kinetics of certain elastic materials:

∂

∂ς
z(θ, ς) = ∆z(θ, ς)+

∫ ς

0
ϕ(ς, κ)∆z(θ, κ)dκ+φ(θ, ς), for (θ, ς) ∈ R×R+,

where ϕ and φ are appropriates functions.

The authors of [15, 22] used the following linear partial integro-
differential equation to study the electric displacement field in Maxwell
Hopkinson dielectric:{

∂2

∂ς2
z(θ, ς) =

1

ηγ
∆z(θ, ς) +

∫ ς
0

1

ηγ
ψ(ς − κ)∆z(θ, κ)dκ, for (θ, ς) ∈ Ω̃× [0,κ),

for κ > 0 and Ω̃ ⊂ R3, where η, γ ∈ R and ψ is a vector of scalar function.

The resolvent operator, which replaces the role of the C0-semigroup
in evolution equations, is critical in solving problem (1) in both weak
and strict senses. Many authors have used resolvent operator theory
to study semi-linear integro-differential evolution equations, including
existence, regularity, stability, and control problems (references [18, 21,
25, 28, 34, 38, 44, 11, 12, 13, 14]).

Conversely, in numerous scenarios, employing a nonlocal initial con-
dition proves to be more effective than the classical initial condition
ϑ(0) = ϑ0 in elucidating certain physical phenomena. The investigation
of nonlocal Cauchy problems for evolution equations dates back to 1991
when Byszewski et al. delved into the subject [16], while the significance
of nonlocal conditions across various domains has been extensively dis-
cussed in [16, 23] and the accompanying references. Further insights can
be gleaned from [1, 7, 8]. Subsequently, many scholars have explored
evolution equations featuring nonlocal conditions, yielding a plethora
of intriguing findings on various aspects of nonlocal problems over the
years, as documented in works such as [5, 17, 26, 35, 36, 37, 42], among
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others. Moreover, in recent years, there has been a surge of interest in
investigating integro-differential evolution equations with nonlocal con-
ditions, as evidenced by works such as [27, 36, 45]. In [36], the authors
considered:ξ′(ς) = ℵ

[
ξ(ς) +

∫ ς
0 F (ς − κ)ξ(κ)dκ

]
+Φ(ς, ξ(ς)), for ς ∈ [0,κ],

ξ(0) + g(ς1, . . . , ςp, ξ) = ξ0.

The discussion on the existence and regularity of solutions for a neutral
integro-differential evolution equation was tackled in [27], where the ap-
proach involved utilizing the theory of resolvent operators and analytic
semigroups.

Cherruault and Guillez [19] first introduced the concept of ζ-dense
curves in the 1980s. Cherruault [20] and Mora [39] were primarily re-
sponsible for its inception. Mora and Mira [40] introduced the concept
of (DND), based on ζ-dense curves. Garćıa [29, 31] demonstrated a new
fixed-point result using the DND. See [24], for more results.

We note that our work is considered as the natural continuation of
the results presented in [46]. While the authors of [46] used the theory
of fractional power, ζ-norm and Schauder’s fixed point theorem to prove
their results, we apply a new theorem based on the (DND) which is more
generalized.

This paper is organized as follows. In Section 2, some necessary
concepts and important definitions and lemmas are given. In Section 3,
we show the existence of mild solutions for neutral integro-differential
equations with local and nonlocal initial conditions for the problems (1)
and (2). An example is also given in Section 4 to illustrate the theory
of the abstract main result.

2 Preliminaries

Let Ξ be a real Banach space with the norm ∥ · ∥Ξ and MΞ is the class
of non-empty and bounded subsets of Ξ. Let Y(Ξ) be the space of all
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bounded linear operators from Ξ into Ξ, with the norm

∥N∥Y(Ξ) = sup
ξ∈Ξ

∥N (ξ)∥Ξ.

We denote by (L1(Θ,Ξ), ∥ · ∥L1) is the Bochner integrable mappings ξ
from Θ := [0,κ] into Ξ, with the norm

∥ξ∥L1 =

∫ κ

0
∥ξ(ς)∥Ξdς.

We denote by (L∞(Ξ), ∥ ·∥L∞) the Banach space of measurable function
ξ : Θ → Ξ which are essentially bounded with

∥ξ∥L∞ = inf{γ > 0 : ∥ξ(ς)∥Ξ ≤ γ, a.e ς ∈ Θ}.

By C(Θ,Ξ) we denote the Banach space of all continuous functions from
Θ into Ξ with

∥ξ∥∞ = sup
ς∈Θ

∥ξ(ς)∥Ξ.

We present the basic theory of resolvent operators for the following
neutral integro-differential equation associated with problem (1): d

dς

[
ξ(ς) +

∫ ς
0 N(ς, κ)ξ(κ)dκ

]
= ℵ(ς)

[
ξ(ς) +

∫ ς
0 β(ς, κ)ξ(κ)dκ

]
, for ς ≥ 0,

ξ(0) = ξ0 ∈ Ξ.
(3)

The discussion regarding the existence and characteristics of a resolvent
operator has been elaborated upon in [46]. Consider:

(A1) ℵ(ς) generates a uniformly continuous semigroup of evolution op-
erators in Ξ.

(A2) Assume that X is the Banach space formed from G(ℵ(ς)) with
the graph norm. ℵ(ς) and β(ς, κ) are closed operators. It follows
that ℵ(ς) and β(ς, κ) are in the set of bounded operators from X
to Ξ, β(X,Ξ) for 0 ≤ ς ≤ κ and 0 ≤ κ ≤ ς ≤ κ, respectively.
Furthermore, ℵ(ς) and β(ς, κ) are continuous on 0 ≤ ς ≤ κ and
0 ≤ κ ≤ ς ≤ κ, respectively, into β(X,Ξ).
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Definition 2.1. ([46]) A two-parameters family of bounded linear op-
erators R(ς, κ) ∈ Y(Ξ) for 0 ≤ κ ≤ ς ≤ κ, is called a resolvent operator
for problem (3) if it verifies the following conditions:

(1) For each ξ ∈ Ξ, ς → R(ς, κ)ξ is strongly continuous in ς and κ,
R(κ, κ) = I, 0 ≤ κ ≤ κ (the identity map of Ξ) and ∥R(ς, κ)∥Y(Ξ) ≤
Meη(ς−κ) for some constants M > 0 and η ∈ R.

(2) R(ς, κ)X ⊂ X, R(ς, κ) is strongly continuous in ς and κ on X.

(3) For each ξ ∈ G(ℵ(ς)), R(ς, κ)ξ is strongly continuously differen-
tiable in ς and κ and

d

dς

[
R(ς, κ)ξ +

∫ ς

0
N(ς, κ)R(ς, κ)ξdκ

]
= ℵ(ς)

[
R(ς, κ)ξ +

∫ ς

0
β(ς, κ)R(ς, κ)ξdκ

]
,

d

dς

[
R(ς, κ)ξ +

∫ ς

0
R(ς, κ)N(κ)ξdκ

]
= R(ς, κ)ℵ(ς)ξ+

∫ ς

0
R(ς, κ)ℵ(ς)β(κ)ξdκ,

with d
dςR(ς, κ)ξ is strongly continuous on 0 ≤ κ ≤ ς ≤ κ. Here,

R(ς, κ) can be extracted from the evolution operator of the gener-
ator ℵ(ς).

The next theorem presents a satisfactory answer to the problem of
the existence of resolvent operator to (3).

Theorem 2.2. ([46]) Assume that (A1) − (A2) hold, then there exists
a unique resolvent operator for the Cauchy problem (3).

Definition 2.3. ([39, 41]) Let ζ ≥ 0 and W ∈ MΞ. A continuous
mapping ℑ : ℧ := [0, 1] → Ξ is called ζ−dense curve in W if:

• ℑ(℧) ⊂ W.

• For any ξ1 ∈ W, there is ξ2 ∈ ℑ(℧) such that ∥ξ1 − ξ2∥Ξ ≤ ζ.

If for ζ > 0, there is an ζ−dense curve in W, then W is called densifiable.
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Definition 2.4. ([40, 32]) Let ζ > 0, and denote by Γζ,W the class of
all ζ−dense curves in W ∈ MΞ. The DND is a mapping ℘ : MΞ → R+

given by:
℘(W) = inf{ζ ≥ 0 : Γζ,W ̸= ∅},

for each W ∈MΞ.

Lemma 2.5 ([33, 32]). Let W1,W2 ∈MΞ. Then, ℘ verifies:

(a) ℘(W1) = 0 ⇐⇒ W1 is a precompact set, for each nonempty,
bounded and arc-connected subset W1 of Ξ.

(b) ℘(W̄1) = ℘(W1), where W̄1 denotes the closure of W1.

(c) ℘(λW1) = |λ|℘(W1), for λ ∈ R.

(d) ℘(ϑ+W1) = ℘(W1), for all ϑ ∈ Ξ.

(e) ℘(ConvW1) ≤ ℘(W1) and ℘(ConvW1∪W2) ≤ max{℘(ConvW1), ℘(ConvW2)},
where ℘(ConvW1) represent the convex hull of W1.

(f) ℘(W1 +W2) ≤ ℘(W1) + ℘(W2).

Now, we consider:

A =

{
ϖ : R+ → R+ : ϖ is monotone increasing

and lim
n→∞

ϖn = 0 for any ς ∈ R+

}
,

where n ∈ N and ϖn(ς) denotes the n−th composition of ϖ with itself.

Theorem 2.6. [31] Let Q be a nonempty, bounded, closed and convex
subset of a Banach space Ξ, and let κ : Q→ Q be a continuous operator.
Suppose that ∃ϖ ∈ A where:

℘(κ(W)) ≤ ϖ(℘(W))

for any non-empty subset W of Q. Then, κ has at least one fixed point
in Q.

Lemma 2.7. ([31]) Let W ⊂ C(Θ,Ξ) be non-empty and bounded. Then:

sup
ς∈Θ

℘(W(ς)) ≤ ℘(W).
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3 Existence of Mild Solutions for Neutral Integro-
Differential Equations

Definition 3.1. A continuous function ξ(·) ∈ C(Θ,Ξ) is a mild solution
of (1), if ξ verifies

ξ(ς) = R(ς, 0)ξ0 +

∫ ς

0
R(ς, κ)Φ(κ, ξ(ϑ(κ)))dκ, for each ς ∈ Θ.

Now, we assume the following hypotheses:

(H1) The function Φ : Θ×Ξ → Ξ satisfies the Carathéodory conditions,
and there exist pf ∈ L1(Θ,R+) and ψ : R+ → R+ a nondecreasing
continuous function such that

∥Φ(ς, ξ))∥Ξ ≤ pf (ς)ψ(∥ξ∥Ξ), for ξ ∈ Ξ, and for a.e. ς ∈ Θ.

(H2) The resolvent operator is uniformly continuous and there exist
Z ≥ 1 such that

∥R(ς, κ)∥Y(Ξ) ≤ Z, for every 0 ≤ κ ≤ ς ≤ κ.

(H3) There exist K ∈ L∞(Θ,R+) and h ∈ A such that for any non-
empty, bounded and convex subset W ⊂ Ξ,

℘(Φ(ς,W)) ≤ K(ς)h(℘(W)), for a.e ς ∈ Θ.

(H4) There exist r > 0 such that

r ≥ Z

[
r + ψ(r)∥pf∥L1

]
.

Theorem 3.2. Assume that the conditions (H1) − (H4) are satisfied,
and that

κZ∥K∥L∞ ≤ 1,

then, the system (1) has at least one solution defined on Θ.
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Proof. Firstly, transform the problem (1) into a fixed point problem
and define the operator

κξ(ς) = R(ς, 0)ξ0 +

∫ ς

0
R(ς, κ)Φ(κ, ξ(ϑ(κ)))dκ, for each ς ∈ Θ.

We consider the set

Q =

{
ξ ∈ C(Θ,Ξ) : ∥ξ∥∞ ≤ r

}
.

We note that Q is bounded, closed and convex subset.

Step 1 : We prove that κQ ⊂ Q.

Indeed for any ξ ∈ Q and under (H1)− (H4) we obtain

∥κξ(ς)∥Ξ = ∥R(ς, 0)ξ0 +
∫ ς

0
R(ς, κ)Φ(κ, ξ(ϑ(κ)))dκ∥Ξ

≤ ∥R(ς, 0)∥Y(Ξ)∥ξ0∥Ξ +

∫ ς

0
∥R(ς, κ)∥Y(Ξ)∥Φ(κ, ξ(ϑ(κ)))∥Ξdκ

≤ Z∥ξ0∥Ξ + Z

∫ ς

0
pf (κ)ψ(∥ξ(ϑ(ς))∥Ξ)dκ

≤ Zr + Zψ(r)∥pf∥L1

≤ r.

Thus κ(Q) ⊂ Q.
By (H1) and the Lebesgue dominated convergence theorem, we can de-
duce that κ is continuous on Q.

Step 2 : We prove that κ is contractive.
Let H be any non-empty and convex subset of Q, and for each ς ∈ Θ,
let ζς = ℘(H(ς)). By (H3), there are K ∈ L∞(Θ,R+) and h ∈ A where
for a.e ς ∈ Θ,

℘(Φ(ς,H(ς))) ≤ K(ς)h(℘(ζς)).

Therefor, given any γ ≤ 0, there is a continuous mapping ℑς : ℧ → Ξ,
with ℑς(℧) ⊂ Φ(ς,H(ς)), such that for all ξ ∈ H, there is η ∈ ℧ with

∥Φ(ς, ξ(ϑ(ς)))−ℑς(η)∥Ξ ≤ K(ς)h(ζς) + γ, for a.e ς ∈ Θ. (4)
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Let ℑ̃ : ℧ → ((C(Θ,Ξ)), ∥ · ∥∞) defined as:

η ∈ ℧ → ℑ̃(η, ς) = R(ς, 0)ξ0 +

∫ ς

0
R(ς, κ)ℑκ(η)dκ, for a.e ς ∈ Θ.

Clearly, ℑ̃ is continuous and ℑ̃(℧) ⊂ κ(H). By (4), given ξ ∈ H we can
find η ∈ ℧ where

∥κξ(ς)− ℑ̃ς(η)∥Ξ ≤
∫ ς

0
∥R(ς, κ)∥Y(Ξ)∥Φ(κ, ξ(ϑ(κ)))−ℑκ(η)∥Ξdκ

≤ Z

∫ ς

0
K(κ)h(ζκ) + γdκ.

Setting ζ := ℘(H), we can deduce that h(ζς) ≤ h(ζ) for a.e ς ∈ Θ, we
obtain

∥κξ(ς)− ℑ̃ς(η)∥Ξ ≤ κZ∥K∥L∞h(ζ)

≤ h(ζ),

which means, from the arbitrariness of ς ∈ Θ, that ℘(κH) ≤ h(ζ). □

4 Neutral Integro-Differential Equations with
Nonlocal Condition

Definition 4.1. We say that a continuous function ξ(·) ∈ C(Θ,Ξ) is a
mild solution of problem (2), if ξ satisfies the following integral equation

ξ(ς) = R(ς, 0)[ξ0 − g(ξ)] +

∫ ς

0
R(ς, κ)Φ(κ, ξ(ϑ(κ)))dκ, for each ς ∈ Θ.

Let us recall the following assumptions:

(C1) The function g : C(Θ,Ξ) → Ξ is continuous, and there exists a
constant L > 0 such that

∥g(ξ)∥Ξ ≤ L∥ξ∥∞, for ξ ∈ C(Θ,Ξ).

(C2) There exists r > 0 such that

r ≥ Z

[
r + Lr + ψ(r)∥pf∥L1

]
.
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Theorem 4.2. Assume that the conditions (H1)−(H3) and (C1)−(C2)
are satisfied, and that

κZ∥K∥L∞ ≤ 1,

then, the system (2) has at least one solution defined on Θ.

Proof. We define the operator

Mξ(ς) = R(ς, 0)[ξ0 − g(ξ)] +

∫ ς

0
R(ς, κ)Φ(κ, ξ(ϑ(κ)))dκ, for each ς ∈ Θ.

Step 1 : We prove MQ ⊂ Q.
This step is similar to (Step 1) in the proof of Theorem 3.2. Indeed for
any ξ ∈ Q we obtain

∥Mξ(ς)∥Ξ = ∥R(ς, 0)[ξ0 − g(ξ)] +

∫ ς

0
R(ς, κ)Φ(κ, ξ(ϑ(κ)))dκ∥Ξ

≤ ∥R(ς, 0)∥Y(Ξ)∥ξ0 − g(ξ)∥Ξ +

∫ ς

0
∥R(ς, κ)∥Y(Ξ)∥Φ(κ, ξ(ϑ(κ)))∥Ξdκ

≤ Z[∥ξ0∥Ξ + L∥ξ∥∞] + Z

∫ ς

0
pf (κ)ψ(∥ξ(ϑ(κ))∥Ξ)dκ

≤ Zr + ZLr + Zψ(r)∥pf∥L1

≤ r.

Thus M(Q) ⊂ Q. Furthermore, combining assumption (H1) and the
Lebesgue dominated convergence theorem, we show that M is continu-
ous on Q.

Step 2 : We prove that M is contractive.
Let H be any non-empty and convex subset of Q, and for each ς ∈ Θ,
let ζς = ℘(H(ς)). By (H3), there are K ∈ L∞(Θ,R+) and h ∈ A where
for a.e ς ∈ Θ

℘(Φ(ς,H(ς))) ≤ K(ς)h(℘(ζς)).

By the same technique of the (step 2) in the Theorem 3.2, we get:
ℑ̃ is continuous and ℑ̃(δ) ⊂ M(H). By (4), given ξ ∈ H we can find
η ∈ δ where

∥Mξ(ς)− ℑ̃ς(η)∥Ξ ≤
∫ ς

0
∥R(ς, κ)∥Y(Ξ)∥Φ(κ, ξ(ϑ(κ)))−ℑκ(η)∥Ξdκ
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≤ Z

∫ ς

0
K(κ)h(ζκ) + γdκ.

Setting ζ := ℘(H), we can deduce that h(ζς) ≤ h(ζ) for a.e ς ∈ Θ, we
obtain

∥Mξ(ς)− ℑ̃ς(η)∥Ξ ≤ κZ∥K∥L∞h(ζ)

≤ h(ζ).

Which means, from the arbitrariness of ς ∈ Θ, that ℘(MH) ≤ h(ζ).
Then ξ is a fixed point of the operator M, which is a mild solution of
the problem (2). □

5 An Example

Consider the problem:

∂
∂ς

[
z(ς, u) +

∫ 1
0 a(ς, κ)z(κ, u)dκ

]
= Γ(ς) ∂2

∂u2 z(ς, u)−
∫ ς
0 Γ(ς − κ) ∂2

∂u2 z(κ, u)dκ

+g(ς, z(ς, u)) if ς ∈ Θ = [0, 1] and u ∈ (0, 1),

z(ς, 0) = z(ς, 1) = 0, for ς ∈ Θ,

z(0, u) = eu, for u ∈ (0, 1),
(5)

where a : [0, 1]× [0, 1] → R is a continuous function, and

g(ς, z(ς, u)) =
1

e2t

(
2

(ς + 1)2 + 1
+ ln(1 + |z(ς, u)|)

)
.

Let A be defined by

(Az)(u) = ∂2

∂u2
z(ς, u).

And

G(A) = {z ∈ L2(0, 1) / z,
∂2

∂u2
z ∈ L2(0, 1) ; z(0) = z(1) = 0}.
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The operator A is the infinitesimal generator of a C0-semigroup on
L2(0, 1) with domain G(A), and with more appropriate conditions on
operator ℵ(·) = Γ(·)A, the problem (5) has a resolvent operator R(ς, κ)
on L2(0, 1) which is norm continuous.

Now, define

ξ(ς)(u) = z(ς, u),

Φ(ς, ξ)(u) = g(ς, z(ς, u))

and Φ : Θ× L2(0, 1) −→ L2(0, 1) given by

Φ(ς, ξ)(u) =
1

e2t

(
2

(ς + 1)2 + 1
+ ln(1 + |z(ς, u)|)

)
, for ς ∈ Θ,

Moreover, for each ς ∈ Θ, we obtain

∥Φ(ς, ξ)∥L2 =

∥∥∥∥ 1

e2t

(
2

(ς + 1)2 + 1
+ ln(1 + |z(ς, u)|)

)∥∥∥∥
L2

≤ 1

e2t
(1 + ∥z(ς, u)∥L2)

≤ pf (ς)ψ(∥z(ς)∥L2).

Therefore, assumption (H1) is satisfied with

pf (ς) =
1

e2t
, ς ∈ Θ and ψ(u) = 1 + u, u ∈ (0, 1).

Now we shall check that condition of (H4) is satisfied.
Indeed, we have

r ≥ Zr + Z(1 + r).

Thus

r ≥ Z

1− 2Z
.

For any non-empty, bounded and convex subset H of C(Θ, L2(0, 1)) and
ς ∈ Θ fixed, let ℑ be an ζς -dense curve in H(ς) for some ζς ≥ 0. Then,
for z ∈ H, there is η ∈ ℧ verifying:

∥z(ς)−ℑ(η, ς)∥L2 ≤ ζς .
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Therefore, we have:

∥Φ(ς, z(ς))− Φ(ς,ℑ(η, ς))∥L2 ≤ 1

e2t
∥ln(1 + |z(ς, u)|)− ln(1 + |ℑ(η, ς)|)∥L2

≤ 1

e2t

∥∥∥∥ln(1 + |z(ς, u)−ℑ(η, ς)|
1 + |ℑ(η, ς)|

)∥∥∥∥
L2

≤ 1

e2t
ln(1 + ∥z(ς, u)−ℑ(η, ς)∥L2)

≤ 1

e2t
ln(1 + ζς),

and h(ς) = ln(1 + ς). Thus, h ∈ A, so condition (H3) is verified by
K(ς) = 1

e2t
. Consequently, all the hypotheses of Theorem 3.2 are verified

and thus (5) has at least one solution ξ ∈ C(Θ, L2(0, 1)).
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[33] G. Garćıa, G. Mora. The degree of convex nondensifiability in Ba-
nach spaces. J. Convex Anal. 22 (2015), 871-888.
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