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Abstract. First we review Steenrod powers, referred to in this ar-
ticle as the up Steenrod powers, and prove some more properties of
them. Then, the divided p-power algebras are introduced and the down
Steenrod powers, the dual of up Steenrod powers, are defined over these
algebras. Finding some efficient tools for calculating the evaluations of
up and down powers is the next attempt. Finally, harmonic patterns
are exhibited for the action of up and down powers. All considerations
are performed for one variable as the Cartan formula naturally extends
to the multi-variable case.
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1 Introduction

Let p be an odd prime. For n > 0 consider the polynomial algebra

P(n) =Fplz1,..., 2. = PP (n),

d>0
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viewed as a graded left module over the mod p Steenrod algebra A,
and put P(0) = P%°n) = F,. The grading is by the homogeneous
polynomials P%(n) of degree d in n variables z1,...,z, of grading 2.
The Steenrod algebra A, is briefly defined as the graded algebra over
the finite field F), generated by symbols PF . defined in Definition 2.1,
called the up Steenrod powers of (reduced) grading k& > 0 and Bockstein
homomorphism subject to Adem relations and the condition P? = 1
[2]. In classical texts, the word ‘up’ is not written for the Steenrod
powers P*. however, we use this word since the dual P, of up Steenrod
powers, called the ‘down’ Steenrod powers are the main objective of our
study. The latter word was first used in [22] for the ‘going down’ integral
Steenrod square (see also [21]).

More works are done on the (up) Steenrod squares. Of them one may
cite [3, 10, 13, 14, 15, 22, 23]. However, less are worked on up Steenrod
powers. Tanay-Oner [13] extended the second author works [3] on the
action of up Steenrod squares for up Steenrod powers. In particular,
they exhibited a matrix method for calculations of up powers [11]. In
his recent studies, Turgay [19] explored the connections of up Steenrod
powers with other algebras, in particular, Leibniz-Hopf algebra.

Down Steenrod squares are deeply considered in the comprehensive
book [20]. In a recent work [1], the present authors exhibited a matrix
method for the up and down Steenrod squares. In this article, the
authors introduce the divided p-power algebras and afterward investigate
the down Steenrod powers defined over these algebras. Down Steenrod
powers are not so known.

In Section 2, up Steenrod powers P* for k > 0 is recalled from [2,
Section 4L] and some further properties for them are established. In
particular, the following basic tool is demonstrated for ¢t > 0, 0 < i < p',
0<j<ptandr>0,s>r+1.

piwpt(xﬁspt) - <]> JH+(p—1)i (8> x(er(p*l)?")pt? (1)

7 r

where the binomial coefficients are taken modulo p. In Definition 2.13,
a harmonic triangular pattern is created for the evaluation of up powers
in one variable. This pattern may be applied for computations involved
the P*’s in computer.



UP AND DOWN STEENROD POWERS

Section 3 is dedicated to down Steenrod powers. First, we introduce
the divided p-power algebra as the formal sum DP(n) = > ., DP%(n),
where DP%(n) = Hom(P%(n),F,) is the linear dual of the F,-vector
space P?%(n). Consider the basis v1,. .., v, of DP?(n) dual to the basis
1, ..., %, of P%(n) with the duality property (v, x;), which is 1 if i = j
and 0 otherwise. A d-monomial vgdl) T DP(n) is the dual of
the monomial 2% - - . z¥» in P(n). For any v € DP?(n), put v(® = 1, the
identity map of Fo which is also the identity element of DP(1). Also put
v1) = v, Then the linear dual of the up Steenrod power P* : P?(n) —
P4tE@E=1) (), called the down Steenrod power P}, : DP*P—1(n)
DP?(n) is defined by Py(u) = v for u € DP¥*®=1(n) such that

o(f) = (Pr(w)) (f) = u(P*(f)),

for f € P%(n). Some properties of the P, are considered. In particular,
a dual version of the basic tool (1) is proved for t > 0, 0 < i < pt,
0<j<ptandr>0,s>r+1 as followed.

Prsr (0 + D472 (Z)v(j) (i)vat),
where here again the binomial coefficients are calculated modulo p. An
analogous harmonic triangular pattern with a bit deformation holds for
the evaluation of the down powers in one variable.
An application of the up operations is in the modular hit problem.
A homogenous element f € P(n) of grading d is said to be modular hit
(modulo p) in P(n) if there is a modular hit equation of the form

F=>_Pf),
i>0

where each f; has grading less than d. We denote by Q(n) = F, ®4,
P(n), the quotient of the module P(n) by the modular hit elements,
where I, is here viewed as a right .4,-module concentrated in grading
0. Then Q(n) is a graded vector space over F, and a basis for Q(n)
lifts to a minimal generating set for P(n). The modular hit problem is
to find minimal generating sets for P(n) and criteria for elements to be
modular hit. The special case of the modular hit problem in modulo 2
is the well known hit problem [4, 9, 12, 14, 17, 22, 23].
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Also, down operations are applied in the dual modular hit problem
which is to determine K(n) = >_ ;5 K%(n), where K%(n) is the set of all

elements v € DP?(n) such that P (v) = 0 for all k > 0. The modular hit
problem and dual modular hit problem are both open problems. The two
aforementioned open problems may be considered over the symmetric
polynomials. The symmetric hit problem [5, 6, 7, 8] is the special case
p = 2 in this circumstance.

Through this article p is considered to be an odd prime. However,
most of the concepts and results are true for p = 2. Also, all binomial
coefficients are understood to be reduced modulo p.

2 Up Steenrod Powers

In this section, we recall some fundamental concepts of up Steenrod
powers from [2, Section 4L] and establish some further properties.

Definition 2.1. The total Steenrod power P : P(n) — P(n) is an
algebra map defined by P(z;) = z; + af for 1 < i < n. For k > 0, the
up Steenrod power P* is the linear map defined by the restriction

Pk Pl(n) — PIHEP-D(p),

Therefore, the total Steenrod power is the formal sum

P=>) P

k>0

Remark 2.2. In topological point of view, the Steenrod power P* is
defined for a topological space X as the operation

Pk HYX;F,) - HT0-Y(X,F)),

satisfying some properties. This coincides with Definition 2.1 since for
the Eilenberg-MacLane space X = K(F};2), we have H*(X;F,) = P(n)
nothing that deg(z;) = 2 [16]. Generally, P* is given the degree 2k(p—1),
but for simplicity we regrade A, by giving P* the ‘reduced’ degree k.
Thus when p = 2, P* will mean Sq¢”, and not Sq¢?*.

The following are some properties of up Steenrod powers.



UP AND DOWN STEENROD POWERS

Proposition 2.3. For x € P?(n),
P(x) =x+ 2P,

Proposition 2.4 (Cartan formula). For any f,g € P(n) and any k > 0,

Pr(fg) = > P(HP(g),

i+j=k
Proposition 2.5. P° is the identity map of P(n).
The next result shows why P* is called a ‘power’ operation.

Proposition 2.6. For the homogenous polynomial f € P4(n), PE(f) =
0 if 2k > d and P*(f) = fP if 2k = d.

The following corollary is immediately concluded.
Corollary 2.7. Let k=dy +---+d,. Then,
Pk(ajclll .- -xd”) = le’dl .- -xﬁd”.

The next two results show how to evaluate an up Steenrod power on
a monomial.

Proposition 2.8. For any x € P?(n) we have

Pk<.1‘d) _ (Z) xd—i—(p—l)k.

Proof. By the multiplicative property of P we write

dy _ d_ nd _ d (r—1)\d _ - (d d+(p—1)k
Plat) = (Pl = (a4 a7)! = a1+ 2001 = 5 () oo,
k=0

Equating terms of degree d + (p — 1)k gives the result. O
Proposition 2.9. Let f = xclh -z be a monomial in P(n). Then

PAA = > PR P,
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Proof. An induction on n applied using Cartan formula 2.4. g
To continue we need the well-known Lucas Theorem.

Theorem 2.10 (Lucas Theorem). For any prime p,
b bi
< >EH( Z) mod p,
a - a;
=1

where
b="b1p™ + - +bpp™, a=a1p” +--- +app™

are the p-adic expansions of b and a, respectively, where b;, a; € IFp,.
The following is an efficient tool in manipulating up Steenrod powers.

Theorem 2.11. Fort > 01let0<i <p' and 0 < j < pt. Let alsor >0
and s > r+ 1. Then,

Pite (itsp'y = <j> J+(p—1)i <S>x(8+(p—1)r)pt_
r

7

Proof. Since i,j < p', by Proposition 2.8 and Lucas Theorem 2.10 we

have
; ¢
pitrp' (xj+sznt) _(J It =1)i sP 2(s+H=1r)p!
7 rpt
_ (T it -1 (5 st -1t
1 T
Note that (fj) is always nonzero mod p since s > r. O

The following corollary is immediately concluded. It shows that the
evaluation of up power operations in Theorem 2.11 vanishes whenever
Jj<i.

Corollary 2.12. Lett >0 and letr >0, s >r+ 1. Then
pitre’ (zitsp'y =

)

wherei=1,...,p =1 and j =0,...,i — 1.
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Table 1: Patterns (A) and (B) for, respectively, up and down Steenrod
powers in the case p = 3.
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Proof. In Theorem 2.11, (Z) is zero mod p as j < ¢. 0

Consider Corollary 2.12 for r =0,...,p—2and s=r+1,...,p—1.
There is a template of dots (zeroes) in groups of p(p — 1)/2 triangles
which get wider as ¢ gets larger. This template is depicted in Tables
1 and 2 for the cases p = 3 and p = 5 respectively. In these tables,
the header row stands for the power of operands. For example 9 means
z°. Because of place limitation as well as regularity, each number is
continuously posited in two columns and for three-digit numbers the
rightmost two digit are written in the table. Therefore, after 99, the
two-digit number 00 means 100 and each two-digit number after that
is added to 100. For example, say, 17 means 117, i.e., 2'7. The pre-
column shows the degree of up power operators. For instance, 12 stand
for P12. In these tables, zeros are shown by dots because of shapely.
Moreover, coefficients are ignored. In fact, the same template can be
arranged for the coefficients which are taken modulo p.

As seen in Table 1(A), for t = 1 we have a group of three triangles
each consists of three dots. Also, the case t = 2 gives us a group of
three 36-dot triangles surrounded by some groups of 3-dots triangles.
The latter template may be found from column 9 to 26 in Table 1(A).
We explain this schema from somehow a complement aspect. As seen in
Tables 1 and 2, there are patterns of nonzero entries which repeat and
grow up harmonically. In the following definition we try to explore the
harmony behind the patterns. One may consider this definition as an
algorithm.

Definition 2.13 (Triangular algorithm). Fix the odd prime p. Put
[Up](o) =0 and [7;](0) =1 Fort=1,2,...,pand 4,5 from 0 to p — 1,
define inductively the pf x p block array [Z/{p] ® by the following block
entries.

) [(’)p] (til), ifi <y
[Z/Ip] T (t—1) (t—1)
K [Uy] + N[T,] , otherwise

t—1
)

where, [(’)p] =1 s the p' =t x pt=1 zero array, N = ipt + (j —i)p and

the pt~! x p!~1 block array [7;] (=1 is defined inductively for 7, j from
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Table 2: Pattern for up Steenrod powers in the case

0top—1hby
=2 i<

, otherwise.

For example, taking p

5, for t = 1 we have the 5 x 5 array |Us

(1)
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by
0, if i < j
) =3 s s g
J 0+5i+ (5 —1), otherwise
and hence,
01 2 3 4
05 6 7 B8
)M =0 0 10 11 12
0 0 0 15 16
00 0 0 20

Moreover, for t = 2 the following 5 x 5 block array [Z/{5] @) is obtained.

@ _ [05](1), ifi<j
[u5]7jj = (1) ) . (1) .
[Us]" +25i+5(j —i)[T5] "', otherwise

where, as in Definition 2.13, [(’)5] M) s the 5 x 5 zero array, and [’7'5] )
is the following 5 x 5 array.

i i .
[7_5](1‘):{0, it <y

1, otherwise

and hence,

.—.

=

o

=

I
cooc o
COoO O R

1
1
1
0
0

O =
== = = =

Finally, for the remind ¢ = 3,4, 5, we have the 5 x 5¢ block array [Us] ®
as follows.

t) [(’)5] (til), ifi<j
[L{5] i (t—1) (t—1)
K Z3 + N[Ts5] , otherwise

where N = 5% + 5!71(5 —4).
We end this section with a short review on the modular hit problem.
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Definition 2.14. A homogenous element f € P(n) of grading d is said
to be modular hit (in modulo p) in P(n) if there is a hit equation of the

F=>_P'f),

1>0

form

where the pre-images f; have grading less than d.

c1pili—1 cpptn—1

Definition 2.15. For the prime p, the monomial z] -y
with, t; > 0 and 1 < ¢; < p—1, is called a mod p spike.

For example, 2,5,8,17, in general, 231

are one-variable mod 3
spikes. Also, a:i’a:g is a two-variable mod 3 spike. The mod 2 spikes are
the so-called spikes.

The modular hit problem is to find bases for the graded IFj)-vector
space Q(n), the quotient of the module P(n) by the modular hit ele-
ments. These bases lift to minimal generating sets for the module P(n).
Finding criteria for elements of P(n) is also part of the modular hit
problem. Since no mod p spike is modular hit in P(n), they are an in-
separable part of any generating set for P(n). The modular hit problem

is not so known nor is in the range of our work in this paper.

3 Down Steenrod Powers

To define the down Steenrod powers, we need the notion of the divided
p-power algebra. This is analogous to the divided power algebra in
modulo 2 and we recall the concerned concepts and results from [1] and
[20, Section 9.1].

Definition 3.1. Let n,d be positive integers. Denote the linear dual of
the F,-vector space P?(n) by DP4(n) = Hom(P%(n),F,) and define the
divided p-power algebra as the infinite sum DP(n) =3 DP(n).

Take the basis vy, ...,v, of DP?(n) dual to the basis 21, ...,z, of
P2(n). The duality property is denoted by (v;, x;), which is 1 if i = j
and 0 otherwise. The d-monomial v%dl) W) DP(n) is defined as
the dual of the monomial x‘lil .-z in P(n), where the parenthesized
exponents are called the divided p-powers. The prefix ‘d’ in d-monomial

11
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is derived from the word ‘dual’. For any v € DP?(n), put v(® = 1,
the identity map of Fo which is also the identity element of DP(1).
Also put v = v. Define the degree of the d-monomial vgdl) e vy(Ld”) as
d=dy + -+ dy,. The degree of a d-polynomial in DP(n) is defined
naturally.

A product on DP(n) is defined as in mod 2. Starting with one
variable v; = v, the product of v(") and v(*) in DP(1) is defined for

positive integers r, s by

) — ( + 5>v<r+s>. (2)

r

Substitute I, by a field of characteristic 0. Since vy = (r+1)p+D
for 7 > 0, an induction on r in (2) leads to v(") = Lo" which is the so-
called r-th divided power of v. The following definition involves Lucas

Theorem 2.10.

Definition 3.2. For a > 0, consider the unique p-adic expansion a =
a1p® + - - -+ app®, where the p-powers e; are distinct and a; € F,,. One
may take this expansion in the ascending order of p-powers although this
condition is not our requirement. Define p-exp(a) = {a;p®,..., app®},
and put p-exp(0) = 0. The analogous definition in mod 2 is bin(a) =
{2¢1,...,2°}, where a = 21 + ... 4 2°! is the binary expansion of a.

Example 3.3. For p = 3,
3-exp(58) = {1-1,1-3,2-3%},3-exp(12) = {1-3,1- 3%},
3-exp(16) = {1-1,2-3,1-3%}.
Definition 3.4. Consider the p-adic expansions
a=ap® + -+ app™,b=b1p® + - + byp".

We say that p-exp(a) < p-exp(b) if and only if a; < b; for any 1 < i < h.

Otherwise we write p-exp(a) A p-exp(b). For example, 3-exp(12) <
3-exp(16) but, 3-exp(16) £ 3-exp(58).

Proposition 3.5. For a,b > 0, (Z) is not zero modulo p if and only if
p-exp(a) = p-exp(b)
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Proof. Put
a=ap + - +app™,b=b1p™ + -+ bpp™.

By Lucas Theorem, in modulo p, (Z) is not zero if and only if for any
1, (21) is not zero which is true if and only if a; < b;. This is equivalent
to p-exp(a) < p-exp(b) by Definition 3.4. O

Now, the product (2) can be written as follows.

vyl = (Tts)v(rﬂ)v if p-exp(r) = p-exp(r + s),
0, otherwise.

The product in DP(n) is commutative and it is naturally extended for d-
polynomials. Analogous discussion as in mod 2 holds except that here,
coefficients exist and that deg(x;) = 2 for 1 < i < n. In particular,
DP(n) is a graded algebra over ), for all n > 1 and is also the Hopf
dual of P(n).

Definition 3.6. The dual of the up Steenrod power P* : P4(n) —
P4tE(P=1)(n) is the linear map Py : DP =1 (n) - DP?(n), called
the down Steenrod power, so that if Py(u) = v for u € DPTFE-1)(p)
then

o(f) = (Pr(w)) (f) = u(P*(f)),

for f € P4(n). In bilinear notation, this can be written as

(Pr(u), f) = (u, PE(f)).

We call Py, the ‘down’ power operation as it lowers degree by k(p —
1), versus the ‘up’ power operation PF which ups degree by the same
amount. From Definition 3.6 it follows that Py is the identity homomor-
phism.

Proposition 3.7. Py is the identity map of DP(n).

Definition 3.8. The total down power P, : DP(n) — DP(n) is the
algebra map P (u) = ;o Pk for u € DP(n).

The proof of algebra map property of P, is goes the same lines as
that of the total down square [20, Proposition 9.3.3].

Thus (Pi(u), f) = (u,P(f)) for v € DP(n) and f € P(n), so that
P, for DP(n) is the graded dual for P(n).

13
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Proposition 3.9 (Cartan formula for DP(n)). For k > 0 and u,v €
DP(n),
Pk(uv) = Z PZ(U)PJ(U)

itj=k

Proof. Appealing the algebra property of P, and equating graded parts
leads to the result. O

The down powering operation commute with linear substitution.
The demonstrations is as for the down squares [20, Propositions 9.3.5].

Proposition 3.10. P;, : DP™=1 () - DP%(n) is a right F,M(n)-
module map.

The next result enables us to manipulate down Steenrod powers.
The proof goes the same lines as that of down Steenrod squares [20),
Proposition 9.3.6]

Proposition 3.11. For all v € DP?(n),

Po(v@) — <d - (Pk— 1)k> (d—(p—1)k)

The following results is immediately concluded.

Corollary 3.12. For any v € DP(n), P,(v¥) = 0 if pk > d and
Pre(vPk)) = vk,

The last part of Corollary 3.12 may be extended.
Corollary 3.13. Letk=dy +---+d,. Then,

Pk(U:Epdl) e U,gpd")) = /Ugdl) “ee Urgldn)

The next result enables to calculate the action of Py, for d-polynomials.
The proof is by induction on n using Cartan formula 3.9.

Proposition 3.14. Given a d-monomial v = v%dl) ol we have

,Pk; (u) = Z Pkl Ugdl) .- -'Pknvgdn).
ki+-kn=k
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The dual version of Theorem 2.11 provides an efficient tool for ma-
nipulating down Steenrod powers.

Theorem 3.15. Taket > 0 and let 0 < i < p! and 0 < j < p'. Also,
letr>0ands>r+1. Then,

Prs (U 1)) (?)vo) <3>U<spt)'

7 r

Proof. By Proposition 3.11 we have

. _ . ] + Spt n t)
Prr (0 + =142 ( >v<y p
i+ rpt

. . t
= <].>v(3) (Spt>v(5pt) (since i,j < p*)
i rp

_ (J) ) <8> (68
1 T

In the second and third equalities Lucas Theorem 2.10 is applied. Note
that (f) is always nonzero mod p since s > r. ]

The following corollary is the dual version of Corollary 2.12. The
proof is the same.

Corollary 3.16. Lett >0 and let r >0, s> r+ 1. Then

Pitrpt (U(j+spt+(p71)(i+rpt))) =0,

wherei=1,...,p =1 and j =0,...,i— 1.

Remark 3.17. Similar triangular pattern as in Definition 2.13 and the
preamble also holds for down powers. The difference is that each row A
in the up-case moves (p — 1)\ columns forward in the down-case. This
dual aspect of movement may be seen in Table 1(B) for the cases p = 3
which is the dual of Table 1(A) and that is why we have depicted them
together. The same explanations in the paragraph after Corollary 2.12
works here. Due to this dual nature, matrix methods for the action of
up powers [1 1] can be utilized for down powers.

The algebra generated by the down powers Py is isomorphic to the
opposite algebra A,". The observation is the same as in mod 2.
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Definition 3.18. For the prime p, a mod p d-spike is a d-monomial
of the form v%clp =D, --vSf”p nfl), where ¢; = 1,...,p— 1 and ¢; > 0.

Mod 2 d-spikes are the so-called d-spikes.
For example, the mod 3 d-spikes in one variable are

v® () 4(8) ,(17) ,(26) ,(53)

and so on. Down powers annihilates the mod p d-spikes.

Proposition 3.19. For any positive integers k, Pp,(v(P"=1)) = 0, where
e >0and 1l < c < p—1. In general, for any mod p d-spike u =
PNl py () = 0,

. n

Proof. We start with one variable. By Proposition 3.11, we must show

that
<cpe - 1>k> L (3)

Since p¢ — 1 — (p — 1)k < p®, it suffices by Lucas Theorem to prove (3)
for ¢ = 1. To do this, we prove

p-exp(k) £ p-exp(p® — 1 — (p — 1)k).

We have
e—1

pr-1=> (p—1)p“.
i=0

Consider k = ), _._; a;p® and suppose that / is the least positive integer
such that ay > 0. There are two possibilities for ay. If ap = 1 then, in
the p-adic expansion of p¢ — 1 — (p — 1)k, the coefficient of p’ disappears
and p-exp(k) £ p-exp(p® — 1 — (p — 1)k). On the other hand, if ay > 1
then in the p-adic expansion of p® — 1 — (p — 1)k, the coefficient of p’
gets smaller than a; and again p-exp(k) 2 p-exp(p® — 1 — (p — 1)k).
Therefore, in each case the result holds. The general case follows from
Proposition 3.14. O

Definition 3.20. The mod p Steenrod kernel is defined as the formal
sum K(n) = >, K%(n), where K%(n) is the set of all elements v €

DP<(n) such that Pj(v) = 0 for all k& > 0.
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We know that mod p spikes cannot appear in the image of any P for
k > 0. However, due to the duality nature, mod p d-spikes are always
in the image of some P;. One may find the powers of one-variable
mod 3 d-spikes, that is, 2, 5, 8, 17, 26, 53 in Table 1(B). All these d-
spikes lie in K(1). In fact, Proposition 3.19 states that mod p Steenrod
kernel contains all mod p d-spikes. The dual modular hit problem is to
determine K(n) and is not so known.
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