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Abstract. The Generalized Minimal Residual method (GMRES) is
often used to solve a large and sparse system Ax = b. This paper es-
tablishes error bound for residuals of GMRES on solving an N × N
normal tridiagonal Toeplitz linear system. This problem has been stud-
ied previously by Li [R.-C. Li, Convergence of CG and GMRES on a
tridiagonal Toeplitz linear system, BIT 47 (3) (2007) 577-599.], for two
special right-hand sides b = e1, eN . Also, Li and Zhang [R.-C. Li, W.
Zhang, The rate of convergence of GMRES on a tridiagonal Toeplitz
linear system, Numer. Math. 112 (2009) 267-293.] for non-symmetric
matrix A, presented upper bound for GMRES residuals. But in this pa-
per we establish the upper bound on normal tridiagonal Toeplitz linear
systems for special right-hand sides b = b(l)el, for 1  l  N .
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rithm and is often used for solving a linear system

Ax = b,

where A is an N ×N matrix, and b is a vector with dimension N .
The basic idea is to seek approximate solutions, with minimize the residual
norm, within Krylov subspaces. Specifically, the kth approximation xk is sought
so that the kth residual rk = b−Axk satisfies [14]

‖rk‖2 = min
x∈x0+Kk(A,r0)

‖b−Ax‖2,

where the Krylov subspace Kk(A, r0) of A on r0 is defined as

Kk(A, r0) def= span{r0, Ar0, ..., Ak−1r0}, (1)

and generic norm ‖.‖2 is the usual l2 norm of a vector or the spectral norm of
a matrix.
This paper is concerned with the convergence analysis of GMRES on a linear
system Ax = b, whose cofficient matrix A is a tridiagonal Toeplitz matrix

A =


λ µ

ν
. . . . . .
. . . . . . µ

ν λ

 , (2)

where λ, µ, and ν are assumed nonzero and possibly complex.
Tridiagonalz Toeplitz linear systems naturally arise from a convection-diffusion
problem [13]. This type of matrices are appeared in a variety of applications,
such as image processing, numerical differential equations and integral equa-
tions, time series analysis, and control theory. When |µ| = |ν|, A is normal,
including symmetric and symmetric positive definite as subcases, R.-C. Li [8]
obtained the exact expressions for two special right-hand sides b = e1, eN . Also,
R.-C. Li and W. Zhang [10] for non-symmetric matrix A, presented upper
bound for GMRES residual. But in this paper we establish the upper bound on
normal tridiagonal Toeplitz linear systems for special right-hand sides b = b(l)el,
1 6 l 6 N .

Notation. Throughout this paper, IN is the N ×N identity matrix, and ej is
its jth column.
We shall also adopt MATLAB-like convention to access the entries and matri-
ces. For a vector u and a matrix X, u(j) is jth entry of u, X(:,j) is jth column
of X, X(:,i:j) consists of intersections of all rows and column i to column j, and
diag(u) is the diagonal matrix with (diag(u))(j,j) = u(j). Finally Πk denotes
the set of polynomials of degree at most k.
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2. Basic Concepts

Let N ×N tridiagonal Toeplitz matrix A be given as in (2), where λ, µ, and ν
are assumed nonzero and possibly complex, and |µ| = |ν|. Then A is normal.
In fact |µ| = |ν| is a sufficient and necessary condition for A to be normal.
In fact [15]

A = XΛX−1, Λ = diag(λ1, . . . , λN ), X = SZ, (3)

λj = λ− 2
√
µν tj , tj = cos θj , θj =

jπ

N + 1
, S = diag(ξ0, . . . , ξ−N+1), (4)

ξ = −
√
µν

ν
, Z(:,j) =

√
2

N + 1
(sin jθ1, . . . , sin jθN )T .

It can be verified that ZTZ = IN , and ZT = Z.
Let

ω
def= −2

√
µν, τ

def= − λ
√
µν
,

and by (4), we have
λj = ω(tj − τ), (1 6 j 6 N). (5)

Without loss of generality, for GMRES, we take initially x0 = 0, and thus the
kth approximation xk is sought so that the kth residual rk = b−Axk satisfies

‖rk‖2 = min
x∈Kk

‖b−Ax‖2,

where the Krylov subspace Kk ≡ Kk(A, b) of A on b is defined as (1). We can
write

‖rk‖2 = min
φk∈Πk, φk(0)=1

‖φk(A) b‖2.

From (3), we have

‖ rk ‖2= min
u(1)=1

‖SZdiag(ZS−1b)V Tk+1,Nu ‖2, (6)

where Vk+1,N is the (k + 1)×N rectangular Vandermonde matrix

Vk+1,N
def=


1 1 . . . 1
λ1 λ2 . . . λN
...

...
. . .

...
λk1 λk2 . . . λkN

 .
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Recall Chebyshev polynomials of the second kind:

Um(t) =


sin((m+1) arccos t)

sin(arccos t) for real t and |t| 6 1,

(t+
√
t2−1)m+1−(t−

√
t2−1)m+1

2
√
t2−1

else.

and define the mth Translated Chebyshev polynomial of the second kind in z
of degree m by

Um(z;ω, τ) def= Um(z/ω+τ) = ammz
m+am−1mz

m−1 + . . .+a1mz+a0m. (7)

Define also Rm, and UN by

Rm
def=


a00 a01 . . . a0m−1

a11 . . . a1m−1

. . .
...

am−1m−1

 , (8)

UN
def=


U0(t1) U0(t2) . . . U0(tN )
U1(t1) U1(t2) . . . U1(tN )

...
...

. . .
...

UN−1(t1) UN−1(t2) . . . UN−1(tN )

 . (9)

Lemma 2.1. Let Rm and UN define as (8), and (9), then

V Tk+1,N = UT
k+1,NR

−1
k+1. (10)

Proof. The proof is cosequence from (5) and (7). Also, see [10]. �

The next lemma was proven in [6].

Lemma 2.2. If W has full column rank, then

min
u(1)=1

‖Wu‖2 = [eT1 (W ∗W )−1e1]−1/2.

In particular if W is nonsingular, minu(1)=1 ‖Wu‖2 = ‖W−∗e1 ‖−1
2 .

The next theorem gives the upper bounds for GMRES residuals and was proven
in [10].



THE UPPER BOUND FOR GMRES ON NORMAL ... 113

Theorem 2.3. For Ax = b, where A is a non-normal tridiagonal Toeplitz as
in (2) with nonzero (real or complex) parameters λ, µ, and ν. Then the kth
GMRES residual rk satisfies for 1 6 k < N

‖rk‖2
‖r0‖2

6
√
k + 1

 k∑
j=0

|ζ|2j |Tj(τ)|2
−1/2

,

where Tj is the jth Chebyshev polynomial of the first kind, and

ζ = min
{
|ξ|, |ξ|−1

}
.

Theorem 2.3 gives upper bound for GMRES residual on non-symmetric tridi-
agonal Toeplitz linear systems Ax = b. Our mail goal in this paper is the next
Theorem, where gives upper bound for GMRES residual on normal tridiagonal
Toeplitz linear systems Ax = b, when b = b(l)el. If |µ| = |ν|, then A is normal,
and for case µ = −ν, A becomes both normal and non-symmetric. Therefore
for this case, we compare Theorem 2.3 and next Theorem in our examples.

Theorem 2.4. For Ax = b, where A is a normal tridiagonal Toeplitz as in
(2) with nonzero (real or complex) parameters λ, µ, and ν, and b = b(l)el
(1 6 l 6 N), then the k-th GMRES residual rk satisfies for 1 6 k 6 N

‖rk‖2 6| b(l)|max
θi

(
sin lθi
sin θi

)[
k∑
j=0

|Uj(τ)|2]−1/2.

Proof. From (6) and (10), we have

‖rk‖2 6‖ S‖2 ‖M(:,1:k+1)‖2 min
u(1)=1

‖R−1
k+1‖2 (11)

where M = Zdiag(ZS−1b)UT
N . Because |µ| = |ν|, we have ‖ S‖2 = 1. By

Lemma 2.2, we have

min
u(1)=1

‖R−1
k+1‖2 = [

k∑
j=0

|Uj(τ)|2]−1/2. (12)

To compute ‖M(:,1:k+1)‖2, we shall investigate M first. Thus

M = Zdiag(ZS−1b) =
N∑
l=1

b(l)ξ
l−1Ml,
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where Ml = Zdiag(Z(:,l)U
T
N ). But, we can also write

Ml = ZTDlZ,

where

Dl = diag(
sin lθ1
sin θ1

,
sin lθ2
sin θ2

, . . . ,
sin lθN
sin θN

).

Hence

M(:,1:k+1)2 | b(l)|max
θi

(
sin lθi
sin θi

). (13)

Therefore the proof is now completed by combining (11), (12), and (13). 

In the following, we give examples, which show the upper bound by Theorem
2.4.

Example 2.5. Let

A =





3 2.5

−2.5
. . .

. . .

. . .
. . . 2.5
−2.5 3





50×50

,

and b = e49. Because A is both normal and non-symmetric, we compare Theo-
rem 2.3 and our upper bounds by Theorem 2.4. Figure 1 plot GMRES residuals
and their upper bounds by Theorem 2.4 and Theorem 2.3. We see that our up-
per bounds are smaller than Theorem 2.3. It seems that our upper bounds are
very good. Thus we can approximate GMRES residuals by Theorem 2.4.

Figure 1: GMRES residuals, and their upper bounds by Theorem 2.4.
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Example 2.6. Let

A =





2 0.74

−0.74 . . . . . .
. . . . . . 0.74

−0.74 2





50×50

,

and b = 2e48. Because A is both normal and non-symmetric, we compare
Theorem 2.3 and our upper bounds by Theorem 2.4. Figure 2 plot GMRES
residuals and their upper bounds by Theorem 2.4 and Theorem 2.3. We see
that our upper bounds are smaller than Theorem 2.4.

Figure 2: GMRES residuals, our upper bounds by Theorems 2.4 and upper
bounds by Theorem 2.3.
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