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Abstract. In this paper, applying Caputo fractional derivative op-
erator, the SCIRS epidemic model of Covid-19 has been presented.
First, the well-definedness of the model (positive invariance) has been
checked. We then calculate the equilibrium points of the system and
the reproduction number and discuss the local and global stability of
the equilibria based on values of the reproduction number. For the
global stability of the rest points, the Liapunov’s second method and
LaSalle’s invariance principle are used. The Pontryagin minimization
principle is utilized to derive the optimal control conditions, with a fo-
cus on minimizing both the infection rate and the cost associated with
vaccination implementation. Applying fixed point theory, the existence
and uniqueness of the solutions of the model has been proven. Addi-
tionally, by using MATLAB and fractional Euler method, a numerical
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method has been applied to simulate the solutions based on real data
and predict the transmission of Covid-19.
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1 Introduction
In late 2019, a novel virus known as coronavirus rapidly spread world-
wide at an unprecedented rate [29]. Its origins were traced back to
the food market in Wuhan, China. Officially named SARS-CoV-2, this
virus has caused over 500 million hospitalizations and claimed the lives
of more than 6 million individuals globally [19]. Symptoms associated
with this virus include cough, shortness of breath, weakness, lethargy,
fever, chills, fatigue, muscle aches, sore throat, and more [3]. It can
infect both humans and animals, with transmission occurring through
inhalation of viral particles [1]. The disease is particularly severe in
the elderly and individuals with underlying conditions such as cancer,
cardiovascular disease, kidney and lung disorders, immune deficiency,
and diabetes [24, 34, 48, 49]. Currently, there is no definitive cure for
the virus, but various vaccines are being utilized to mitigate mortality
and serious illness in infected and non-infected individuals [8, 41]. Com-
plications resulting from this disease encompass acute respiratory dis-
tress syndrome (ARDS), blood clots, cardiac arrhythmias, cardiogenic
shock, kidney damage or failure, heart damage, and ultimately, fatality
[2, 13, 15, 17, 23, 31]. The most effective measures to prevent contract-
ing this dangerous virus include the use of personal protective equipment
like masks and gloves, regular handwashing, avoiding crowded environ-
ments, and receiving recommended vaccinations [22, 27, 38]. Evidence
suggests that previous infection does not guarantee immunity against
subsequent infections [12, 32, 45].

The use of differential equations with integer-order for epidemio-
logical modeling of infectious diseases to investigate the dynamics of
epidemic transmission is extensively studied [11, 14]. Thematic model-
ing of epidemic diseases demonstrates that nonlinear dynamic equations
can offer valuable insights into the dynamics of disease transmission
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and dynamic diffusion behaviors. The global impact of Covid-19 (C-
19) has garnered the attention of researchers interested in mathematical
modeling of this infectious disease. They have developed real nonlinear
mathematical models driven by data to enhance our understanding of
epidemic transmission dynamics (see, for instance, [36, 43].

Recently, differential equations with non-integer order or fractional
order have been studied for modeling in applied mathematics. For ex-
ample, the authors in [28] have studied an SEIARS model for analyzing
C-19 pandemic process via ψ-Caputo fractional derivative. Also, in the
study of illness such as C-19 [7, 46] and rabies [6], the authors have been
applied fractional differential equations (FDEs) for modeling the spread
of infection in human population. Also, authors have considered FDEs
to study the another variants of problems, such as system of hybrid frac-
tional differential equations [5] and fractional integro-differential equa-
tions [18, 40, 42].

FDEs serve as effective mathematical models for examining biologi-
cal systems. These equations incorporate differential operators that cap-
ture the memory dynamics observed in many biological systems [9, 10].
Scientists have successfully applied the Caputo fractional order (CFO) to
analyze the dynamics of various infectious diseases, such as HIV [30, 44]
and Malaria [4, 33, 35]. Furthermore, in a study conducted by the au-
thors of [39], they introduced an SEIR epidemic model that incorporated
these equations to investigate the transmission of C-19.

The organization of the article is as follows: initially, it presents the
necessary definitions for the study and introduces a fractional SCIRS
model for the transmission of C-19. The EPs and reproduction numbers
of the model will be calculated. Subsequently, the article analyzes the
stability of the EPs and demonstrates the existence and uniqueness of
the solution for the system. The optimal control of the system is an-
alyzed by considering the intervention as a control strategy aimed at
reducing the number of infected individuals. In the numerical section,
the mathematical analysis and simulation of C-19 transmission is pre-
sented. To show the advantages of utilizing fractional derivatives, the
article compares the results of the fractional and integer derivative mod-
els using real data. The aim is to determine which model offers a more
integer approximation in this context. Additionally, the article exam-
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ines how the derivative order affects the results and EPs by presenting
findings for different orders of the fractional derivative.

Here, we begin by introducing the essential definitions of fractional
calculus that are relevant to the present study.

Definition 1.1. [21] For a function y, the Caputo fractional derivative
(CFD) of order α ∈ (0, 1) is given by

CDαy(t) =
1

Γ(n− α)

∫ t

0

y(n)(x)dx

(t− x)(α−n+1)
, n = [α] + 1.

Also, fractional integral of order α with α ∈ R+ is defined as

CIαy(t) =
1

Γ(α)

∫ t

0
(t− x)α−1y(x)dx.

Definition 1.2. [21] The Laplace transform L of the CFD of order α
can be expressed as follows:

L[CDαy(t)](s) = sαLy(t)−
n−1∑
i=0

sα−i−1y(i)(0), n− 1 < α ≤ n ∈ N.

Definition 1.3. [21] The Mittag-Leffler function Eα(z) is defined by

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)
, (z ∈ C;R(α) > 0),

The generalized Mittag-Leffler function Eα,β is defined by

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
, (z, β ∈ C;R(α) > 0).

2 Model Framework
Mathematical models play a vital role in forecasting the spread of viruses
during viral outbreaks by considering their patterns in various geograph-
ical areas. A range of mathematical models, including SIR, SEIAR,
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Table 1

Parameters The biological interpretation
Λ the recruitment rate
µ the natural death rate
β the transmission rate of infection
γ the recovery rate of asymptomatic individuals
σ the recovery rate of infected individuals
δ the death rate caused by the disease
η the per capita rate of becoming infectious
ρ improved susceptibility rate

SIRS, SCIR, and SIQR are employed to explore the occurrence of dis-
eases. As per the World Health Organization’s information on C-19,
there exist individuals who are asymptomatic carriers and can transmit
disease-causing microorganisms without exhibiting any symptoms of in-
fection. Furthermore, there are individuals within this group who might
undergo reinfection even after they have recovered. Hence, we take
into account the following SCIRS fractional model for C-19 in which
the susceptible, carrier, symptomatic, and recovered compartments are
represented by S, C, I, and R, respectively.

ϑα−1CDα
t S(t) = Λ− βS(I + qC)− µS + ρR,

ϑα−1CDα
t C(t) = βS(I + qC)− (η + γ + µ)C,

ϑα−1CDα
t I(t) = ηC − (σ + µ+ δ)I,

ϑα−1CDα
t R(t) = σI + γC − (µ+ ρ)R,

(1)

where t > 0 and α ∈ (0, 1).
The initial conditions are specified as follows: S(0) = S0 > 0, C(0) =

C0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0. Also, the parameters are
introduced in Table 1.

Nonnegative solution:
Let Ω = {(S, C, I,R) ∈ ℜ+

4 : S + C+ I +R ≤ Λ
µ}. We demonstrate that

the closed set Ω represents the region of feasibility for system (1).

Lemma 2.1. The fractional system (1) exhibits positive invariance with
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respect to the closed set Ω.

Proof. Accordingly, by summing up all the equations in system (1), we
can obtain the fractional derivative of the total population. Thus,

ϑα−1CDα
t N (t) = Λ− µN (t)− δI(t) ≤ Λ− µN (t),

where N (t) = S(t)+C(t)+I(t)+R(t). By employing the L{N (t)} and
utilizing Theorem 7.2 in [16], we arrive at the result of

N (t) ≤ N (0)Eα(−µϑ1−αtα) +

∫ t

0
Λϑ1−αηα−1Eα,α(−µϑ1−αηα)dη,

where N (0) denotes the initial size of the population. Therefore, using
the series expansion of Mittag-Leffler functions

N (t) ≤ N (0)Eα(−µϑ1−αtα) +

∫ t

0
Λϑ1−αηα−1

∞∑
k=0

(−1)kµkϑk(1−α)ηkα

Γ(kα+ α)
dη

=
Λϑ1−α

µϑ1−α
+ Eα(−µϑ1−αtα)(N (0)− Λϑ1−α

µϑ1−α
)

=
Λ

µ
+ Eα(−µϑ1−αtα)(N (0)− Λ

µ
).

Thus, if N (0) ≤ Λ
µ , then N (t) ≤ Λ

µ for t > 0. As a result, the model
ensures that the closed set Ω remains invariant in a positive manner.
□

3 Equilibrium Points
The approach outlined in [47] is utilized to calculate the basic reproduc-
tion number (R0) of the model. To determine R0, we rewrite the second
and third equations of (1) as:

CDαΨ = F(Ψ)−V(Ψ),

where

Ψ =

[
C
I

]
, F(Ψ) = ϑ1−α

[
βS(I + qC)

ηC

]
, V(Ψ) = ϑ1−α

[
(η + γ + µ)C
(σ + µ+ δ)I

]
.
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At E0, the Jacobian matrices for F and V are obtained as follows:

JF(E0) = ϑ1−α

[
βSq βS
η 0

]
, JV(E0) = ϑ1−α

[
(η + γ + µ) 0

0 (σ + µ+ δ)

]
.

The reproduction number R0 is calculated based on the spectral radius
of matrix JFJ

−1
V which is equal to

R0 =
βΛq

µ(η + γ + µ)
+

βΛη

µ(η + γ + µ)(σ + µ+ δ)
= R01 +R02. (2)

It serves as an epidemiological measure to assess the degree of conta-
giousness or transmissibility exhibited by infectious agents.

To determine the EPs of system (1), we equate the equations of the
fractional system to zero. By solving the resulting algebraic equations,
we can determine the EPs of system (1). The EP corresponding to the
absence of disease is attained as E0 = (Λµ , 0, 0, 0). Moreover, if R0 > 1,
the system (1) exhibits a positive endemic EP E1 = (S∗, C∗, I∗,R∗),
where

S∗ =
(σ + µ+ δ)(η + γ + µ)

βη + βq(σ + µ+ δ)
,

C∗ =
(σ + µ+ δ)I

η
,

R∗ =
σI

(µ+ ρ)
+
γ(σ + µ+ δ)I

(µ+ ρ)η
,

I∗ =
µ(η + γ + µ)(σ + µ+ δ)(µ+ ρ)η

AB
[R0 − 1],

where

A = [ηβ + βq(σ + µ+ δ)],

B = [(η + γ + µ)(σ + µ+ δ)(µ+ ρ) + ρση + ργ(σ + µ+ δ)].

4 R0 Sensitivity Analysis
In this analysis, we will explore the sensitivity of R0. Analyzing the
sensitivity of the endemic threshold R0 provides valuable insights into
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the importance of individual parameters in the transmission of a disease.
This knowledge is essential not only for designing experiments, but also
for incorporating data and simplifying intricate models [37]. Sensitivity
analysis is frequently employed to evaluate the resilience of model pre-
dictions when parameter values vary, considering data collection errors
and assumed parameter values. It aids in identifying parameters that
exert a substantial influence on the threshold R0 and should be focused
on intervention strategies. To be more specific, sensitivity indices allow
us to measure the proportional change in a variable when a parameter
is altered. To assess the sensitivity of R0, we compute its derivatives as
follows:
∂R0

∂β
=

S∗q

(η + γ + µ)
+

ηS∗

(η + γ + µ)(σ + µ+ δ)
,

∂R0

∂η
=

−βS∗q

(η + γ + µ)2
+

βS∗

(η + γ + µ)(σ + µ+ δ)
− ηβS∗

(η + γ + µ)2(σ + µ+ δ)
,

∂R0

∂γ
=

−βS∗q

(η + γ + µ)2
− ηβS∗

(η + γ + µ)2(σ + µ+ δ)
,

∂R0

∂δ
=

−ηβS∗

(η + γ + µ)(σ + µ+ δ)2
,

∂R0

∂α
=

−ηβS∗

(η + γ + µ)(σ + µ+ δ)2
,

∂R0

∂µ
=

−βS∗q

(η + γ + µ)2
− ηβS∗

(η + γ + µ)2(σ + µ+ δ)
− ηβS∗

(η + γ + µ)(σ + µ+ δ)2
.

Since all the parameters are positive, ∂R0
∂β > 0. Thus, R0 is rising in

conjunction with β, and is decreasing with γ, δ, σ and µ. But we cannot
say anything about η here.

5 Stability of Equilibria
The primary aim of this section is to assess the stability of the EPs. We
first compute the Jacobian matrix (J) for system (1) as follows:

J = ϑ1−α


−β(I + qC)− µ −βSq −βS ρ
β(I + qC) βSq − (η + γ + µ) βS 0

0 η −(σ + µ+ δ) 0
0 γ σ −(µ+ ρ)

 .
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As a result,

J(E0) = ϑ1−α


−µ −βS0q −βS0 ρ
0 βS0q − (η + γ + µ) βS0 0
0 η −(σ + µ+ δ) 0
0 γ σ −(µ+ ρ)

 ,

where S0 =
Λ

µ
.

Theorem 5.1. If R0 is less than 1, then the EP E0 is locally asymp-
totically stable (LAS). Conversely, if R0 is greater than 1, then E0 is
unstable.

Proof. Let us analyze the equation |J − λI| = 0. It is easy to see
that λ1 = −µ is an eigenvalue. Afterward, by expanding the remaining
matrix around the last column, we acquire an eigenvalue as λ2 = −(µ+
ρ). The remaining pair of eigenvalues are associated with the eigenvalues
of the subsequent matrix:

J1 = ϑ1−α

[
βS0q − (η + γ + µ) βS0

η −(σ + µ+ δ)

]
.

Next, we can utilize the standard criteria that guarantee the eigen-
value of J1 possess a negative real component. Specifically, we need to
fulfill the conditions Tr(J1) < 0 and Det(J1) > 0. The second inequality
leads to the condition −[βS0q− (η+γ+µ)](σ+µ+δ)−ηβS0 > 0 which
establishes R0 in the form of (2).

It is important to highlight that when R0 < 1, both inequalities
Tr(J1) < 0 and Det(J1) > 0 are also fulfilled. Consequently, if R0 < 1,
the disease-free EP exhibits stability in the local asymptotic sense. On
the other hand, if R0 > 1, the disease-free EP is unstable. □

The Jacobian matrix at the endemic EP is as:

J(E1)

= ϑ1−α


−β(I∗ + qC∗)− µ −βS∗q −βS∗ ρ
β(I∗ + qC∗) βS∗q − (η + γ + µ) βS∗ 0

0 η −(σ + µ+ δ) 0
0 γ σ −(µ+ ρ)

 .
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Now, let us consider |J − λI| = 0. Through the expansion of the
determinant, we obtain the characteristic equation of the endemic EP
in the following manner:

λ3 +A1λ
2 +A2λ+A3 = 0,

where

A1 =
1

µ
(σ + 3µ+ δ + ρ+ η + γ),

A2 =
1

µ
(η + γ + µ)(σ + µ+ δ)− 1

βµ(I∗ + qC∗)
[βS∗ηµ+ ργ],

A3 =
1

βµ(I∗ + qC∗)
[(η + γ + µ)(σ + µ+ δ)(µ+ ρ)

+ (η + γ + µ2 + σ + δ − βS∗ηµ)(µ+ ρ)− ργ(σ + µ+ δ)]− ρση.

According to the Routh-Hurwitz stability criterion, the endemic equi-
librium point E1 is locally asymptotically stable if and only if conditions
A1 > 0, A2 > 0, A3 > 0 and A1A2 > A3 are satisfied. The positivity
of the system parameters ensures that the coefficient A1 is consistently
positive. Therefore, EP E1 is LAS if A2 > 0, A3 > 0 and A1A2 > A3.

Theorem 5.2. The EP E0 of system is globally asymptotically stable
(GAS) if R01 <

1
2 and R02 <

1
2 .

Proof. Consider the Lyapunov function:

V0(S, C, I,R) = S − S0 − S0 ln(
S
S0

) + C + A1I + A2R,

where

A1 =
2βS0 + (σ + µ+ δ)(η + γ + µ)

η(η + σ + µ+ δ)
,

A2 =
(σ + µ+ δ)(η + γ + µ)[1− 2R02]

2γ(η + σ + µ+ δ)
.
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Computing the time derivative of V0 along the solution of (1) and using
equilibrium conditions, we have:

V̇0 = (1− S0

S
)Ṡ + Ċ + A1İ + A2Ṙ

= (1− S0

S
)[Λ− βS(I + qC)− µS + ρR] + βS(I + qC)

− (η + γ + µ)C + A1[ηC − (σ + µ+ δ)I] + A2[σI + γC − (µ+ ρ)R]

= Λ(2− S0

S
− S

S0
) + ρ(

S − S0

S
) + I[ βηS0

(σ + µ+ δ)(η + γ + µ)
− 1

2
]

+ C[ 2βqS0

η + γ + µ
− 1]

= Λ(2− S0

S
− S

S0
) + ρ(

S − S0

S
) + I[R01 −

1

2
] + C[2R02 − 1]

Therefore, S −S0 ≤ 0 and 2− S0

S − S
S0 ≤ 0. Since R01 <

1
2 and R02 <

1
2 ,

it can be concluded that V̇0 ≤ 0 for all S, C, I,R > 0. Hence, the
disease-free equilibrium E0 is stable. On the other hand, V̇0 = 0 if and
only if S = S0, C = 0, I = 0 and R = 0. Let Ω0 be the largest invariant
set in

Ψ0 = {(S, C, I,R)|V̇0 = 0}.

We have that Ω0 = {E0}. The GAS of E0 follows from LaSalle’s invari-
ance principle. □

6 Optimal Control Approach

In this section, we examine the impact of vaccination on the recovery of
C-19 patients using an optimal control strategy applied to the fractional
SCIRS model (1). The control variable u(t), representing the vaccina-
tion, is analyzed. Based on the provided explanations, we propose the
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following fractional control system

ϑα−1CDα
t S(t) = Λ− βS(I + qC)− (µ+ u(t))S + ρR,

ϑα−1CDα
t C(t) = βS(I + qC)− (η + γ + µ)C,

ϑα−1CDα
t I(t) = ηC − (σ + µ+ δ)I(t),

ϑα−1CDα
t R(t) = σI + γC + u(t)S − (µ+ ρ)R. (3)

The fractional control system simplifies to system (1) when the con-
trol u is set to zero. The Pontryagin minimization principle ([20]) serves
as the foundation for optimal control theory in fractional-order systems.
The control u(t) represent the fraction of vaccinated individuals per
unit time at t. The cost function to be considered under the dynamic
constraints (3) is as follows:

L(u) =

∫ T

0
[a1C(t) + a2I(t) +

1

2
a3u

2(t)]dt (4)

In (4), T is the duration of vaccination and the parameters a1 and a2
represent the weighting coefficient for the number of infected individuals
C and I. Also, a3 denotes the cost associated with implementing the con-
trol strategy. By finding the optimal control u∗ where L(u∗) = minL(u),
we minimize the cost function L(u).
Theorem 6.1. Let u(t) ∈ [0, 1] to be a measurable function in [0, T ].
Then, optimal control

u∗ = max{min{(λ1 − λ4)ϑ
1−αS(t)

a3
, 1}, 0}

minimizes the function L(u) subject to system (3).
Proof. To apply the Pontryagain minimization approach, we define the
Hamiltonian as follows:

H = [a1C(t) + a2I(t) +
1

2
a3u

2(t)]

+ λ1ϑ
1−α[Λ− βS(I + qC)− (µ+ u(t))S + ρR]

+ λ2ϑ
1−α[βS(I + qC)− (η + γ + µ)C]

+ λ3ϑ
1−α[ηC − (σ + µ+ δ)I(t)]

+ λ4ϑ
1−α[σI + γC + u(t)S − (µ+ ρ)R]
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where the adjoint variables are λi(t), i = 1, ..., 4 with λi(T ) = 0. Also,
they satisfy in the following system

ϑα−1CDα
t λ1(t) = −∂H

∂S
= λ1[β(I − (µ+ u(t))]− λ2[β(I + qC)]− λ4u,

ϑα−1CDα
t λ2(t) = −∂H

∂C
= λ1(βSq)− λ2[βSq − (η + γ + µ)]− λ3η − λ4γ − a1,

ϑα−1CDα
t λ3(t) = −∂H

∂I
= λ1βS − λ2βS + λ3(σ + µ+ δ)− λ4σ − a2,

ϑα−1CDα
t λ4(t) = − ∂H

∂R
= −λ1ρ+ λ4(µ+ ρ). (5)

To determine u(t), we minimize the Hamiltonian function by ad-
justing the control variable. By applying the Pontryagin principle, we
obtain the following optimality condition:

∂H

∂u
= 0 =⇒ u =

(λ1 − λ4)ϑ
1−αS(t)

a3
.

Consequently, u(t), the ideal control variable, is obtained as

u∗ = max{min{(λ1 − λ4)ϑ
1−αS(t)

a3
, 1}, 0}.

By solving the problems (3) and (5), the optimal control is calculated.
□

7 Existence and Uniqueness of Solutions
In this section, applying the fixed point theorem, the existence and
uniqueness of solutions for system (1) will be shown. The method of
Nieto and Losada ([26]) will be applied on equation (1). To initiate this
process, we reformulate the system mentioned in equation (1) in the
subsequent form: 

ϑα−1CDα
t S(t) = L1(t,S(t)),

ϑα−1CDα
t C(t) = L2(t, C(t)),

ϑα−1CDα
t I(t) = L3(t, I(t)),

ϑα−1CDα
t R(t) = L4(t,R(t)).
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By integrating both sides, we obtain

S(t)− S(0) = ϑ1−α

Γ(α)

∫
t

0
L1(τ,S)(t− τ)α−1dτ,

C(t)− C(0) = ϑ1−α

Γ(α)

∫
t

0
L2(τ, C)(t− τ)α−1dτ,

I(t)− I(0) = ϑ1−α

Γ(α)

∫
t

0
L3(τ, I)(t− τ)α−1dτ,

R(t)−R(0) =
ϑ1−α

Γ(α)

∫
t

0
L4(τ,R)(t− τ)α−1dτ.

(6)

We prove that the kernels Li, with i = 1, 2, 3, 4, satisfy the Lipschitz
condition (LC) and contraction properties.

Theorem 7.1. Let f1 = βd3 + qβd2 + µ in which d2 and d3 are upper
bounds for C(t) and I(t), respectively. Then, L1 satisfies LC and if
0 ≤ f1 < 1, then it is also a contraction.
Proof. For S and S1 we have
||L1(t,S)− L1(t,S1)|| = || − β(S(t)− S1(t))(I + qC)− µ(S(t)− S1(t)) + ρR||

≤ ||βI(t) + qβC(t)||||S(t)− S1(t)||+ µ||S(t)− S1(t)||
≤ (β||I(t)||+ qβ||C(t)||+ µ)||S(t)− S1(t)||
≤ (βd3 + qβd2 + µ)||S(t)− S1(t)||.

Therefore,

||L1(t,S)− L1(t,S1)|| ≤ f1||(S(t)− S1(t))||. (7)

Thus, LC for L1 is achieved, and if 0 ≤ βd3 + qβd2 + µ < 1, then L1

is a contraction. □
Similarly, we can demonstrate that Lj , where j = 2, 3, 4, satisfies LC

as:

||L2(t, C)− L2(t, C1)|| ≤ f2||(C(t)− C1(t))||,
||L3(t, I)− L3(t, I1)|| ≤ f3||(I(t)− I1(t))||,

||L4(t,R)− L4(t,R1)|| ≤ f4||(R(t)−R1(t))||,

in which ||S(t)|| ≤ d1, and f2 = βqd1 + (η + γ + µ), f3 = σ + µ+ δ and
f4 = µ + ρ. If 0 ≤ fj < 1 for j = 2, 3, 4, then Lj are also contraction
mappings.
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Considering system (6) as a basis, we can express the following re-
cursive forms:

ϕ1,n(t) = Sn(t)− Sn−1(t) =
ϑ1−α

Γ(α)

∫ t

0

(L1(τ,Sn−1)− L1(τ,Sn−2))(t− τ)α−1dτ,

ϕ2,n(t) = Cn(t)− Cn−1(t) =
ϑ1−α

Γ(α)

∫ t

0

(L2(τ, Cn−1)− L2(τ, Cn−2))(t− τ)α−1dτ,

ϕ3,n(t) = In(t)− In−1(t) =
ϑ1−α

Γ(α)

∫ t

0

(L3(τ, In−1)− L3(τ, In−2))(t− τ)α−1dτ,

ϕ4,n(t) = Rn(t)−Rn−1(t) =
ϑ1−α

Γ(α)

∫ t

0

(L4(τ,Rn−1)− L4(τ,Rn−2))(t− τ)α−1dτ,

with the initial conditions(S(0), C(0), I(0),R(0)) = (S0, C0, I′,R0). We
have

||ϕ1,n(t)|| = ||Sn(t)− Sn−1(t)||

= ||ϑ
1−α

Γ(α)

∫ t

0
(L1(τ,Sn−1)− L1(τ,Sn−2))(t− τ)α−1dτ ||

≤ ϑ1−α

Γ(α)

∫ t

0
||(L1(τ,Sn−1)− L1(τ,Sn−2))(t− τ)α−1||dτ.

Impose LC (7) to get

||ϕ1,n(t)|| ≤
ϑ1−α

Γ(α)
f1

∫ t

0
||ϕ1,n−1(τ)||dτ. (8)

Similarly, we obtain

||ϕ2,n(t)|| ≤
ϑ1−α

Γ(α)
f2

∫ t

0
||ϕ2,n−1(τ)||dτ,

||ϕ3,n(t)|| ≤
ϑ1−α

Γ(α)
f3

∫ t

0
||ϕ3,n−1(τ)||dτ,

||ϕ4,n(t)|| ≤
ϑ1−α

Γ(α)
f4

∫ t

0
||ϕ4,n−1(τ)||dτ. (9)
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Thus,

Sn(t) =
n∑

i=1

ϕ1,i(t), Cn(t) =
n∑

i=1

ϕ2,i(t),

In(t) =
n∑

i=1

ϕ3,i(t), Rn(t) =
n∑

i=1

ϕ4,i(t).

In the following theorem, the existence of the solution will be proved.

Theorem 7.2. The solutions of Eq. (1) exist if there exists t1 such that

ϑ1−α

Γ(α)
t1fj < 1.

Proof. Utilizing the iterative method in conjunction with (8) and (9),
we can deduce that

||ϕ1,n(t)|| ≤ ||Sn(0)||[
ϑ1−α

Γ(α)
f1t]

n, ||ϕ2,n(t)|| ≤ ||Cn(0)||[
ϑ1−α

Γ(α)
f2t]

n,

||ϕ3,n(t)|| ≤ ||In(0)||[
ϑ1−α

Γ(α)
f3t]

n, ||ϕ4,n(t)|| ≤ ||Rn(0)||[
ϑ1−α

Γ(α)
f4t]

n.

As a result, the system possesses a solution and maintains continuity.
Moving forward, we will illustrate that the mentioned functions serve as
a solution for the model described in (6). Our assumption is

S(t)− S(0) = Sn(t)− B1,n(t), C(t)− C(0) = Cn(t)− B2,n(t),

I(t)− I(0) = In(t)− B3,n(t), R(t)−R(0) = Rn(t)− B4,n(t).

Therefore,

||B1,n(t)|| = ||ϑ
1−α

Γ(α)

∫ t

0
(L1(τ,S)− L1(τ,Sn−1))dτ ||

≤ ϑ1−α

Γ(α)

∫ t

0
||L1(τ,S)− L1(τ,Sn−1)||dτ

≤ ϑ1−α

Γ(α)
f1||S − Sn−1||t.
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By repeatedly applying the mentioned method, we obtain a result of

||B1,n(t)|| ≤ [
ϑ1−α

Γ(α)
t]n+1fn+1

1 k.

At t = t1, we get

||B1,n(t)|| ≤ [
ϑ1−α

Γ(α)
t1]

n+1fn+1
1 k.

Let n approach infinity. Then, it is easy to see that ||B1,n(t)|| → 0.
Similarly, we can demonstrate the same result for ||Bj,n(t)||, j = 2, 3, 4.
The proof is complete. □

Theorem 7.3. Equipped with an initial condition, the solution of (1) is
unique if

1− ϑ1−α

Γ(α)
f1t > 0.

Proof. To establish the uniqueness of the solution, let us consider the
scenario where the system possesses an additional solution, such as S1(t),
C1(t), I1(t), and R1(t). Then,

S(t)− S1(t) =
ϑ1−α

Γ(α)

∫ t

0
(L1(τ,S)− L1(τ,S1))dτ.

Therefore,

||S(t)− S1(t)|| =
ϑ1−α

Γ(α)

∫ t

0
||L1(τ,S)− L1(τ,S1)||dτ.

From LC (7), it can be deduced that

||S(t)− S1(t)|| ≤
ϑ1−α

Γ(α)
f1t||S(t)− S1(t)||.

Thus,

||S(t)− S1(t)||(1−
ϑ1−α

Γ(α)
f1t) ≤ 0.

Subsequently, ||S(t) − S1(t)|| = 0, which implies that S(t) = S1(t).
Likewise, we can demonstrate the same equality for C, I, and R. □
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8 Numerical Method

We will present the approximate solutions for the fractional-order C-19
SCIRS model using the fractional Euler method (FEM) for the CFD.
Additionally, we will provide simulations to predict the transmission of
C-19 worldwide. To offer a more concise representation, we will express
the system described in Eq. (1) as:

ϑα−1CDα
t w(t) = y(t, w(t)), w(0) = w0, 0 ≤ t ≤ T <∞, (10)

where w = (S, C, I,R) ∈ ℜ4
+, the initial vector is w0 = (S0, C0, I0,R0),

and the vector function y(t) ∈ ℜ is continuous and satisfies LC

||y(w1(t))− y(w2(t))|| ≤ k||w1(t)− w2(t)||, k > 0.

By utilizing a fractional integral operator that corresponds to the CFD
on Eq. (10), we obtain a value of

w(t) = ϑ1−α[w0 + Iαy(w(t))], 0 ≤ t ≤ T <∞.

Set f = T−0
N and tn = nf in which N is natural number and n =

0, 1, 2, ..., N. Consider wn as an approximation of w(t) at t = tn. In [25],
the use of the FEM results in obtaining a value of

wn+1 = ϑ1−α[w0+
fα

Γ(α+ 1)

n∑
j=0

un+1,jy(tj , wj)], j = 0, 1, 2, ..., N−1,

where

un+1,j = (n+ 1− j)α − (n− j)α, j = 0, 1, 2, ..., n.

The proof of the stability of the acquired method has been demonstrated
in Theorem 3.1, as stated in [25].
Therefore, the expression for the solution of system (1) can be written
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as:

Sn+1 = ϑ1−α[S0 +
fα

Γ(α+ 1)

n∑
j=0

un+1,jg1(tj , wj)],

Cn+1 = ϑ1−α[C0 +
fα

Γ(α+ 1)

n∑
j=0

un+1,jg2(tj , wj)],

In+1 = ϑ1−α[I0 +
fα

Γ(α+ 1)

n∑
j=0

un+1,jg3(tj , wj)],

Rn+1 = ϑ1−α[R0 +
fα

Γ(α+ 1)

n∑
j=0

un+1,jg4(tj , wj)],

where un+1,j = (n+1−j)α−(n−j)α, g1(t, w(t)) = Λ−βS(I+qC)−µS+
ρR, g2(t, w(t)) = βS(I + qC)− (η+ γ+µ)C, g3(t, w(t)) = ηC − (σ+µ)I
and g4(t, w(t)) = σI + γC − (µ+ ρ)R.

9 Numerical Simulations
In this segment, we provide a computer-generated model that utilizes ac-
tual data and employs the MATLAB software for numerical simulation.
In order to generate a numerical simulation, it is essential to ascertain
the parameter values beforehand. Between June 15th and August 4th,
2022, the global birth rate was 17.688 births per 1000 individuals, while
the death rate stood at 7.678 per 1000 individuals. Based on the popu-
lation on June 15th, denoted as N (0) = 7914981120, we choose values
for Λ = 383128.455 and µ = 2.10356 × 10−5, and make a decision re-
garding δ = 0.034 [50]. Furthermore, the initial values on 15 June until
4 August 2022, are as follows: S(0) = 7869665900, C(0) = 45000000,
I(0) = 15315220 and R(0) = 0. In this simulation, ϑ = 0.99 and the
remaining parameters for C-19 model are acquired via curve fitting.

This simulation covers the entire global population and provides
time-scale modeling and simulation for C-19.

Figure 1 illustrates a side-by-side comparison of the non-integer or-
der model (with α = 0.95) and the integer order model (with α = 1), in
addition to actual C-19 case data spanning from June 15 to August 4,
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Table 2: Parameter values used in the simulations

Parameters Value Reference
Λ 384409.48 Estimated
β 9.08× 10−11 Fitted
q 0.1 Fitted
µ 2.10356× 10−5 Estimated
ρ 0.02 Fitted
η 0.14 Fitted
γ 0.13 Fitted
σ 0.41 Fitted
δ 0.034 [41]

2022. The obtained results show a relatively good agreement between
the predictions of fractional order model and the real data. This high-
lights the advantages of using fractional order derivative instead of the
integer order derivative.

The figures labeled 2-6 display the outcomes of (1) for various values
of α. In this specific simulation, the EP corresponds to

E1 = (7.1606× 109, 2.1214× 107, 6.6886× 106, 2.7472× 108).

Here we give some numerical simulations and show the effect of the
suggested control strategy, vaccination, on the prediction of COVID-19.
To show the effect of vaccination on the sixth wave in the world, we
used the parameters presented in Table 2. To examine how the order
of derivation impacts the outcomes of system (1), we conducted cal-
culations for various orders of fractions. The resulting data was then
depicted in figures 2-5. The depicted graphs illustrate that the model’s
results reach a state of equilibrium regardless of the derivative’s order.
Furthermore, all orders exhibit stability at these EPs. A slight alter-
ation in the derivative’s order does not significantly impact the overall
behavior of the resulting functions. However, it does generate noticeable
differences in the numerical values of the outcomes.
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Figure 1: A comparison between the outcomes of the noninteger-order
derivative (α = 0.95) and the integer-order derivative (α = 1) using real
data.
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Figure 2: The behavior of S(t) varies when considering different α
values, namely 0.92, 0.94, 0.96, 0.98 and 1.
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Table 3: Obtained results of S(t), C(t), I(t) and R(t) with fractional
α = 0.92.

t S(t) C(t) I(t) R(t)

0 7869665900 45000000 15315220 0

1 7843098870 47869061 15016031 23421701

2 7831325094 48801643 15114414 33904354

3 7819931403 49622310 15264752 44069517
...

...
...

...
...

75 7233054947 75542492 23705548 571413021

76 7227504592 75576453 23723925 576505509

77 7222037702 75602852 23739832 581524789

78 7216654288 75621821 23753305 586470735
...

...
...

...
...

147 7024813565 66581173 21158777 764731504

148 7024107505 66392860 21099923 765373815

149 7023442889 66204817 21041097 765976031

150 7022818970 66017091 20982314 766538832

0 50 100 150

t(days)

4.5

5

5.5

6

6.5

7

7.5

8

C
a
rr

ie
r 

p
e
o
p
le

 -
 C

(t
)

107

=0.92

=0.94

=0.96

=0.98

=1

Figure 3: The behavior of C(t) varies when considering different α
values, namely 0.92, 0.94, 0.96, 0.98 and 1.
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Table 4: Obtained results of S(t), C(t), I(t) and R(t) with fractional
α = 0.94.

t S(t) C(t) I(t) R(t)

0 7869665900 45000000 15315220 0

1 7842926286 47893075 15010425 23572273

2 7830767861 48855675 15112342 34397717

3 7818923382 49705849 15270651 44966116
...

...
...

...
...

75 7193184098 76043909 23917420 607963404

76 7187489972 76035397 23922815 613210676

77 7181895651 76018469 23925431 618369791

78 7176401094 75993305 23925322 623440628
...

...
...

...
...

147 7005181657 64029730 20372738. 782830670

148 7004978254 63818093 20305750 782983739

149 7004816487 63607418 20239014 783095881

150 7004695424 63397746 20172544 783167960
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Figure 4: The behavior of I(t) varies when considering different α
values, namely 0.92, 0.94, 0.96, 0.98 and 1.
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Table 5: Obtained results of S(t), C(t), I(t) and R(t) with fractional
α = 0.96.

t S(t) C(t) I(t) R(t)

0 7869665900 45000000 15315220 0

1 7842759597 47916816 15004637 23717533

2 7830212838 48909835 15110045 34889027

3 7817908522 49789988 15276568 45868810
...

...
...

...
...

75 7152684875 76306408 24056385 645234152

76 7146922124 76246650 24045846 650569994

77 7141278282 76177711 24032240 655799957

78 7135753189 76099829 24015641 660923977
...

...
...

...
...

147 6992251779 61161341 19476157 794446596

148 6992614781 60932412 19402933 794040396

149 6993017466 60705221 19330216 793594461

150 6993458705 60479801 19258020 793109853
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Figure 5: The behavior of R(t) varies when considering different α
values, namely 0.92, 0.94, 0.96, 0.98 and 1.
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Table 6: Obtained results of S(t), C(t), I(t) and R(t) with fractional
α = 0.98.

t S(t) C(t) I(t) R(t)

0 7869665900 45000000 15315220 0

1 7842598836 47940281 14998667 23857450

2 7829660209 48964123 15107513 35378116

3 7816887046 49874721 15282496 46777399
...

...
...

...
...

75 7111930183 76290570 24108958 682896087

76 7106192984 76170643 24079426 688235791

77 7100596700 76040938 24046587 693448898

78 7095140951 75901769 24010537 698535479
...

...
...

...
...

147 6986719496 58049877 18492486 798810341

148 6987694535 57811089 18415426 797791187

149 6988704664 57574859 18339149 796736039

150 6989748567 57341208 18263663 795646161
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Figure 6: The behavior of S(t) with α = 0.9 in the presence and the
absence of control.
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Table 7: Obtained results of S(t), C(t), I(t) and R(t) with fractional
α = 1.

t S(t) C(t) I(t) R(t)

0 7869665900 45000000 15315220 0

1 7842444032 47963464 14992517 23991999

2 7829110160 49018539 15104734 35864814

3 7815859180 49960045 15288421 47691678
...

...
...

...
...

75 7071365014 75957860 24061675 720548543

76 7065768161 75769073 24010108 725786923

77 7060337142 75570180 23955071 730874871

78 7055071222 75361583 23896690 735812709
...

...
...

...
...

147 6989080458 54780011 17449291 795339215

148 6990689000 54539798 17371169 793676208

149 6992324984 54302961 17294106 791983969

150 6993986925 54069502 17218105 790263943
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Figure 7: The behavior of C(t) with α = 0.9 in the presence and the
absence of control.
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Figure 8: The behavior of I(t) with α = 0.9 in the presence and the
absence of control.
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Figure 9: The behavior of R(t) with α = 0.9 in the presence and the
absence of control.
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10 Conclusions

In this paper, an epidemic SCIRS model for the transmission of Covid-19
in human population with Caputo fractional derivative has been studied.
The EPs and the reproduction number have been calculated. We have
presented the stability results by applying Lyapunov’s second method
and LaSalle’s invariance principle. The local and global stability of EPs
have been presented based on the values of the reproduction number.
We proved that, if R0 < 1, then the EP corresponding to the absence
of disease E0 is locally and globally asymptotically stable and if R0 > 1,
then the positive endemic EP is locally asymptotically stable. The vac-
cination has been considered as a control strategy and the effect of that
has been analyzed. The existence and uniqueness of the solutions of the
model have been proven via the fixed point theorem. Additionally, us-
ing the fractional Euler method, the approximate solution of the model
has been presented. Numerical simulations are utilized, leveraging real
data, to forecast the global transmission of C-19. In addition, the real
data were used to conduct a comparison between the outcomes of the
fractional order system and the integer order system. The findings show
that fractional order system shows superior performance in real data
management compared to the integer order system. Furthermore, since
fractional order derivatives retains the memory of the system, it can
serve as a viable substitute for the integer order derivative when mod-
eling natural phenomena.
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