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Abstract. In recent years, there has been a growing interest in devel-
oping mathematical models that can better inform treatment strategies
for complex health conditions. Distinct from traditional modeling ap-
proaches, which often consider immunotherapy, optimal control, and
nutritional interventions as isolated factors in the dynamics of stom-
ach cancer, we introduce an integrative mathematical framework that
concurrently incorporates:

e Externally delivered anti-tumor immunotherapy,

e Dynamically controlled ACI (Adoptive Cell Immunotherapy) pro-
tocols,
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e Precision nutritional management strategies.

We conduct a rigorous analysis of the dynamical properties of this pro-
posed model, placing special emphasis on the stability of treatment out-
comes. Through the construction of an appropriate Lyapunov function,
we establish both necessary and sufficient conditions for global asymp-
totic stability. This theoretical foundation guarantees the model’s re-
liability in predicting long-term therapeutic effects. Building upon the
stability analysis, we formulate an optimal control problem to systemati-
cally determine the most effective treatment regimens. This framework
enables quantitative identification of strategies that maximize cancer
cell population reduction while accounting for physiological constraints.
Comprehensive numerical simulations validate our theoretical results,
exploring a spectrum of treatment strategies within our modeling frame-
work.

AMS Subject Classification: 35F21, 92-10.
Keywords and Phrases: stomach cancer; Optimal control; Ordinary
differential equation; Dynamic systems; Stability

1 Introduction

Tumors originate from the abnormal proliferation of a single cell in any
part of the body. They can be classified as benign (non-cancerous) or
malignant (cancerous). Benign tumors may grow significantly but do not
invade surrounding tissues or metastasize to other regions of the body.
In contrast, malignant tumors have the ability to invade nearby tissues
and can disseminate through the bloodstream and lymphatic system.

The unchecked and persistent growth of cancer cells is what leads to
the disease. Unlike normal cells, which respond to regulatory signals,
cancer cells continue to proliferate and invade healthy tissues, ultimately
spreading throughout the body.

Cancers are categorized based on their cell origin into four primary

types:

e Carcinomas develop from cells that line external and internal sur-
faces, with lung, breast, and colon cancers being the most preva-
lent.

e Sarcomas originate from supporting tissues such as bone, cartilage,
fat, and muscle.
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e Lymphomas arise in the lymphatic system and affect the body’s
immune tissues.

e Leukemias affect immature blood cells produced in the bone mar-
row.

stomach cancer occurs when cells in the stomach proliferate ab-
normally. While tumors can form anywhere in the stomach, they
most commonly arise in the glandular tissue lining its inner sur-
face. Key signs and symptoms include abdominal pain or burning,
heartburn, a feeling of fullness after small meals, nausea, loss of
appetite or weight, abdominal swelling, fatigue or weakness, and
the presence of blood in vomit or black stools [5, 8, 17].

Numerous approaches have been proposed in medical science for
cancer treatment, including radiotherapy [9], chemotherapy [0], vi-
rotherapy [2], psychological panic factor [1], and immunotherapy
[12]. Additionally, some researchers have explored the application
of mathematical models to enhance cancer treatment strategies.
For instance, DiPillis and et al. in [7] introduced a mathematical
model that combines immunotherapy with chemotherapy to simu-
late tumor growth dynamics. In their study, Makhlouf et al. [12]
developed a treatment protocol that integrates chemotherapy with
IL2 cytokine therapy and both CD8TT and C D4+T adoptive im-
munotherapies, examining the roles of natural killer cells and cir-
culating lymphocytes on the behavior of cancer cells. Furthermore,
Schlicke et al. [19] proposed a mathematical framework that eval-
uates various treatment options and analyzes the outcomes based
on data from three patients diagnosed with non-small cell lung
cancer. Ahmad et al. [3] formulated a fractional order tumor-
immune-vitamin model (TIVM) using the Mittag-Leffler deriva-
tive, investigating how different fractional orders of vitamins in-
fluence tumor cell proliferation. Optimal control strategies are
frequently employed in cancer treatment models. Rihan et al. [18]
introduced a delay differential model that utilizes optimal control
to analyze the interactions between tumor cells and immune re-
sponse cells in the context of chemo-immunotherapy. In another
study, [21] outlined a fractional order model for cancer treatment,
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addressing an optimal control problem related to anti-angiogenic
and immune cell therapies. Das et al. [1] developed an optimal
control framework for a delayed tumor-immune model, incorporat-
ing a multi-immuno-chemotherapeutic drug. Additionally, exper-
imental research has highlighted the significant impact of obesity
on various cancer types. This underscores the necessity to explore
the influence of adipose tissue in cancer dynamics and to devise
treatment protocols aimed at managing the excessive proliferation
of both fat cells and cancer cells.

While existing models have explored immune therapy, optimal con-
trol, or nutritional interventions in isolation, few have integrated
these factors with the dual influence of obesity and psychological
stress, key drivers of cancer progression. In this work, we propose
a novel mathematical framework that unifies:

— Externally administered anti-tumor immune therapy,
— Time-dependent control of ACI treatment, and

— Nutritional diet management.

While explicitly incorporating the synergistic impact of obesity-
induced metabolic dysfunction and stress-mediated immune osup-
pression on tumor dynamics, our study advances prior research in
three key ways:

— First, we derive a coupled system of differential equations
linking psychological stress (via cortisol-driven immune sup-
pression) and obesity (via adipokine-related inflammation) to
tumor-immune interactions, a dimension rarely addressed in
existing stomach cancer models.

— Second, we establish global stability conditions using a Lya-
punov function, ensuring robust long-term predictions under
combined therapeutic and metabolic constraints.

— Third, we formulate an optimal control problem to identify
personalized treatment regimens that simultaneously miti-
gate cancer proliferation, obesity-related risks, and stress ef-
fects.
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Numerical simulations validate our model’s predictive capability,
demonstrating how tailored strategies—such as adaptive immune
therapy dosing synchronized with dietary interventions—can sig-
nificantly improve outcomes for high-risk patients. Our results
provide a foundational framework for future clinical studies target-
ing the triad of stomach cancer, obesity, and psychological distress,
filling a critical gap in oncological modeling.

The rest of the paper is organized as follows: In Section 2, the
stomach cancer model with obesity and psychological scare is pre-
sented. We obtain the equilibrium points and then check the local
and global stability of the model with treatment in Section 3. In
section 4, we use an optimal control problem to look an optimal
drug administration protocol for stomach cancer. The numerical
simulation is presented in Section 5. Finally, some conclusions are
given in Section 6.

2 Model Description

In this paper, we consider a new model for the stomach cancer in
presence of obesity and psychological care as follows:

dI ] cIlT

— = —diI — e IT t

it " 14pT "axTrpp Wl alltm),

dr

E = TlT(l — blT) — el T — esTN + esTF — ’)/Q(t)T, (1)
dN
E:TQN(l—bQN)—engN,

dF

o = 13l (1 = bsF) —eeTE — 3(t) F,

where I(t), T(t), N(t) and F(t) are the numbers of immune cells,
tumor cells, normal cells and fat cells at any given time ¢, respec-
tively. Also

e s is the constatnt source of immune cells,

e p is psychological panic effect,
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cIT
e The term ————— is the stimulatory effect of immune
a+ T+ BF

cells on account of cancer and fat cells,
e d; is the natural death rate of the immune cells,

e It is assumed that tumor cells, normal cells and fat cells can
grow logistically with different growth rates r1, ro and rs,
respectively. Furthermore, b1, b2 and b3 represent the inverse
of the carrying capacity for tumor cells, normal cells and fat
cells, respectively.

e The term e;TF denotes the contribution of fat cells to tumor
growth,

® e, 9, €3, €4, €5 and eg are competition coefficients,

e 7 (t) present the input rate of externally administered anti-
tumor immune therapy,

e 75(t) is the time-dependent ACI treatment control parameter,

e ~3(t) denotes the nutritional diet control parameter.
Model 2 satisfies the nonnegative initial conditions 1(0) = Iy,
T(O) = T(), N(O) = N(] and F(O) = F().
2.1 Boundary and non-negativity of cells

In model (1), we assume that all the parameters are positive.

Theorem 2.1. The region Q+ = (I,T,N,F):1>0,T >0,N >0,F >0
is a invariant set for model (1) positively.

Proof. The existence and uniqueness of the solution of model (1)
in (0,00) is simply proved in [14]. On region 2+ we have
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a
dtli=0o 14+ pT
ar

E)T:O -
dN

dt ‘ N=0
dF

i

+ ’71(25) > 0,

)

Now, if (1(0),7°(0), N(0), F(0)) € Q+, according to (2), ({,T, N, F')
cannot escape from the hyperplanes of I = 0,7 = 0, N = 0 and
F =0, and on each hyperplane, the vector field is tangent to that
hyperplane or points toward the interior of region 24; that is, the
solution will remain in the region (24, and therefore, this region is
a positive invariant set. [l

3 Dynamic Behavior Of The Model

In this section, we investigate the existence and stability behavior
at various equilibrium points of the system (1). To find the equi-
librium points, by assuming i (¢) = 71, 72(t) = 72 and v3(t) = 3
, we set

di dI'" dN dF

dt — dt  dt  dt
Hence, the equilibrium points F;(I,T,N,F), i = 0,1,...,7 are as
follows:

e Fy ( i _5171

s+ T3 — 3
E( b b b )'
¢ dq 0.0 r3b3

,0,0,0).

s+ 7 1 0)

.EQ( & ,O,E,
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r1 —eal — 7o

o F3 (I , ,0,0), where I will be calculated from
r1b1

the equation

S CcIT

—dy] — e IT +~1 = 0.
14T axTypr W oaittm

This equilibrium point exists provided eal < 11 — 5.

B (S + 7 1 r3— 73)
4 s Uy 77 .
dq by" r3bs
1-u0T F— —egT —
E5(r1( 1) +es VQ,T,O,M),WhereTis
€2 r3b3
obtained from the equation

s n CcIT
1+pT  oa+T+p6F

—dil —e1IT 4+~ =0.

This equilibrium point exists for egT < r3 — v3 and r1(1 —
b T) + es F' > 5.

E6(T1(1 — blT) — 63N — Y2 T o — 64T

, T, , 0) in which T is com-
€2 b2

puted from

S n CcIT
14+pT  a+T

—dil —eIT+~v =0,

This equilibrium point exists provided e,T < r9 and r1(1 —
blT) —e3N > 7.

T‘1(1 — blT) — 63N + €5F — Y2 ro — 64T rs — GGT — 73
Br T ).

) M )
€9 r2bo r3b3
where T satisfies in

s cIT

—dyI — ey IT + 4, =0,
1 +pT  axT+prp W -aiitm

This equilibrium point exists for e,T" < ro, egT < r3 —y3 and
7“1(1 — blT) —e3N +esF > .
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3.1 Local stability

In this subsection, we analyze the local stability of the system (1).
Hence, we obtain the Jacobian matrix and then present the neces-
sary and sufficient conditions for local stability at four equilibrium
points. The Jacobian matrix of the model (1) is given by

where

Jun Jiz2 0 Jus

J— Jo1 J22 J23  Jo4
0 Js2 Jjsz O

0 Ja2 0 Jua

)

CcT

n=—— —d— T
J11 a+T+BF 1— €14,
. ps Cl(a+ BF)

=— + —e1l,
=m0y T ar T+ pF2
. BCIT
M= T 0+ T+ pF)?
Jo1 = —e2T,

Jog = 7‘1(1 — leT) —eal —esN + esF — 9,

Joz = —esT,

Joa = esT,

Js2 = —e4N,

jaz = r2(1 — 20oN) — e4T,
Jaz = —egkF,

Jaa = 13(1 — 2b3F) — egT — 3.

Now, we get the eigenvalues of the Jacobi matrix at some equilib-

rium points.
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CASE 1: The Jacobian matrix at the disease-free equilibrium FEj is

- o -
—dy —ps+ (s +71)( €10) 0 0
(s em)
e2(s+m) €3
0 - —— - 0 0
JB, = E dy bo 72
0 _a 0
bo ?
0 0 0 7r3—13]
The eigenvalues of Jg, are
e2(s + e
{_d17 -T2, s — s, 1 _M_j _72}
dy by

Hence, the equilibrium point E5 becomes locally stable if

and r1 < 762(8 + ) + &

dl bQ + 2,

r3 <73

otherwise FE5 is unstable.

CASE 2: For another disease-free equilibrium FEy4, the Jacobian
matrix is

—dy J12 0 0
0 J22 0 0
Jg, = | 0 _ —T2 )
oy
0 —ee——2 0 y3—r3
L r3b3 i
in which
aC(s+m) n BC(s+71)(r3 —73)
. dy dir3bs e1(s+7)
= —DS —|— —_
J12 P < B(r3z — ’73))2 di
a+ ———
r3b3
S _est+m) e es(rs—13)
J22 1 dy by rabs v2-
The eigenvalues of Jg, are
{_dla j227 -T2, V3 — T3}‘
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This equilibrium point will be locally stable, provided

es(rs —3) < ea(s +m) + 81,

< d
Y3 < T3 an r1+ r3b3 d by

CASE 3: For the equilibrium point Fg, the eigenvalues are r3 —
eg’ — 3 and the roots of the following equation

M4+ PN +PA+P3=0, (3)
in which
Py = —j11 — J22 — J33,

Py = —j23j32 + j11J33 + J22J33 + J11J22 — J12J21,
P3 = 332711723 — J11J22J33 + J12J21733,

where
cT s aCl
11 = ——— —dy — e, jio = — —el,
Ju ot T 1— €24, J12 1+ p7)° + (a1 1) €1
. pgCciIT
Jia = ot J21 = —eaT,

Joo =711(1 —201T) — eal — e3N — 2, jo3 = —esT’, joa = 5T,
Jz2 = —eaN, jazz = —ro +eqT, jaga =13 — e¢T — 3.

Using Routh-Hurwitz rule [13], the roots of (3) have negative real
part if and only if

P >0, P, >0, PP,— P3;>0. (4)

So, under the conditions (4) and egT > r3 — ~y3 the equilibrium
point Ey is locally stable, otherwise Eg is unstable.

CASE 4: The eigenvalues of Jacobian matrix E7 are obtained by
solving the following equation

M A QN + QN +Q3M+ Q4 =0, (5)
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where

Q1= —Jju1 — J22 — J33 — Jaa,
Q2 = ji1jee + J11J33 + J11jaa — J12jo1 + J22J33 — J32J23
— J42J24 + J22J44 + J33744,
Q3 = Joajssjaz + Jji1J24jaz — Jo1J14Ja2 + Js2j23jaa — J11J23Ja4
— J22J33J44 — J11J22744 + J12J21J44 + J32711J23
— J11J22J33 + J12J21J33,
Q4 = —Ja2711J24J33 + J21J14J33J42 — J11J32J23]44
+ J11J22733J44 — J12J21733J44-
Based on Routh-Hurwitz rule (5) have negative real part if and
only if

Q1>0, Q3>0, Qi>0, Q1Q2Q3> Q3+Q3Q4. (6)

The equilibrium point E; is locally stable under conditions (6),
otherwise Fr is unstable.

3.2 Global stability

Local stability describes the behavior of the model in the neighbor-
hood of the equilibrium point; But global stability examines this
property of the system at places far from the equilibrium point.
In this subsection, we investigate the global stability of the equi-
librium point

S+7

1
7T2=0,N2:*7F2=0),

By (12 - 5

using the Lyapunov stability theorem [I1]. Now, we consider the
Lyapunov function as

I N
V(t) = (I — I = IzIn 12>+(T_T2)+<N — Ny — Naln M)-F((i)—FQ).



OPTIMAL CONTROL AND GLOBAL STABILITY ... 13

By differentiating from (7) respect to t, we get

dr AN
dv dI % dT dN a  dF
2 - _at 2 T N, a7
i at T Ta T a 2N T a
dl  dT No\dN  dF
-2y 8 o2y
< I)dt+dt+< N)dt+dt (8)

Substituting (1) into (8), gives

dV:(I—b)[ s cCIT e IT— dy(I - Iy) — s

dt I 1+ pT + a+T+ fBF
+ TlT(l — blT) — €2T(I — IQ) — eIy — 63T(N — Ng)
—e3T' Ny 4+ esTF — T

(N ]_VN2> [r2(N = N2) = r2ba(N? — N3) — esTN]|

+r3F (1 — b3F) — egTF — ~3F. 9)

Now, by simplification (9), we get

av. I_S—i—’h s N cT e di I_3+71 s
dt dr IQA+pT)  a+T+BF 17 T dy I

1
e — e (1= e (N - = +e5TF}
d1 b2

+(N > 7’2 1—bQN)—€4T]
+ (—r3b3F? — e6TF)
_|_

s+ T
[T1T—€2T< d:l) _6?)@ —72T] + (r3F — 3 F).

Let
QT=1[0 0 0 y5-rs],
v'=[I-1, T N-N, F|,

s+
PT=0 —r+e () + 240, 0 0f,
d by
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and
dy 1 (e sp
o - - 0 0
) d 2(el+82 at T+ pF I(1+pT))
sp €3 €6 — €5
- _ b hid
M = 2(61+62 a+T+BF+I(1+pT)) e 4 2
€3
0 — roba 0
eg — es
0 0 r3bs
2
Therefore
dVv

= -Y'Mmy — PTYy — QY.

For the global stability, the second component of vector P and the
fourth component of vector @ should be positive. So,

s+ e S+ e
—7r1 + e2 n +j+72>0:>T1<€2 m +£+72,
d1 bg dl b2
(10)
and
Y3 —13 > 0= 13 < 3. (11)

av
Therefore, provided conditions (10) and (11), it results that ’ <

0 and we can state the following theorem.
Theorem 3.1. The disease-free equilibrium point
1

by’

S+7

By(lr =" 1 = 0, Ny = = F = 0),

is globally asymptotically stable if the following conditions hold

(1) r1 < ey Stm +673+72‘
dy b2

(2) 3 < 3.

4 Optimal Control

The theory of optimal control provides the possibility to obtain
an optimal treatment model for stomach cancer with obesity and
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psychological scare. For this goal, it should increase immune cells
and normal cells, but reduce tumor cells and fat cells. So, we need
to minimize the following objective function

Ty
Tone) = [ [0+ 0aF () = aaT() = aaN(0) + s 1)

+ag3(t) + ar3()] at, (12)
where T’ is the final time and «; (i = 1,2,...,7) are weights. Now,
we seek an optimal control (77, 73,73) such that
JO1572:73) = min{J(%’yz,w) | (y1,72,73) € A},

where

A = {(51,52,53) | &i(t) is Lebesgue measurable, 0 < §; < &mx}.

Let 3
\II:(I>TaN7F)7 F:(ﬁ/la:ma:)@)?
and
Q(t,U,T) = oy T(t)+ o F (t)—asl(t)—asN (t)+as2 (t)+asia (t)+ari3(t).
(13)
Lemma 4.1. The function Q(t,¥,T) is conver.

Proof. Let T' = (31,72,%3), T = (51,72,73) and 0 < np < 1. We
must show that

(1 —n)Q(t, ,T) +nQ(t, ¥,T) > Q(¢t, ¥, (1 — n)T +7T).
From (13), we obtain
(1 —n)Qt, U, T) +7Q(t, ¥,T) — Q(t, ¥, (1 — )T + 1)
= (1= ) [T () + P (t) — a3l () — N () + as73(t) + asT3(8) + arii (1)]
+n|aaT(t) + asF (1) — aal(t) — s (t) + as7E (1) + T3 (1) + ar73 (1)
~ [ T(0) + 2P (1) — asI(t) — 0aN (1) + 05 (L~ ) (0) + (1))
2

Fap (1= 3l + () +ar (@ —mas(t) + mis(0) ]
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Hence,

(1 —n)Qt, ¥, T) +nQ(t, ¥, T) — Qt, ¥, (1 — n)T +nT)

= (1= ) [as32() + @633 (1) + ar33(0)] +n|as7E(t) + ac3B () + ar7E (1)

s (1= )30 + (D) — a6 (1= m)Ba(0) +ma(0))

~ ar (1= m3s®) + 1)
Finally,
(1 —n)Qt, ¥, T) +nQ(t, ¥, T) — Qt, ¥, (1 — )T +nT)
= asn(1 =) (31(0) ~ 311 +aen(1 — ) (3a(0) ~ 22(0))

+ arn(l —n) (%(t) - 73(0)2 0.

2

Y

O

Theorem 4.2. The optimal control minimization problem (12)
has an optimal solution.

Proof. In Lemma 4.1, we proved that the function Q(t,¥,T) is
convex. Now, it is enough to show that this function is bounded
from below. This is hold by following
Qt, U, T) = o T(t) + aaF(t) — asI(t) — auN(t) + asvi(t)
+ a3 (t) + a3 ()
> a7 (t) + 675 () + a3 (t)
> 7 (23(6) + 43 +30),

in which 7 = min{as, ag, az}. O

Definition 4.3. The Hamiltonian function of the system (1) and
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equation (12) is as follows
H=a1T(t) + aaF(t) — asl(t) — auN(t) + as7i(t) + agys(t) + a3 (t)

S CIT
A( —dy] — eyIT t)
tAL 1+pT+a+T+ﬁF 1l =T+ m(?)

+ 22 (N T(L = biT) = eI T = esTN + esTF = 72()7T )

s (er(l — byN) — e4TN)
+ (73 (1 = b3F) = egTF — 1(1)F ), (14)
where A1, A2, A\3, A4 are Lagrange multipliers.

Theorem 4.4. Suppose that <yf(t),7§(t),’y§(t)> € A be an op-

timal control for (12). Then, the adjoint Lagrange multipliers
A1, A2, A3, Ag satisfy the following equations

d\ cT

— = —M|———————dy — 1T AoesT

at Qs 1<a+T+ﬁF 1 61>+ 2e21,

d)o ps (a+ pF)CI

B YPRR W — el AzesN + MegF

7t aq 1( 1+p7)7°  (@+T+BF) erd | + AzesdV + Agep
— )\2(7"1 — 2T1b1T —eol —egN +esF — ’}/Q(t)),

%:a4+)\263T—>\3(T2—2T2b2N—64T),

Ay MBCIT

— = ——— — XgesT — A — 2r3bsF — egT t)).
0t o) (@ +T + BF) 2€5 4(7“3 7303 ee T + v3( ))

Furthermore
Xi(Ty) =0, 1=1,2,3,4.

The optimal values of control variables are
A1
1(t) = mi 0,——¢,1
1 (t) mln{max{ ) 2045}’ },
AT
; t) = i 0 a]- )
5 (t) = min {max{ D } }

MF
75 (t) = min {max {O, —227 } , 1} .
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Proof. From the Hamiltonian function (14) and Pontryagin’s

principle [22], we have
dA1 dH cT
at ~ dr 1(a+T+ﬁF Lo )+ 2620

@——ﬂ——a (P8 (a+ BF)CI .
dt — ar 0 P\ @ +p1)? T (a+T+pFR
+ AgeaN + MegF — Ao (7’1 —2r1b1T — eal — esN

+ esF — 72(t)),

d\s  dH
s A T - — 2r9byN — e4T
7 N -t Ages A3 (r2 — 2rabs esT),
d\y  dH A\ BCIT
i AP esT
@ daF T arTipRR 2
— A (s — 2r3bsF — e6T + 73(t)). (15)

To obtain the solution of the optimal control problem, we compute
the derivative of the Hamiltonian function H respect to v1, v2 and

73 SO,
OH A1
9 D4+ =0= ()= -
o as71(t) + M 71(t) 0
OH AT
=2 t)— T =0= 1) = —
s agY2(t) — A2 Y2(t) Sy’
OH MF
= 20773(t) — AMF = 0 => y3(t) = .
s a7y3(t) — A4 73(t) S
Now, we obtain from bounds of the control variables
A
I
20[5 \ 20[5
V() =140, —= <0,
2)?[5
17 - ! Z 1
20&5
AT AT
222 0< 22 <,
2@6 A\ T2a6
Y2 (t) =40, 2 <o,
Raf
1, 227 >
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MF M F
2 0< 2 <,
2a7 F2a7
73(t) = {0, <o,
204}?‘
4
1, = >1
2047

In other words

) A1
“(t) = 0,—— 1.1
71( ) mln{max{ ) 20[5}7 }7
. ) AT
~5(t) = min {max {0, —2(16 } , 1} ,

M F
3(t) = mi — . 1.
v5(t) = min {max {0, S0 } , }

The second order derivatives of the Hamiltonian function are as
follows

Since as, g,y > 0, then the optimal control problem is mini-
mized at vy (t), v5(t) and 73(¢). O

5 Numerical Simulation

In this section, we present the numerical simulation of the obtained
theoretical results. All numerical computations have been per-
formed in MATLAB 2017a programming environment on a 2.3Hz
Intel core i7 processor laptop and 4GB of RAM. All the parame-
ters and the initial values of the cells population are taken from

[10] as follows
s P C « 15} di | e1 | 1 | by
0.125 0.2 07510308 (02| 1 |15]| 1
€92 €3 €5 T2 bg €4 r3 b3 €g
0.1 1 0.1 1 1 1 /0.1|15|0.1
Iy To No | Fo | Ty
0 0.0001 1 0.8 | 150
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To investigate the stability of equilibrium points based on treat-
ment parameters, we consider the following three cases.

Case (i): 71 > 0,72 =793=0

(1)

11 =025 7=73=0

In this case, there are 8 equilibrium points. Ey, E1, E2, Fj3,
FE,, E5 and Eg are unstable saddle points and F- is asymp-
totically stable point. The results are given in Table 1.

1 =057%2=73=0

In this case, there are 8 equilibrium points. Ey, E1, E2, Ej3,
FE, and E5 are unstable saddle points, Fg is saddle point and
FE is asymptotically stable inward spiral point. The results
are presented in Table 2.

11 =075 v=7=0

In this case, there are 8 equilibrium points. Ey, E1, E2, Ej3,
FE, and Ej5 are unstable saddle points, Fg is saddle point and
FE is asymptotically stable inward spiral point. Table 3 shows
the numerical results.

Table 1: The stability of equilibrium points for v; = 0.25, 79 = 0 and

Y3 = 0.
” Equilibrium “ I T N F “ Eigenvalues “ Stability ”
Eo 1.875 0 0 0 —0.2,1.3125,1,0.1 unstable saddle
J2h 1.875 0 0 0.6667 —0.2,—-0.1,1.3792, 1 unstable saddle
Eo 1.875 0 1 0 —0.2,—1,0.3125,0.1 unstable saddle
E3 0.60312 0.9598 0 0 —0.5318, —1.4963, 0.0402, 0.0040 unstable saddle
Ey4 1.875 0 1 0.6667 —0.2,—0.1, —1,0.3792 unstable saddle
Es 0.5919 0.9622 0 0.0252 —1.4992, —0.5434, —0.0041, 0.0378 unstable saddle
FEg 0.7102 0.8579 0.1420 0 —1.4369, —0.4592, —0.0351, 0.0142 unstable saddle
E7 0.6438 0.8864 0.1136 0.0757 —1.4580, —0.5077, —0.0257, —0.0165 asymptotically stable

To investigate the behavior of immune cells, tumor cells, normal
cells and fat cells, we solve (1) with ode45 in Matlab software.
Figure 1 shows the time series plot of these cells for v; = 0.75,

v9 =0 and v3 = 0.
Case (ii): 71,72 > 0,73 =0

(1) "= 0257 T2 = 0257 Y3 = 0

In this case, there are 8 equilibrium points. FEy, FEi, Fo,
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Table 2: The stability of equilibrium points for v; = 0.5, 72 = 0 and

Y3 = 0.

” Equilibrium “ I [ T [ N [ F “ Eigenvalues “ Stability ”
FEo 3.125 0 0 0 —0.2,1.1875,1,0.1 unstable saddle
1 3.125 0 0 0.6667 —0.2,—-0.1,1.2542, 1 unstable saddle
FEo 3.125 0 1 0 —0.2,—-1,0.1875,0.1 unstable saddle
Es 1.0786 | 0.9289 0 0 —0.4674, —1.4860, 0.0719, 0.0072 unstable saddle
Ey4 3.125 0 1 0.6667 —0.2,—-0.1, —1,0.2542 unstable saddle
Es 1.0404 0.93359 0 0.04427 —1.4921, —0.4895, —0.0072, 0.0664 unstable saddle
FEg 4.6864 0.06272 0.93728 0 —0.08196 + 0.12885%¢, —1, 0.0937 saddle
Er 1.2343 0.7822 0.2178 0.1452 —0.0318 £+ 0.0154%, —1.4015, —0.4404 asymptotically stable

Table 3: The stability of equilibrium points for v; = 0.75, 72 = 0 and
73 = 0.

” Equilibrium “ I [ T [ N [ F “ Eigenvalues “ Stability ”

FEo 4.375 0 0 0 —0.2,1.0625,1,0.1 unstable saddle

Eq 4.375 0 0 0.6667 —0.2,—-0.1,1.1292, 1 unstable saddle

Eo 4.375 0 1 0 —0.2,—1,0.0625,0.1 unstable saddle

FE3 1.6115 0.8926 0 0 —0.4004, —1.4696,0.1074, 0.0107 unstable saddle

Ey4 4.375 0 1 0.6667 —0.2,—-0.1, —1,0.1292 unstable saddle

Es 1.5195 0.90301 0 0.06466 —1.4806, —0.4361, —0.0107, 0.0969 unstable saddle

2 4.9191 0.01618 0.9838 0 —0.09298 £ 0.05034%, 0.9999, 0.09838 saddle

Er 2.0946 0.63036 0.36964 0.24643 —0.0312 £ 0.033%, —1.3014, —0.3994 asymptotically stable

FEs, E,, E5 and FEg are unstable saddle points, and FE; is
asymptotically stable inward spiral point. The results are
given in Table 4.

(2) 11 =0.5,72=0.25, v3 =0
In this case, there are 7 equilibrium points. Ey, E1, E2, Fj3,
FE, and F5 are unstable saddle points and E~ is asymptotically
stable point. The results are presented in Table 5.

(3) 1 =0.75, 72 = 0.5, 73 =0
In this case, there are 6 equilibrium points. Ey, E1, Fo and
E5 are unstable saddle points, F3 is saddle point and Fj is
asymptotically stable point. Table 6 shows the numerical
results.

The behavior of the immune cells, tumor cells, normal cells and
fat cells is shown in Figure 2 for v; = 0.75, 72 = 0.5 and v3 = 0.

Case (iii): 71,72,73 >0
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Figure 1: Time series plot of the immune cells, tumor cells, normal
cells and fat cells for v; = 0.75, 72 = 0 and 3 = 0.

Table 4: The stability of equilibrium points for v; = 0.25, v = 0.25

and v3 = 0.
” Equilibrium “ I T N F “ Eigenvalues “ Stability ”
Eo 1.875 0 0 0 —0.2,1.0625,1,0.1 unstable saddle
B 1.875 0 0 0.6667 —0.2,-0.1,1.1292, 1 unstable saddle
Eo 1.875 0 1 0 —0.2,—1,0.0625,0.1 unstable saddle
E3 0.8189 0.7783 0 0 —0.3709, —1.2345,0.2213, 0.0221 unstable saddle
Ey 1.875 0 1 0.6667 —0.2,—-0.1, —1,0.1292 unstable saddle
Es 0.7161 0.7947 0 0.1369 —1.2529, —0.4373, —0.022, 0.2053 unstable saddle
FEg 2.3407 0.0319 0.9682 0 —0.08779 + 0.0477, —1,0.0968 saddle
Er 1.3231 0.3253 0.6747 0.4498 —0.0556 + 0.03867, —1, —0.3267 asymptotically stable

(1) 71 = 0.25, 75 = 0.25, 73 = 0.25
In this case, there are 4 equilibrium points. FEy, Es and Fj3
are unstable saddle points and FEg is asymptotically stable
inward spiral point. The results are given in Table 7.
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Table 5: The stability of equilibrium points for v; = 0.5, v9 = 0.25 and

Y3 = 0.
” Equilibrium “ I T N [ F “ Eigenvalues “ Stability ”
FEo 3.125 0 0 0 —0.2,0.9375,1,0.1 unstable saddle
Eq 3.125 0 0 0.6667 —0.2,—-0.1,1.0042, 1 unstable saddle
FEo 3.125 0 1 0 —0.2,—1, —0.0625,0.1 unstable saddle
FE3 1.5231 0.73179 0 0 —0.2894, —1.2082, 0.2682, 0.0268 unstable saddle
Ey4 3.125 0 1 0.6667 —0.2,—0.1, —1, 0.0042 unstable saddle
Es 1.268 0.7595 0 0.1603 —1.2387, —0.3780, —0.0265, 0.2405 unstable saddle
E7 3.1062 0.0107 0.9893 0.6596 —1,—0.2033, —0.004, —0.098 asymptotically stable

Table 6: The stability of equilibrium points for v; = 0.75, 72 = 0.5 and

73 = 0.

” Equilibrium H I T N [ F H Eigenvalues H Stability ”
Fo 4.375 0 0 0 —0.2,0.5625,1,0.1 unstable saddle
FE1 4.375 0 0 0.6667 —0.2,—0.1,0.6292, 1 unstable saddle
Eo 4.375 0 1 0 —0.2, -1, —0.4375,0.1 unstable saddle
E3 8.2303 0.1187 0 0 —0.142 + 0.16164%, 0.8814,0.0881 saddle
Ey 4.375 0 1 0.6667 —0.2,—-0.1, —1, —0.3708 asymptotically stable
Es 2.3878 0.5284 0 0.3144 —0.9364, —0.2064, —0.0585,0.4716 unstable saddle

(2) 71 = 0.5, 72 = 0.5, v3 = 0.25
In this case, there are 3 equilibrium points. Ey and E3 are
unstable saddle points and FE5 is asymptotically stable point.
The results are presented in Table 8.

Table 7: The stability of equilibrium points for v; = 0.25, 7o = 0.25

and 3 = 0.25.
[[ Equilibrium ] 1 T N [ F Eigenvalues I Stability I
Fo 1.875 0 0 0 —0.2,1.0625,1, —0.15 unstable saddle
FEo 1.875 0 1 0 —0.2,—-1,—-0.0625, —0.15 unstable saddle
Es 0.8189 0.7783 0 0 —0.3709, —1.2345,0.2213, —0.2279 unstable saddle
FEg 2.3407 0.03185 0.96815 0 —0.08779 + 0.0474, —1, —0.1532 asymptotically stable

Similar to the previous cases,

Case (iv): 711 =0, 72,73 >0

the behavior of the immune cells,
tumor cells, normal cells and fat cells is shown in Figure 3 for
v1 = 0.5, 72 = 0.5 and 3 = 0.25.
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Figure 2: Time series plot of the immune cells, tumor cells, normal
cells and fat cells for v; = 0.75, 72 = 0.5 and 3 = 0.

Table 8: The stability of equilibrium points for v = 0.5, 72 = 0.5 and
Y3 = 0.25.

” Equilibrium “ I [ T [ N [ F “ Eigenvalues “ Stability ”
FEo 3.125 0 0 0 —0.2,0.6875,1, —0.15 unstable saddle
Eo 3.125 0 1 0 —0.2,—-1,—-0.3125, —0.15 asymptotically stable
E3 2.8239 0.4784 0 0 —0.0822, —0.8528,0.5216, —0.1978 unstable saddle

(1) 71 =0, 72 = 0.25, y3 = 0.25
In this case, there are 4 equilibrium points. FEy, Fs and Fj
are unstable saddle points and FEg is asymptotically stable
inward spiral point. The results are given in Table 9.

(2) 1 =0,72=0.5, 73 =0.25
In this case, there are 3 equilibrium points. Ey and E3 are
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Figure 3: Time series plot of the immune cells, tumor cells, normal
cells and fat cells for v; = 0.5, v = 0.5 and 73 = 0.25.

unstable saddle points and Fs is asymptotically stable point.
The results are presented in Table 10.

(3) 71 =0, 72 =0.75, v3 = 0.5
In this case, there are 3 equilibrium points. Ey and E3 are
unstable saddle points and FE5 is asymptotically stable point.
Table 11 shows the numerical results.

In this case, the behavior of the immune cells, tumor cells, normal
cells and fat cells is shown in Figure 4 for v4 = 0, v = 0.75 and
Y3 = 0.5.

Now, we use the following algorithm to solve the optimal control
problem (12):

Step 1: Computing the optimal values 75 (t), v5(t) and ~5(t)
Step 2: Choose an initial guess for the control parameters ~j, 75
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Table 9: The stability of equilibrium points for 73 = 0, 79 = 0.25 and

Y3 = 0.25.
” Equilibrium “ I T N F “ Eigenvalues “ Stability ”
FEo 0.625 0 0 0 —0.2,1.1875,1, —0.15 unstable saddle
Eo 0.625 0 1 0 —0.2,—1,0.1875, —0.15 unstable saddle
E3 0.2289 0.8181 0 0 —0.4477, —1.2487,0.1819, —0.2318 unstable saddle
FEg 0.8618 0.3276 0.6724 0 —0.0291, —0.2053, —1.0655, —0.1827 asymptotically stable

Table 10: The stability of equilibrium points for v; = 0, v = 0.5 and

Y3 = 0.25.

” Equilibrium “ I T N [ F “ Eigenvalues “ Stability ”
FEo 0.625 0 0 0 —0.2,0.9375,1, —0.15 unstable saddle
Eo 0.625 0 1 0 —0.2,—1,—0.0625, —0.15 asymptotically stable
Es 0.3328 0.6445 0 0 —0.3065, —0.9929, 0.3555, —0.2144 unstable saddle

Table 11: The stability of equilibrium points for v1 = 0, 792 = 0.75 and

Y3 = 0.5.
” Equilibrium H I T N [ F H Eigenvalues H Stability ”
Fo 0.625 0 0 0 —0.2,0.6875,1, —0.4 unstable saddle
Eo 0.625 0 1 0 —0.2,—1,—-0.3125, —0.4 asymptotically stable
Es3 0.5497 0.4634 0 0 —0.1761, —0.7270, 0.5366, —0.4463 unstable saddle
and 3.
Step 3: Solve (1) using ode45.
Step 4: Using the values obtained in the step 2, solve (15) using

the backward method.
Step 5: Update the control parameters ~7, 75 and 3 using The-
orem 4.4.

The graphs of optimal control parameters are drawn in Figure
5 based on initial values oy = as = 200, a3 = a4 = a5 = 1,
ag = ay = 100, v = 0.75, 5 = 0.00025 and 3 = 0.75.
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Figure 4: Time series plot of the immune cells, tumor cells, normal
cells and fat cells for v; =0, y9 = 0.75 and ~3 = 0.5.

6 Conclusion

In this study, unlike most sources that have only investigated the
effect of a single treatment on stomach cancer with mathemati-
cal models, we have developed a novel integrative mathematical
framework for stomach cancer treatment that unifies three criti-
cal therapeutic dimensions: externally delivered immunotherapy;,
dynamically controlled ACI protocols, and precision nutritional
management. Our rigorous stability analysis, supported by Lya-
punov function methods, provides a solid theoretical foundation
for predicting long-term treatment outcomes. The optimal con-
trol formulation offers clinically actionable insights for maximiz-
ing therapeutic efficacy while respecting physiological constraints.

27
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Time(t)

Figure 5: The optimal control graph for treatment parameters ~j(t),
75 (t) and y3(t).

As a future work, we plan to extend this framework to incorpo-
rate molecular-scale interactions between stress hormones (such
as cortisol) and tumor microenvironment dynamics. Addition-
ally, prospective clinical studies will be undertaken to validate the
model’s predictive power across diverse patient populations, with
particular focus on those experiencing varying levels of obesity and
psychological distress.
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