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Abstract. Z-differential equations are used to model phenomena un-
der uncertainty and partial reliability in scientific and engineering fields.
Most existing methods for z-differential equations that involve z-numbers
are based on discrete forms; however, the continuous form of z-numbers
is more representative of the behavior of many phenomena. In this
work, we examine zt-numbers with triangular distributions as initial
conditions in uncertain differential equations. The numerical method,
called the Modified Euler method, is generalized to solve z'-initial value
problems, with proofs provided for its convergence and stability. Sev-
eral examples are provided to demonstrate the accuracy and efficiency
of the proposed method.
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1 Introduction

Information is essential in today’s world. In decision, information must
be reliable but in real-world information is typically identified by uncer-
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tainty and partial reliability. Z-numbers are powerful tools for defining
imprecise and partially reliable information. The idea of z-numbers was
originally presented by Zadeh, in 2011 [22]. Zadeh aimed to extend the
ability to model uncertainty in information by incorporating both the
value of the information and a measure of confidence in that value. This
dual-component structure allows z-numbers to represent real-world sit-
uations more realistically, particularly in scenarios where uncertainty is
pervasive. Each z-number consists of two parts: one that captures the
uncertain value (often expressed as a fuzzy set) and another that indi-
cates the reliability or confidence in that value. Z-numbers have since
been applied in various fields, such as decision-making, risk assessment,
and artificial intelligence, where managing uncertainty is essential.
Recently, efforts have been made by researchers to create a framework
for mathematical computations utilizing z-numbers, as referenced in
[21, 2, 3, 4, 12, 13, 17, 18, 19]. The initial approach to incorporat-
ing z-numbers into uncertain differential equations emerged in 2015 [6],
introducing a Hukuhara derivative for z-valued function. Following this,
further studies have focused on developing solutions for these uncertain
differential equations, employing techniques such methods include the
Sumudu transform [14] and artificial neural networks [15].

Zt-number is an extension of z-numbers and add additional parame-
ters to capture more complex forms of uncertainty. Particularly in fields
that require highly detailed models of uncertainty, such as risk analysis,
predictive modeling, and artificial intelligence. z*-number aim to re-
fine decision-making processes by giving a more comprehensive picture
of the reliability and variability of data, especially in situations where
conventional probabilistic methods may fall short.

M. Lordejani and et al.[9], presented the parametric form of z*-numbers
and the primary algebraic operations applied to them. Subsequently, by
defining a metric on zt-number space, they explored the concepts of
limit, continuity, differentiability (strongly generalized Hukuhara dif-
ferentiability) and integrability of a z*-valued function in their work.
Consequently, they provided a analytical method to solve z*-differential
equation by zt-Laplace transforms.

Li and et al.[16], analyzed the complexity of continuous z-number cal-
culations in their paper. The first one is using normal distribution. The
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use of the complex form of normal distributions makes it difficult to
calculate exact hidden pdfs for continuous zT-numbers. To overcome
this, researchers often discretize the second fuzzy number, leading to
discretization and estimation errors, causing potential information loss.
Approaches like those by Aliev et al. [5], have introduced arithmetic
operations for continuous zT-numbers by discretizing fuzzy numbers,
though with challenges in accuracy. The second one is, inconsistency in
zT-number definition. There is an inconsistency between the intended
meaning of zT-numbers (representing reliability or certainty) and their
mathematical definition. According to Zadeh, a z"T-number reliability
implies certainty in the variable’s value, ideally corresponding to a prob-
ability of 1. However, the actual distribution does not align perfectly
with this, especially for continuous zT-numbers, leading researchers to
often approximate zT-numbers as fuzzy numbers due to difficulties in
defining exact probability distributions. To overcome these difficulty,
they extend the triangular distribution to serve as the hidden pdf of tri-
angular z-numbers and apply it to perform operations on zT-numbers.
In this paper, we consider uncertain differential equations with 27-
numbers as initial values. We utilize the extended triangular distri-
bution as the hidden probability density function of zT-numbers. By
generalizing the Modified Euler method [1], we obtain the solution of
the zT-differential equation in the form of a z-number. The Modified
Euler method for the zT-initial value problem is proposed in three cases,
and its acceptable accuracy is illustrated through several examples.

The paper is organized as follows: Section 2 introduces some basic
definitions and theorems. The proposed method is described in Sec-
tion 3. Numerical examples are provided in Section 4, and finally, a
conclusion is drawn.

2 Preliminaries

In this section, we present the necessary definitions, theorems and lemma.
The space of fuzzy numbers on the real line is represented by Rx. For
two fuzzy numbers m, n € Ry and k € R, the addition and scalar mul-
tiplication operations are defined as follows.:
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[m +n]* = [m]" +[n]%,
[km]® = k[m]®,
where for 0 < a < 1, a-level set is defined by [m]|* = {t € R‘m(t) > a},

and [m]" = cl{t € R‘m(t) > 0}.

Definition 2.1. (see.[7])For two fuzzy numbers m and n the Hausdorff
distance do : Rr x Rr — RT U {0} is defined as follows

doo(m, n) = sup max {|m(a) - n(a)], [m(a) — (a)|}.
a€lo, 1]
Definition 2.2. (see.[7]) The Hukuhara difference of two fuzzy number
m and n is denoted by m © n, and it exists, if there exist s € Rx such
that m =n @ s.

Definition 2.3. (see.[9]) yp mapping ¢t — ¢p(t) be a fuzzy-valued
function where ¢p : [a,b] C R — Rz, and we have

vt € [a,b];  pB(t) € Rr. (1)
The a—level set of pp(t) is shown by [pg(t,a), P5(t, )], where t € [a, ]
and a € [0, 1].

Definition 2.4. (sec.[9]) Let ¢p : [a,b] CR — Rr and ¢y € (a,b). ¢B
is strongly Hukuhara differentiable (sgH-differentiable) at tg, if for all
x > 0 sufficiently closed to zero, there exists an element ‘P/BSQH(tO) eR
where

1. the H-differences ¢p(to + k) © @B (t0), ¢B(to) © wr(to — K) exist
and limits (in the metric du)

vp(to + k) © pr(to) vB(to) © pB(to — k)

li = 1li = ¢ t 2
e . 8 . P f0)s (2)
or

2. the H-differences ¢p(to) © ¢p(to + k), ¢p(to — k) © pB(to) exist

and limits (in the metric d)
t t to — t
lim ep(to) © ¢p(to+ ) _ lim ep(to — r) © pp(to) _ ‘PQBSQH(tO)a 3)

k—0t —K k—0t —K

or
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3. the H-differences pp(to + ) © wB(to), va(to — k) © ¢B(to) exist
and limits (in the metric d)

t t
lim vp(to+ k) © pr(to) — lim
k—0T K k—0T —K

pB(to —K) © wB(to) _ (to), (4)

Bng

or

4. the H-differences ¢p(to) © ¢p(to + k), pu(to) © ¢p(to — k) exist
and limits (in the metric d)

i PB(t0) S eltot+ k) . ¢B(t) O ¢r(to — K)

k—0t —K k—0t K

= o, (t0)- (5)

Definition 2.5. (see.[9]) We consider ¢p : [a,0] € R — Ry, with
parametric form (¢ (¢, ), B(t, )), where both differentiable at ¢y € [a, b],

1. if pp is [(i) — sgH|-differentiable at ¢,
SO/Bi.ng (tO) = (fB(th a)v@B(th OZ)),
2. if pp is [(i1) — sgH]-differentiable at ¢,
, o
(to) = (@p(to, @), p5(to, @))-

PBiisgn

Definition 2.6. (see.[20]) Let (2, F, P) be a probability space
e (: Sample space (set of all possible outcomes)
e F: o-algebra of measurable events

e P: Probability measure satisfying P(2) = 1.

A random variable is a measurable function X: (Q,F) — (R,B(R))
where B(R) is the Borel o-algebra on R.

Definition 2.7. (see.[20]) Let ¢r(t) be a random process where oy :
[a,b] CR — R and ¢y € [a,b]. Then we say lim;_+, on(t) = L if for each
€ > 0 there is § > 0 such that d,,s(¢n(t), L) < €, whenever ¢ € [a,b] and
’t — to‘ <4,

dms 1s mean-square metric and defined as follows:

de(XluXQ) = E[(Xl _X2)2]’

where X; and X5 represent random variables.
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Definition 2.8. (see.[20]) A random variable X is said to be second
order random variable if and only if d,,s(X,0) < co.

Definition 2.9. (see.[20]) A random process ¢y (t) defined on the prob-
ability space (€2, F, P), is called a second order random process if for each
t, on(t) is second order random variable.

Definition 2.10. (see.[20])The mean square derivative of random pro-
cess pn(t) is denoted by Dy,son(t) and express as follows

t+ At) — t
en(t+ Ai ('ON(),@V(t)),as At — 0.

dms (

Lemma 2.11. (see.[11]) Let on(t) be a second order random process,
mean square continuous on I = [to,T]. Then there exists n € I such
that

/tt w(s)ds = p(n)(t —tg), to<t<T.

Definition 2.12. (see.[16]) Let X; and X3 are two independent contin-
uous random variables where pdfi(x1) and pdfa(x2) are the pdfs of X,
and X, respectively. the pdf of the addition X3, is

pdf3(x3) = / pdfi(x1)pdfa(rz—x1)de; = / pdfi(x3—x2)pdfa(xe)dxs,
the pdf of the subtraction X3, is
pdf3(x3) = / pdfi(z1)pdfa(x1—x3)dr = / pdfi(x3+z2)pdfa(xe)dxs,
the pdf of the multiplication X3, is
* 1 I3
pdf3(x3) = —pdf1 (x1)pdfa(—=)dz1,
—oo |T1] T
and the pdf of the division X3, is
& T
pdf(as) = / ol (a)pdfa(S2 ).
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Definition 2.13. (see[9]) The z—number z = (B, N), consists of two
continuous fuzzy numbers, the first one B, is a fuzzy constraint on the
variable X, with membership function pup(x) : R — [0, 1] and the second
fuzzy number N is a fuzzy constraint on probability measure of B having
a membership function py(v) : [0, 1] — [0, 1].

Definition 2.14. (see[9]) The zT-number denoted as z* = (B, N,),
is formed by fuzzy number B and random variable N. N, denotes the
probability distribution of a random variable N which can be interpreted
as the hidden probability distribution of X and described by pdf(x)
such that [ up(z)pdf (z)dx € supp(N). Furthermore by omitting the
subscript @ form N, we denoted z"-number by 2zt = (B, N).

The set of 2™ —numbers is denoted as R,+ in this study.

Definition 2.15. (see.[0]) For arbitrary zt-number z* = (B, N), the
parametric form represent as: B
2t = (§+(a),§+(a)) = ((B(a),N), (B(a),N)), a € [0’ 1]7

with following requirements:
1. for a € [0,1], B(a) < B(«),

2. B(a) is characterized as a left-continuous, non-decreasing, and
bounded function on the interval [0, 1],

3. B(a) is characterized as a left-continuous, non-increasing, and
bounded function on the interval [0, 1].

Definition 2.16. (see.[0]) Let 27 = ((B;(a), N1), (Bi(a), N1)) and
25 = ((By(a), N2), (Ba(a), No)) are two zt-numbers, the distance d+ :
R,+ x R,+ — Ry U{0}, is defined as follows

dz+(2’i"_, Z;_) = doo(Bl,BQ) + de(Nl, NQ). (6)

Let zf ,z; , zgr and ZI are zT-numbers, the d,+ satisfies the following
properties:

L. dz"’(zi‘_ + Z;_?Z;— + Z;_) = dz-o-(Zf_,Z;—)’

2. do+ (A2, A5)) = [Nda+ (2, 2),



N. AHMADY, T. ALLAHVIRANLOO AND E. AHMADY

3. dor (2 + 25,25 +25) <d (2, 29) +do (27, 2)),
Lemma 2.17. (see.[0]) (R,+,d.+) denotes a complete metric space.

Definition 2.18. (see.[9]) The ¢ mapping ¢ — ¢(t) be zT-valued func-
tion where p,+ = [pB,oN] : [a,b] C R — R,+. For each t € [a,b], we
have ¢ +(t) € R,+.

Definition 2.19. (see.[9]) The limit of 2" -valued function ¢ : [a,b] C
R — R+ for ¢y € [a,b] is defined as follows

1. lim,HtCT @(t) = 2T, if Ve > 0,35 > 0, such that —0 <t —tg <0 =
dz+ (gp(t)’z—i_) <,

2. limy_, . o(t) = 2t if Ve > 0,35 > 0, such that 0 <t —tg < 6 =
dz*((p<t)vz+) <¢,

3. limy_y, (t) = 2T, if Ve > 0,35 > 0, such that 0 < [t — to| < 6 =
d.+ (@(t)v Z+) < €.

Definition 2.20. (see.[9]) The z-valued function ¢ : [a,b)] C R — R+
is continuous on [a, b], if

Vito € (a,b), limy_s, ©(t) = to, limy_, .+ ©(t) = @(a) and lim,_,,— p(t) =
(D).

Theorem 2.21. (see.[0]) The zT—wvalue function, p,+ : [a,b] C R —
R+, is said to be z T -differentiable at t € [a,b], if and only if

1. the fuzzy function pp is differentiable with respect to t at that point
by definition (2./) and,
2. the random function @y is mean square differentiable at the point

t.

when these conditions are satisfied, the derivative of p,+ att is denoted
as:

L (t) = (@l (8), P (1))-
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Theorem 2.22. Consider p,+ = [pB, on] : [a,b] CR — R+, where ¢p
1s sgH -differentiable such that type of differentiability does not change
over the interval [a,b], and N is differentiable. Then for a < s <b,

i) If o is [(i) — sgH|—differentiable the @,Bi.ng is F'R-integrable over
[a, b], and

0t (3) = o () @ / o (), (7)

it) If pp is [(ii) — sgH]—differentiable the 4,0/32_113(]
[a,b], and \

., s F'R-integrable over

prr(@ =@ (D) [ T (). (8)

Proof: Let pp is [(i) — sgH|—differentiable, according to Theorem
3.1, which is proven in [%], we have

O81n () = 98,01 (@) ® [l O
and by using Lemma(2.11), we have
ex() =ona)® [ e
therefore it can be easily concluded that
pr(s) = pur@® [ a0

Now, if ¢p is [(ii) — sgH|—differentiable, by using Theorem 3.1, in [3],
we obtain

OB (@) = 89 (1) [ Gl (O
also by Lemma(2.11),
exla) = on(s) + (1) [ piv(oy
finally we concluded that
prila) = purlm) @ (1) [ ol

and the proof is complete.
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3 Proposed Method

The aim of this paper is to introduce a numerical method for solving 2™ -
initial value problem. To achieve this, first introduces the 2™ —numbers
which is utilized in this study. Then, the existence and uniqueness con-
ditions of a initial value problem under 2™ —numbers are presented. Fi-
nally, the numerical method for solving the z™-initial value problem is
introduced, and the necessary theorems are stated and proven.

3.1 z'—number with extended triangular distribution

Initially, we will explain the type of z*—number and traditional arith-
metic of continuous z+—numbers. For this purpose we need the following
definitions.

Definition 3.1. (see.[16])The probability density function(pdf) of the
triangular distribution forms, specified by three parameters a,b and m
where a, b are the lower limit, upper limit and m is the mode. The pdf
is denoted by T'(a,m,b) and can be formulated as a piecewise function
as follows:

é}‘?) (;%), a<z<m,
pdf (z) = ((b::;) (%), m<ax<b, (9)
0, else.
In [16], Li and et al. enhanced the triangular distribution by intro-

ducing a new parameter S which modifies its convexity and concavity
of piecewise function (9). This led to the development of the extended
triangular distribution, definded as follows:

Definition 3.2. (see.[16]) The pdf of the extended triangular distribu-
tion is described by four parameters: the lower and upper limits a, b, the
mode m and the minimum height 8, which modifies the concavity and
convexity of the distribution (9). The pdf of the extended triangular dis-
tribution can be expressed as a piecewise function pdf () = 7(a, m, b, ),
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2
bfa_ﬁ
B
a m b
Figure 1: Extended triangular density when § < ﬁ.
1
b—a
a m b
Figure 2: Extended triangular density when 8 = ﬁ.
where [ lies within the interval [0, %], and is defined as follows:
Btat(32—26), a<z<m,
pdf (x) = B+ (2 —28), m<w<b, (10)
0, else.

When 0 < 8 < 71, the pdf (10) is convex (see Fig 1). Within this
interval, smaller values of 5 correspond to a more pronounced convexity
of the distribution.

If 8 = ﬁ, the pdf (10), reduces to a uniform distribution (see Fig 2).
For ;- < 8 < 72, the pdf (10) becomes concave (see Fig 3). Within
this range, larger values of 8 lead to greater concavity in the distribu-
tion. To address this issue, Li and et al. in [10], introduced the value
for the parameter 3 based on the concept of 2™ —numbers with extended
triangular distribution. They proposed the hidden pdf for 2+ = (B, N)
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B
2 —
b—ua 4
a m h
Figure 3: Extended triangular density when 8 > ﬁ,
as follows:
2(1 —
T(aB,mB,bB,M), Ve [0,1},
bp —ap

where ap,bp are the lower limit, upper limit and mpg is the mode of
fuzzy number B, and v represents the discretization points of the sup-
port N.

The arithmetic of continuous z*—numbers with triangular distribu-
tion, is derived from the arithmetic of fuzzy numbers and normal prob-
ability density functions (pdfs).

Consider two continuous 2" —numbers z;” = (By, N1) and 25 = (Ba, Na),
which represent incomplete or imprecise information about the random
variables X; and Xs. The objective is to calculate zE = zfr * z; , where
* denotes an operation from the set € {+, —, x, /}.

Step 1: B}, = Bj x By by using the operations of continuous fuzzy
numbers.

Step 2: Discretize Nj,i = 1,2 and derive the hidden pdfs. supp(N;)
is divided into discrete points v;,l = 1, ..., m, with equal spacing. As a
result, IV; can be written as:

N; = “N;;'u) + “le‘li;'n) 4+ /'I/N,if;:m)‘

Step 3: Compute pdfia = pdfi * pdfs of pdfs using definition(2.12).
Step 4: Compute the discretized base values of Nyo.

vig = [70 By, (2)pdfia(x)da,

Step 5: Compute the membership function of Nia, pn,, (r12) = max(py, (v1)A
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1N, (12)).

3.2 ZT-Initial Value Problem

Having established the essential prerequisites, we will now proceed to
introduce 2z —initial value problem as follows:

= Z+

where o+ = [pB,@n] is zT-valued function, ¢+ : [0,7] C R — R ¢+
consists of two parts, ¢n : [a,b] CR — R and ¢p : [a,b] C R — Rr.
The initial value zq is z"-number and based on equation (10), the pdf of
the extended triangular distribution can be present as a segmentation
function pdf(z) = 7(z01, 20, 201, 8) , Where zo, 2o¢, 20, are the lower
limit, mod and upper limit of the za' .

3.3 Modified Euler method for Zt-Initial Value Problem

Modified Euler method is powerful method for solving fuzzy differential
equations (FDEs), that was proposed by N. Ahmady and et al. in 2020
[1]. This method is estimate the solution of FDEs by using a two-stage
predictor—corrector algorithm with local truncation error of order two.
In this work, we applied Modified Euler method for solving z*-Initial
Value Problem (11). For this purpose, we consider three case, based on
the type of differentiability of the solution (11).

Case 1.

Let z*(t) be the solution of z*-initial value problem (11), where 27 ()
consist zp(t) : [0,7] € R — Ry with hidden extended triangular dis-

tribution 7,. Suppose that zp(t) € CﬁgH([O,T], Rr), and zg) (t), i=
1,...,4 are [(i) — sgH|-differentiable.

Htgn) = 2 (1) © / ot )t (12)

ty

13
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Using Lagrange interpolation of points ¢(t;, 27 (¢;)) and ¢(t;11, 2T (ti+1)),
we obtain

Jj=i+1
(pz+ t Z Z E ®90 t]?'z (t])) (13)

where ¢;(t) and ¢;11(t) are positive for t; <t < t;;;. By putting Eq.(13)
in Eq.(12), we have

(o) = 0 © 5 © ik, 7 () @ (10,27 00) ) (1)

where

cultinn) = 20(0) @ 5 © (ltn, 2nu) @ et () (19

To derive a numerical method for equation (15), the value of zp(tx41)
appearing on the right-hand side is unknown. To manage this, the value
of zp(tk11) is initially approximated using the Euler method and the
predicted value is then utilized in Eq.(15).

Thus, the Modified Euler method can be expressed as follows:

zp(tk) ® h © @(tk, z5(tr)),
()@ o <so<tk+1, (1)) © (s, zB<tk>>> (16)
2N (tg+1) = pdf (2B(tg41)), k= 0,1,..., N — 1.,

25 (tks1)

zB(tk+1)

Now , for zy(tgs+1), we should write pdf of zp(txy1) at tgi1, for this

purpose we denote zp(tk+1) = 2B, = (2B, (2By1) o (2844 ),) and
by Eq. (10), the pdf of zp, ., is written as follows:

r—=z
ZBc_lel (ZBT%ZBZ - 2/8) + /Ba ZBl S T S ZBe»
pdf (g, () = 4 2 (sptzm —28)+ B, 2. <z <zp, (17)
0, else.
where 3 = (1__'/) , v € [0,1], and v represents the discretization
ZBy ZBl

points of the support zy(tg41).
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Case 2. Suppose that 27 (t) be the [(ii) — sgH]-differentiable solution
of z*-initial value problem (11), and the type of differentiability
remains unchanged, then

i) =) e (1) [ el (18)

by putting Eq.(13) in Eq.(18) we have

tiyr J=0HL
Z+(ti+1) = Z+(ti) © (_1)/t Z 4i(t) © o(t;, Z+<tj))dt7 (19)
i j=i

By integrating yields:

2H(tiy1) =27 (k) © (-Ug ® ((ti, 27 (i) @ @(tiy1, 27 (tig1))),(20)

therefore the Modified Euler method for this case can be expressed as
follows:

© o(tr, zB(tr)),
& ((tinss 2 (trn)) @ so(tk,zsuk))) (21)
ZN(thrl) = pdf(ZB<tk+1)), k= 0, 1, ceey N —1.

where pdf (zp(tx+1)) is obtained by (17).
Case 3.
We Consider partition of [0,7] as follows
to=0,t1, ety Yo tjgts ooty = T. (22)
If the assumptions of Case 1 hold for zp(t) where ¢t € [0,t;] and the

assumptions of Case 2 hold for 27 (¢) where ¢ € [t;11,T] (with vy € [0, 7]
being a Type I switching point I) then the Modified Euler method can
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be expressed as follows:

2p(tk+1) = 2B(tk) © h © p(tk, 25(tk)),

2p(tey1) = 2p(ty) ® 2 © <‘P(tk+1» 25 (tet1)) @ o(ty, ZB(tk:))>, k=0,1,...,].
Z*B(tk-i-l) = ZB(tk) 1 h tk,ZB tk
zp(tes1) = zB(ty) © (-1)2 © < tk:+1,ZB tk+1)) ® SO(tkaZB(tk))>a k=j5+1,1,..,N -1
2N (tkt1) = pdf(ZB(tk—i-l) k=01

Case 4.

If the assumptions of Case 2 hold for zp(t) where ¢ € [0,¢;] and the
assumptions of Case 1 hold for 27 (¢) where ¢ € [t;j11,T] (with v € [0,T]
being a Type I switching point 1) then the Modified Euler method can
be written as follows:

2p(th+1) = zB(tk) © (=1)h © @(tk, 2B(tk)),
zp(tk+1) = 2B(tk) © (—1)% © <<P(tk+1, 25 (th+1)) © @(tr, zB(tk))>, k=0,1,...,7.

2p(te+1) = zB(tk) © h © @(t, 2(t)),

p(tin) = 20(0) ©  © (en, 550 © 9l ent)) ), k=i 1LV - L
N (tg+1) = pdf (z(tg+1)),k =0,1,..., N — 1.

Theorem 3.3. Let ¢+ : [a,b] € R — R.+ where p(t,zp) satisfy in

Lipschitz condition on the {(t,zp(t))|t € [0,p],zp € B(zp,,q),p,q > 0}

and @' exist, then the Modified Euler method converges to the solution
of 2t —initial value problem (11).

Proof. Let z*(t) = (25(t),zn(t)) be the [(i) — sgH]—solution of
(11). By theorem (3.3) in [1], we have

%i_% deo(2By,152B,) — 0, (25)

where h represent the step length. Also zy, , and zy, have triangular
probability density distributions of 7((2B,_, )i, (2B441)e> (2B,4, )y B) and
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7((2B, )1, (2B, )es (2B, )r» B), respectively. By using (25) it can be easily
concluded that

T((ZBk+1)l7 (ZBk+1)C7 (sz+1)7"v /3) - T((ZBk)l7 (sz)Cv (ZBk)T’ 6) when h
goes to zero. Therefore limy_,o dims(2n,,,,2N,) — 0, and consequently
limy, o d+ (z,jH, z;7) — 0, and the proof is complete. If 27 () = (25(t), 25 (1))
be the [(i7) — sgH]—solution of (11), the proof is similar.

Theorem 3.4. The Modified Euler method for solving z+—initial value
problem (11) is stable.

Proof. Assume that z,;:l(t) = (2B, (1), 2n ., (1)) is the [(i) —

sgH|—solution of (11) with initial condition z; and let p;rﬂ(t) = (PB4 (1), PNy, (1))
be the [(i) — sgH|—solution of (11) with perturbed z* —initial condition
pg :zJEBEERZJr.
By using theorem (3.4) in [1], we have doo (2B, .1, PByy,) < kdoo(2Bys PB,);
where k = e % for kh < (k + 1)h < b. It can easily be concluded
dms(2Ny415 PNy, ) — 0, because when two triangular probability den-
sity functions are very close to each other d,,s approaches zero. Then
finally d,+ (leﬂ’p;:ﬂ) < kd,+ (25 ,pg), and the proof is complete. If
z,;'r+1(t) = (2B, (1), 2N, (t)) is the [(i7) — sgH|—solution of (11), proof
is similar.

4 Numerical Example

Example 4.1. Let we consider the initial value problem

{ (Z+);H =(1-1t)z"(t), 0<t<2, (26)

27(0) = (2B(0), 2n(0))

Where zp(0) = (o, 2 — ), 2n(0) = 7(0, 1, 2, 3).
To solve this problem, the Modified Euler method has been used. The
solution of the problem (26) at ¢ = 1 and the hidden extended triangular
pdf at this point for different values of v, (v = 0.9,0.92,0.94,0.96,0.98,1)
are shown in Figure 4. Additionally, the solution at ¢ = 2, along
with its hidden extended triangular pdf for different values of v, (v =
0.9,0.92,0.94,0.96,0.98, 1) are shown in Figure 5.
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Figure 4: The hidden extended triangular pdf for v =
0.9,0.92,0.94,0.94,0.96,0.98,1, at ¢t = 1, in Example (4.1)

Figure 5: The hidden extended triangular pdf for v =
0.9,0.92,0.94,0.94,0.96,0.98, 1, at ¢t = 2, in Example (4.1)
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Table 1: The global truncation errors for ¢ = 1, in Example 4.1
o zp(t,a) Zp(t, ) Zg(t,a) Zg(t,a) Max Error
0 0 3.297439071 0 3.297442542 3.471 x 107°
0.2 0.3297439070 2.967695164 0.3297442442 2.967698288 3.124 x 10~6
0.4 0.6594878140 2.637951257 0.6594885084 2.637954034 2.777 x 1076
0.6 0.9892317210 2.308207350 0.9892327626 2.308209779 2.429 x 1076
0.8 1.318975628  1.978463443  1.318977017  1.978465525 2.082 x 1076
1 1.648719535  1.648719536  1.648721271  1.648721271 1.735 x 1076
Figure 6: A tank with a heating system in Example (4.2).
Example 4.2. [15] A tank containing a heating system is represented

in Figure 6, where p = 0.5, the thermal capacitance is ¢ = 2 , and the
temperature is ¢». The model is formulated as follows:

{ (@) (1) = —%vF (), 0<t<T,
¥T(0) = (vB(0),9n(0)),

Where ¢5(0) = (o, 2 — ), ¥n(0) = 7(0, 1,2, B).

Using the Modified Euler method, ¢p(t,r) = (@B(t,a),@B(t,a)), the
solution of the problem (27) at t = 1 and its hidden extended triangular
pdf for different values of v, (v = 0.9,0.92,0.94,0.96,0.98, 1) are shown
in Figure 7.

(27)

5 Conclusion

Since fuzzy differential equations (FDEs) cannot assist decision-makers
in determining the reliability of output information, we were motivated
to address this gap. To achieve this, we investigated z"-differential equa-
tions, which are governed by the concept of zT-numbers. ZT-number is
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Figure 7: The hidden extended triangular pdf for v

0.9,0.92,0.94,0.94,0.96,0.98,1, at t = 1, in Example 4.2

Table 2: The global truncation errors for ¢t = 1, in Example 4.2

a Yt a) Yyt a) Lower bound  Upper bound Max Error
of Real Value of Real Value

0 0 0.7357619558 0 0.7357588824  0.30734 x 10~°
0.2 0.07357619592  0.6621857599  0.07357588824  0.6621829942  0.27657 x 105
0.4 0.1471523918  0.58860956407  0.1471517765  0.5886071059  0.24581 x 1075
0.6 0.2207285878  0.5150333680  0.2207276647  0.5150312177 0.21503 x 10~
0.8 0.2943047837  0.4414571721 0.2943035530  0.4414553294  0.18427 x 107>
1 0.3678809796 0.3678809762 0.3678794412  0.3678794412  0.15350 x 10~°

a combination of possibilities and probabilities. Due to the high com-
putational complexity involved in working with continuous distribution
functions, this paper focuses on studying zT-numbers with a triangular
distribution as initial values in uncertain differential equations. We then
extended the Modified Euler method to solve the z'-initial value prob-
lem, and we also proved the convergence and stability of the method.
Finally, the accuracy and efficiency of the method were demonstrated
through several examples.
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