Journal of Mathematical Extension
Journal Pre-proof

ISSN: 1735-8299

URL: http://www.ijmex.com
Original Research Paper

Generalized Volterra-Type Operators from
Hardy Space into Iterated Weighted-Type
Spaces

E. Abbasi

Islamic Azad University

D. Molaei*

Islamic Azad University

A. Ebrahimi

Islamic Azad University

Abstract. Let H(D) be the set of analytic functions on D and for
1 < p < oo, H? be the Hardy space. For m € N suppose that I™ be
mth iteration. Let ¢ = (go, - ,gm_1) where {g; msl € H(D) and
I(f) = [; f(w)dw. If I"™ for m € N be the mth iteration, then the

generalized Volterra-type operators I} on H (D) is defined as follows

m—1
(=1 ).

i=0
In this paper, we investigate boundedness and compactness of general-
ized Volterra-type operators from Hardy space into iterated weighted-
type spaces, Vo = {f € H(D) : sup,cp(1 — |2[*)[ /™ (2)| < oo}.
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1 Introduction

Let D be an open unit disc in the complex C and H(D) be the set of
analytic functions on D. For 1 < p < oo, the Hardy space HP consists
of all analytic functions f € H(ID) such that

1

Il = s (5 [ 15 pan)” < oo

O<r<1 \2T

Also H®° is the space of bounded analytic functions on D with the norm
| fllHee = sup,ep |f(2)]. More information about such spaces can be
found in [9]

Another space used in this paper is nth weighted-type space. Let u
be a weight (continuous and positive function on D) and n € Ny. The
nth weighted-type space Vi, consists of all analytic functions f € H (D)
such that by (f) = sup,ep w(2)|f™(2)| < co. This space is a Banach
with the following norm

n—1
£l =3 1 FD(0) | +byp(f) < oo
=0

For a > 0 and u(z) = (1 — |2?), we use V% V,, and || - ||,, instead

of Vi, VI and || - ;1. The space V¥ contains a large class of analytic
functions. For example when a > 0, V* = A~%(growth space), V* = B¢
(Bloch type space), Vi* = Z% (Zygmund type space), Vi = B (classic
Bloch space) and Vo = Z (classic Zygmund space). The space V, is
called iterated weighted-type space. In [7] Colonna et al. considered
iterated weighted-type spaces and obtained some properties for these
spaces, especially they showed

i CVppCVpC---CWBCZCH®CBC AL

The closed subspace of V' containing of all f € V;)' such that
lim, w(2)| £ (2)] = 0 is denoted by Vo and is called little nth
weighted-type space. For more information about (little) nth weighted-
type spaces, see [1, 2, 4, 7, 12, 141].
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Let m € N, I'™(f) = fOZ 2. foz’”’l f(2)dzdz - - dzpm—1, and
? = (90,91, » Gm— 1) Where {g:}1~ l'cH (D). The generalized Volterra-
type operator on H (D) defined as follows
m—1 '
1) = (S f0g,).
i=0

For m = 1 and go = ¢/, we get Volterra type operator (J,f)(z) =

fo w)dw and When m = 1 and go = 1, we obtain the classic
Volterra operator (If)(z fo w)dw. Also if we set g; = am_;_19Mm 9
0<i<m-1), WheregEH(]D))and = (ag, - ,am—-1) € C™, w
have generalized integration operator Ig ", defined by Chalmoukis in [0].
Since
m—1 m—1 m—1
Figy = 32 1m(pig) = 37 1mi(p),
i=0 i=0 i=0

so for considering properties of operator I’%, firstly we investigate prop-

erties of operators Iy, " where 0 < i <m — 1.

Chalmoukis in | ] considered boundedness and compactness of I 0
HP — Hq where (0 < ¢ < p < 00) and posed a conjecture that g must
be in Ha». Yang et al. provided a positive answer to the aforemen-
tioned conjecture in [13]. Arroussi et al. investigated boundedness and
compactness of I8 : AP — A9, where AP is Bergman space. They
extended Chalmoukis result to Bergman spaces and showed that the
Bergman space version of Chalmoukis conjecture is true (see [5]). Also
some authors characterized boundedness and compactness of general-
ized integration operators among some other analytic function spaces
[8, 10]. In [14], Zhu investigated Bloch-type spaces and uncovered nu-
merous properties associated with these spaces. Later, Stevi expanded
on this concept by generalizing Bloch-type spaces and introducing the
nth weighted-type spaces, as detailed in [11, 12]. In recent years, exten-
sive research has been conducted on such spaces, with one of the most
notable references in this area being [7].

In this paper, firstly we investigate boundedness and compactness of
the operators I;? ’Z(() < ¢ <'m) from Hardy space into iterated weighted-
type spaces and we find some characterizations for boundedness and
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compactness of such operators. Then we consider boundedness and
compactness of the operator I} : HP — V,, and we show that the oper-

ator IT_;} : HP — V,, is bounded (compact) if and only if each operator
I HP — V,(0 < i < m —1) is bounded (compact).

In this work, we shall use the notation A < B to mean that for some
c>0, A<cB, whereas A < B means A < B and B < A.

2 Boundedness and Compactness of Operator
Igz’i HP =V,

In this section, we investigate boundedness and compactness of the oper-
ators Ig,"" from Hardy space HP(1 < p < 00) into iterated weighted-type
spaces and we obtain some characterizations for boundedness and com-
pactness of such operators. We begin with the following lemma.

Lemma 2.1. Let n,k € N. For any f € V,,, we have

n+k—2

1Al = ) If(“(O)HsgIg(l—IzIQ)k\f(”““‘”(Z)I-
i=0 z

Proof. For n =1, V; = B. So by using Proposition 8 in[14], we get

k-1

1l = 1£lls = Y 1F9(0)] + sup(l = |2%)F1F 0 ()1

=0

For any n € N, V,, C V,,_1 [6, Proposition 2.1]. Hence, for any f € V,,,
f=1 e B. By replacing f with f(*=1 in the above equation, we obtain

[FD(0)] + sup(1 = [2[*) f™ (=) [=
n+k—2

> OO +sup(t — |=f*)H D))

i=n—1
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Hence,
n—2 )
£l =D 1FDO)] + £ D(©0)] +sup(1 — | 2 %) | £ (2) |
i—0 z€D
n—2 n+k—2
=10+ > 19 |+Sup(1 — |z Yk FED () |
=0 i=n—1
n+k—2

Z IR !+Sup(1—|2| LD ().

The proof is complete. O

; (i)
Let m > n. It is clear ( I f)) (0) = (f;;“( f)) (0) = 0, when
0<i<m-—1,so for any f € H(D), by using Lemma 2.1, we have

m—1
1274l = D | (@4 0) Y O+ sup(1 = o2~ | fDg(2)| ()
k=0

z€D

= sup(1 — 22"~ [ fDg(z)|
zeD

Lemma 2.2. Let 1 < p < oco. Then for any f € HP and k € Ny,

sup(1 — |22 | £9 ()] = || £llae-

zeD

Proof. From Proposition 5.1.2 of [14], we have H*> C B and for any
feH>®
sup(l - =P ()] < N1 f Nl

z€eD

Applying Lemma 2.1, for each k € Ny and f € H*, we obtain

sup(L — [z)*If® ()] < £l < 20 fllzree = (1f e

2€D
Similar results for 1 < p < oo follow easily using results from [9]. O

Theorem 2.3. Let 1 < p < oo, myn € N such' that m > n and g; €
H(D). Then for each 0 < i < m, the operator I : HP — V;, is bounded
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1
if and only if sup,cp(1 — 12[2)™ "5 gi(2)| < 0. Moreover, in this
case )

4 i1l
12521 = sup(1 = [ gi(2)]
ze

Proof. Let the operator I;?’i : HP — V,, be bounded and f;(z) =

meil, where 0 <i < m and w € D — {0}. For p = o0,
(1—wz)"p
— [w?[' (1—JwP)
sup | fi.w(2)| = sup — <sup-——7= =27,
up i) =500 | T | < S0 T

80, SUPyep || fiwllmee < 2° and when 1 < p < oo, from Lemma 2 [11],
there exists positive constant C;,, such that sup,cp || fiwl|mr < Cip.
Applying (1) for f;.,, we have

1T (fivo) I = sup(1 - |22y £ () gi(2)]

> (1 — )™ " 1D (w)]|gi (w))
1—1
— . 1 m—n—i—=<
=o' [JG+ S0 [wf) L gi(w)).
=0

Therefore,

m—i—lq . .

sup(1 — |w[*)™ "7 gi(w)| =N (fiw)lln < 152 | sup || fiwl o
weD weD
|.

< Cipllg”

1
Conversely, we assume that sup,p(1 — 12[2)™ "5 gi(2)| < oo, by

using (1), Lemmas 2.1 and 2.2, for any f € HP, we obtain

1252 (F)lln = sup(1 = =)0 (2)gi(2)

i1l . 1
< sup(1 — |2*) 7 | £O(2) | sup(1 — [2[*)" " Tp g (2)]
z€D zeD

—n—i—141
<1 fllzze sup(1 — |23 gi2).
zeD
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Therefore, the operator Iy : H? — Vj, is bounded and |[IJ""|| <
!
sup.ep(1 — |2 |
To investigate compactness of operators Iy : H? — V,(0 < i < m),

we need the following lemma, since the proof of it is similar to the proof
of [7, proposition 3.11], so it is omitted.

|gi(2)]. The proof is complete. [

Lemma 2.4. Let 1 <p <oo, myn €N, {g 2’:01 C HD) and T = I%1

or IJV'(0 < i < 'm). Then the bounded operator T : H? — V,, is compact
if and only if for any bounded sequence {fi} in HP which converges to
zero uniformly on compact subsets of D, limy_,o0 || T(f%)||n = 0.

Theorem 2.5. Let 1 < p < oo, m,n € N such that m > n and g; €
H(D)(0 <i<m). Then for each 0 < i < m, the operator 1" : HP —

Vi, is compact if and only if lim, (1 — ]z]Q)mfnfifiﬂygi(z)] =0.

Proof. Let the operator Igf’i : H? — V,, be compact. Forany 0 <i <m
and w € D — {0} the functions f;,(z) = (lwP)

—1 are bounded and
p

(1—w=)
converge uniformly to zero on compact subsets of D when |w| tends to
1, so by applying Lemma 2.4 limy,—; [ 1g;"*(fiw)lln = 0. Now by using
(1), we obtain

1224 (Fro) I = (1= 212" £ (2) i ()]

I § .
= (1 —Jw)™ " e @) gi(w)]

In the above inequality, let |w| — 1. Then, we obtain limy, (1 —
1
)™ gy (w)] = 0.

. o\m—n—i—t41
Conversely, suppose that lim, (1 — [2|%) »gi(z)] = 0.
Hence, for any ¢ > 0 there exists 0 < < 1 such that for each § < |z| < 1,

(1= )™ gi(z)] < e. (2)

Now by using (1) and Lemma 2.1, for any bounded sequence {f;} C HP
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which converges uniformly to zero on compact subsets of D, we obtain
1752 Flln = sup(L =)™+ LA7 ) i (2)
z

< sup (1= [z " £ (2)] i (2))]

=<6
+ sup (1= |22 9(2)|gi(2)]
<z|<1
< sup (1 — |22 | £ (2)] sup (1 — |2]2)™ 775 gi(2)]
|z|<é |z]<6
.1 . a1 1
+ sup (1= 222 [£7] sup (1= 2™ 0 gi(2)]
5<|z|<1 5<|z|<1
=: X7 + Xo.

By using Cauchy’s estimates, for any i € Ny, the sequence { f,gi)} con-
verges uniformly to zero on compact subsets of I, therefore

m sup |£”(2)] = 0.

.1
lim X; < sup(1—|2[)"™ "5 gi(2)| L
k—>oo‘z|§5

k—o00 |2|<6

Also applying Lemma 2.2 and (2), we get

—p—i—1
lim Xo < lim || fillae sup (1= [2[)™ "7 5 gi(2)]
k—o0 k—o0 5<|z|<1

< esup || fil[mr-
keN

S0, limg o0 [ 107" (fi)|ln = 0. By using Lemmas 2.4, the operator I;."" :
HP — V,, is compact. The proof is complete. O

Putting n = 1 and n = 2 in Theorems 2.3 and 2.5, we get the
following corollaries.

Corollary 2.6. Let 1 <p < oo, m € N and g; € H(D). Then for each

0 < i < m, the operator I,"" : HP — B is bounded (compact) if and
. m—i—1 m—i—2

onlyifgi€Vy  P(gi€Voy ")

Corollary 2.7. Let 1 < p < 0o, m € N such that m > 2 and g; € H(DD).

Then for each 0 < i < m, the operator Ig" : HP — Z is bounded

i—L-1 m—i—1i-1

(compact) if and only if g; € Vomi (g €Vho )
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3 Boundedness and Compactness of Operator
I%"‘ cHP =V,

In this section, we will consider boundedness and compactness of the op-
erator I% from Hardy spaces into iterated weighted-type spaces. Espe-
cially we show that if the operator I? : HP — V, is bounded (compact)

then for each 0 < ¢ < m — 1, the operator Ig?’i : HP — V,, is bounded
(compact). For this purpose, we need the following lemma which comes
from [2, Lemma 2.5] and [3, Lemma 2.3].

Lemma 3.1. Let 1 <p <oo. Forany0#& €D and i€ {0,1,---,n},
there exists a function v;¢ € HP with the following conditions:

, R S URS s , __(-[g?) i e
a) vig(z) = Zj:1 i fie(2), where fi¢(2) = 1t and c; is indepen-
dent of choice &.

b) supeep [|vigllmr < oo and

—f o, k=i,
o€ =1 ag
0, s

c) For any sequence {§;} C D such that limg_,o || = 1, the sequence
{vie.} converges to zero uniformly on compact subsets of D.

Let m > n. For any f € H(D), applying Lemma 2.1, we get

()™
0

m—1

2l = S

k=0

+sup(1 — [
zeD

()" o

~—

3

- su]g(l — |22yt F9(2)g(2)|.
zEe j

Il
)

Theorem 3.2. Let 1 < p < o0 and m,n € N such that m > n. Then
the following conditions are equivalent:
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a) The operator I% : HP = V,, is bounded.
b) For each 0 <i <m — 1, the operator Ig’i : HP — V,, is bounded.
c) For each 0 <i<m—1, sup,cp(l — ]z\Z)mfnfifiﬂ\gi(z)\ < 00.

Vn(0 < i@ < m — 1) are bounded, hence the operator I% : HP =V, is
bounded.

(b)< (c¢) Theorem 2.3.

(a)= (c) Let the operator 1% H? — V, be bounded. For each
i€{0,---,m—1} and £ € D— {0}, let v; ¢ be function found in Lemma
3.1, by using (3), we have

Proof. (b)= (a) Since I3 = Z;’i_ol I;n’i and all operators I;?’i : HP —

m—1
173 (v )y, = sup(L — |21 37 0l (2)g(2)] (4)
zeD =0
> (1= [P Y 0 (©)gi(©)]
J

> (1— [e2)™ " ol ()llg:(©)]

3

I
o

= 11y )

— &1 — )T g0,

Applying Lemma 3.1(b), we get

—m—i—L141
sup(L — €)™ 70 T gi(€)] < 115 (vie) v, < 1 sup [[viell v < oo.
£eb £eb

The proof is complete. O

Theorem 3.3. Let 1 < p < oo and m,n € N such that m > n. Then
the following conditions are equivalent:

a) The operator I% : HP — V,, 1s compact.

b) For each 0 <i <m — 1, the operator I;?’i : HP — 'V, is compact.
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-1
¢) For each 0 <i<m—1, lim,;(1—[2[%)™ "7 |g;(2)] = 0.

Proof. (b)= (a) It is clear when for each 0 < i < m — 1, the operator
Ig"" : HP — V,, is compact, then 1% = Z?:ol Ig"" is compact.

(b)< (c) Theorem 2.5.

(a)= (c) Assume that the operator I H? — V,, is compact. For
each i € {0,--- ,m—1} and £ € D — {0}, the sequence {v; ¢} is bounded
and converges to zero uniformly on compact subsets of D when |£| tends
to 1 (Lemma 3.1), so by using Lemma 2.4, lim¢_,; HI%”(UM)H,1 = 0.
Now it is enough to let |£| tends to 1 in the inequality (4), therefore
limjg1 (1 — |§]2)m7"7i7%+1]gi(§)\ = 0. The proof is complete.  [J

Let m € N, @ = (ag, -+ ,am—1) € C™ and g € H(D). Applying
Theorems 3.2 and 3.3, we obtain similar results for the Chalmoukis
operator

I f(z)=1" (fg(”) +tarflgn V44 an_lf("’l)g’)

acting from the Hardy space into iterated weighted-type spaces.

Corollary 3.4. Let 1 <p<oo,meN, a= (ag, - ,am-1) € C"™ and
g€ HD). Then

a) the operator 1%« HP — V) is bounded if and only if
m 1 m—n—i—Li41
g€ ﬂ Vi P

=0

b) the operator 1%« HP — Vy is compact if and only if

m—1 L
m—n—z—;—l—l
g € ﬂ V., 00 .
=0

Remark 3.5. By choosing suitable parameters m,p,n and 7, the re-
sults obtained in this paper, can be stated for some well-known operators
and spaces.
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