Common Fixed Point Theorem in Metric Spaces of Fisher and Sessa

A. R. Valipour Baboli
Karaj Branch, Islamic Azad University
M. B. Ghaemi*
Iran University of Science and Technology

Abstract

In this paper it is shown that T and I have a unique common fixed point on a compact subset C of a metric space X, where T and I are two self maps on C, I is non-expansive and the pair (T, I) is weakly commuting. In [3] Fisher and Sessa verified the same problem but with C closed subset. Further we show this result by replacing compatibility with weakly commutativity of pair (T, I) and continuity with non-expansiveness of I.

AMS Subject Classification: $47 \mathrm{H} 09 ; 47 \mathrm{H} 10$
Keywords and Phrases: Common fixed point, commuting and compatible maps, compact space

1. Introduction

Many authors have written some papers in which two self maps on a closed convex set have a unique common fixed point for example [1], [3] and [9]. In 1986, Fisher and Sessa proved a fixed point theorem for two self maps on a subset of a Banach space which is closed convex(see [3]). Sessa in [9] generalized a result of Das and Naik [1]. They defined

[^0]two maps T and I on a metric space (X, d) into itself to be weakly commuting iff
\[

$$
\begin{equation*}
d(T I x, I T x) \leqslant d(I x, T x) \tag{1}
\end{equation*}
$$

\]

for all x in X.
A self map I on a metric space X is said to be non-expansive provided that

$$
d(I x, I y) \leqslant d(x, y)
$$

for all x, y in X. Two commuting maps clearly satisfy (1) but the converse is not generally true as is shown in the following example.

Example 1.1. Let $X=[0,1]$, and suppose X is endowed with the Euclidean metric. Define T and I by $T x=\frac{x}{x+4}$ and $I x=\frac{x}{2}$ for any x in X. Then

$$
\begin{aligned}
d(T I x, I T x) & =\frac{x}{x+8}-\frac{x}{2 x+8}=\frac{x^{2}}{2(x+8)(x+4)} \\
& \leqslant \frac{x^{2}+2 x}{2(x+4)}=\frac{x}{2}-\frac{x}{x+4}=d(I x, T x)
\end{aligned}
$$

But for any $x \neq 0, T I x=\frac{x}{x+8}>\frac{x}{2 x+8}=I T x$.
Fisher and Sessa proved the following theorem.
Theorem 1.2. ([3]) Let T and I be two weakly commuting mappings from C into itself satisfying the inequality
$d(T(x), T(y)) \leqslant a d(I(x), I(y))+(1-a) \max \{d(T(x), I(x)), d(T(y), I(y))\}$
for all x, y in C where $0<a<1$ and C is a closed convex subset of a Banach space X. If I is linear and non-expansive on C and further $I C$ contains TC, then Tand I have a unique common fixed point in C.

2. Main Results

Our aim is to modify of Theorem 1.2.

Theorem 2.1. Let Tand I be two weakly commuting self maps on C satisfying (2), where C is a compact subset of the Banach space X. If I is non-expansive on C and IC contains $T C$, then T and I have a unique common fixed point in C.

Proof. Let $x=x_{0}$ be an arbitrary point in C and for any $n \in N$ choose x_{n+1} such that $T x_{n}=I x_{n+1}$. Since C is compact so $\left\{x_{n}\right\}$ has a convergence subsequence $\left\{y_{k}\right\}_{k=1}^{\infty}$ (converging to x^{*} for some $x^{*} \in C$. In the following we show each y_{k} with y_{n}^{k} where it represent k 'th member of $\left\{y_{n}\right\}$ and n 'th element of $\left\{x_{n}\right\}$). Now we show

$$
d\left(T x^{*}, I x^{*}\right)=0
$$

$$
\begin{aligned}
d\left(T x^{*}, I x^{*}\right) & \leqslant \overline{\lim } d\left(T x^{*}, T y_{n}^{k}\right)+\overline{\lim } d\left(T y_{n}^{k}, I y_{n}^{k}\right)+\overline{\lim } d\left(I y_{n}^{k}, I x^{*}\right) \\
& \leqslant \overline{\lim } d\left(I x^{*}, I y_{n}^{k}\right)+\overline{\lim }(1-a) \max \left\{d\left(T x^{*}, I x^{*}\right), d\left(T y_{n}^{k}, I y_{n}^{k}\right)\right\} \\
& +\overline{\lim } d\left(T y_{n}^{k}, I y_{n}^{k}\right)+\overline{\lim } d\left(I y_{n}^{k}, I x^{*}\right)
\end{aligned}
$$

There are two cases if

$$
\overline{\lim } d\left(T x^{*}, I x^{*}\right) \geqslant \overline{\lim } d\left(T y_{n}^{k}, I y_{n}^{k}\right)
$$

then

$$
\begin{aligned}
a d\left(T x^{*}, I x^{*}\right) & \leqslant(a+1) \overline{\lim } d\left(x^{*}, y_{n}^{k}\right)+\overline{\lim } d\left(T y_{n}^{k}, I y_{n}^{k}\right) \\
& =\overline{\lim } d\left(T y_{n}^{k}, I y_{n}^{k}\right) \\
& \leqslant \overline{\lim } d\left(T y_{n}^{k}, I x_{n+1}\right)+\overline{\lim } d\left(I x_{n+1}, I y_{n}^{k}\right) \\
& \leqslant \overline{\lim } d\left(x_{n+1}, y_{n}^{k}\right)=0
\end{aligned}
$$

and $\quad \overline{\lim } d\left(T y_{n}^{k}, I y_{n}^{k}\right) \geqslant d\left(T x^{*}, I x^{*}\right)$, then

$$
\begin{aligned}
d\left(T x^{*}, I x^{*}\right) & \leqslant(a+1) \overline{\lim } d\left(x^{*}, y_{n}^{k}\right)+(2-a) \overline{\lim } d\left(T y_{n}^{k}, I y_{n}^{k}\right) \\
& \left.=(2-a) \overline{\lim } d\left(T y_{n}^{k}, I y_{n}^{k}\right) \leqslant(2-a) \overline{\lim } d\left(T y_{n}^{k}, I x_{n+1}\right)+\overline{\lim } d\left(I x_{n+1}, I y_{n}^{k}\right)\right) \\
& \leqslant(2-a) \overline{\lim } d\left(x_{n+1}, y_{n}^{k}\right)=0 .
\end{aligned}
$$

So

$$
d\left(T x^{*}, I x^{*}\right)=0
$$

Set
$K_{n}=\left\{x \in C: d(T x, I x) \leqslant \frac{1}{n}\right\}$ and $H_{n}=\left\{x \in C: d(T x, I x) \leqslant \frac{a+1}{a \cdot n}\right\}$.
Clearly for each $n, K_{n} \neq \emptyset$ and $K_{1} \supseteq K_{2} \supseteq \ldots \supseteq K_{n} \supseteq \ldots$ Thus each of the sets $\overline{T K_{n}}$, where $\overline{T K_{n}}$ denotes the closure of $T K_{n}$, must be nonempty for $n=1,2, \ldots$ and $\overline{T K_{1}} \supseteq \overline{T K_{2}} \supseteq \ldots \supseteq \overline{T K_{n}} \supseteq \ldots$.
Further, for arbitrary $x, y \in K_{n}$,

$$
\begin{aligned}
d(T x, T y) & \leqslant a d(I x, I y)+(1-a) \max \{d(T x, I x), d(T y, I y)\} \\
& \leqslant a[d(I x, T x)+d(T x, T y)+d(T y, I y)]+\frac{(1-a)}{n} \leqslant \frac{(a+1)}{n}+a d(T x, T y)
\end{aligned}
$$

and so

$$
d(T x, T y) \leqslant \frac{(a+1)}{(1-a) n}
$$

Thus
$\lim _{n \longrightarrow \infty} \operatorname{diam}\left(T K_{n}\right)=\lim _{n \longrightarrow \infty} \operatorname{diam}\left(\overline{T K_{n}}\right)=0$.
It follows, by a well known result of Cantor (see, e.g [2],p 156) the intersection $\bigcap_{n=1}^{\infty} \overline{T K_{n}}$ contains exactly one point w. Now let y be an arbitrary point in $\overline{T K_{n}}$. Then for arbitrary $\epsilon>0$ there is a point y^{\prime} in K_{n} such that

$$
\begin{equation*}
d\left(T y^{\prime}, y\right)<\epsilon \tag{3}
\end{equation*}
$$

Using the weak commutativity of T and I non-expansiveness of I and applying (1),(2) and (3) we have

$$
\begin{aligned}
d(T y, I y) & \leqslant d\left(T y, T I y^{\prime}\right)+d\left(T I y^{\prime}, I T y^{\prime}\right)+d\left(I T y^{\prime}, I y\right) \\
& \leqslant a d\left(I y, I^{2} y^{\prime}\right)+(1-a) \max \left\{d(T y, I y), d\left(T I y^{\prime}, I^{2} y^{\prime}\right)\right\} \\
& +d\left(T I y^{\prime}, I T y^{\prime}\right)+d\left(I T y^{\prime}, I y\right) \\
& \leqslant a d\left(y, I y^{\prime}\right)+(1-a) \max \left\{d(T y, I y), d\left(T I y^{\prime}, I T y^{\prime}\right)+d\left(I T y^{\prime}, I^{2} y^{\prime}\right)\right\} \\
& \leqslant a\left[d\left(y, T y^{\prime}\right)+d\left(T y^{\prime}, I y^{\prime}\right)\right]+(1-a) \max \left\{d(T y, I y), d\left(I y^{\prime}, T y^{\prime}\right)\right. \\
& \left.+d\left(T y^{\prime}, I y^{\prime}\right)\right\}+\frac{1}{n}+\epsilon \\
& \leqslant a\left(\epsilon+\frac{1}{n}\right)+(1-a) \max \left\{d(T y, I y), \frac{1}{n}+\frac{1}{n}\right\}+\frac{1}{n}+\epsilon \\
& \leqslant(1+a)\left(\epsilon+\frac{1}{n}\right)+(1-a) \max \left\{d(T y, I y), \frac{2}{n}\right\} .
\end{aligned}
$$

Since ϵ is arbitrary it follows that

$$
\begin{equation*}
d(T y, I y) \leqslant \frac{(a+1)}{n}+(1-a) \max \left\{d(T y, I y), \frac{2}{n}\right\} \tag{4}
\end{equation*}
$$

There are two possible cases for the max-part in(4).
If $d(T y, I y) \leqslant \frac{2}{n}$,then we have $d(T y, I y) \leqslant \frac{2}{n}<\frac{(a+1)}{a n}$ directly.
But if $d(T y, I y)>\frac{2}{n},(4)$ implies $d(T y, I y) \leqslant \frac{a+1}{n}+(1-a) d(T y, I y)$
so so

$$
d(T y, I y) \leqslant \frac{(a+1)}{a \cdot n} .
$$

In both cases we see $d(T y, I y) \leqslant \frac{a+1}{a n}$ and so y lies in H_{n}.
Thus $\overline{T K_{n}} \subseteq H_{n}$ and so the point w must be in H_{n} for $n=1,2, \ldots$. It follows that

$$
d(T w, I w) \leqslant \frac{(a+1)}{a \cdot n}
$$

for $n=1,2, \ldots$ and so $T w=I w$.
Since (1) holds, we also have $I T w=T I w=T^{2} w$.
Thus
$d\left(T^{2} w, T w\right) \leqslant a d(I T w, I w)+(1-a) \max \left\{d\left(T^{2} w, I T w\right), d(T w, I w)\right\}=$ $a d\left(T^{2} w, T w\right)$, so $T^{2} w=T w$ and $T w=w^{\prime}$ is a fixed point of T for $a<1$. Further, $I w^{\prime}=I T w=T I w=T T w=T w^{\prime}=w^{\prime}$ and so w^{\prime} is also a fixed point of I. uniqueness, suppose $w^{\prime \prime}$ is a common fixed point too Then

$$
\begin{aligned}
d\left(w^{\prime}, w^{\prime \prime}\right) & =d\left(T w^{\prime}, T w^{\prime \prime}\right) \\
& \leqslant a d\left(I w^{\prime}, I w^{\prime \prime}\right)+(1-a) \max \left\{d\left(T w^{\prime}, I w^{\prime}\right), d\left(T w^{\prime \prime}, I w^{\prime \prime}\right)\right\} \\
& \leqslant a d\left(w^{\prime}, w^{\prime \prime}\right)
\end{aligned}
$$

and the uniqueness of the common fixed point follows since $a<1$.
The following example satisfies Theorem 2.1.Notice that it does not satisfy conditions in Theorem 1.2 because C is non-convex.

Example 2.2. Choosing $C=\left[0, \frac{1}{2}\right] \bigcup\{1\}, I x=\frac{x}{2}$ and $T x=\frac{x}{x+4}$ then $T C=\left[0, \frac{1}{9}\right] \bigcup\left\{\frac{1}{5}\right\} \subseteq\left[0, \frac{1}{4}\right] \bigcup\left\{\frac{1}{2}\right\}=I C I$ is non-expansive and the pair (I, T) is weakly commuting, where both of them are self maps. Further I and T have a unique common fixed point which we know it is 0 . The following corollary is a trivial conclusion of Theorem 2.1.

Corollary 2.3. Let T be a mapping from C into itself satisfying the inequality
$d(T(x), T(y)) \leqslant a d(I(x), I(y))+(1-a) \max \{d(T(x), I(x)), d(T(y), I(y))\}$,
for all $x, y \in C$, where C is a compact sub set of the Banach space X, I is the identity map on C, and $0<a<1$. Then T has a unique fixed point.

We note that the weak commutativity in Theorem 2.1 is a necessary condition. It suffices to consider the following example.

Example 2.4. Let $X=R$ and let $C=[0,1]$. Define T and I by $T x=\frac{1}{3}, I x=\frac{x}{2}$ for any $x \in C$, it is clear that all the conditions of Theorem 2.1 are satisfied except weak commutativity since for $x=\frac{1}{2}, d\left(T I\left(\frac{1}{2}\right), I T\left(\frac{1}{2}\right)\right)=\frac{1}{6}>\frac{1}{12}=d\left(T\left(\frac{1}{2}\right), I\left(\frac{1}{2}\right)\right)$. However T and I do not have a common fixed point.
In 1990, G. Jungck extended a fixed point theorem of Fisher and Sessa by replacing the requirements of weak commutativity and non-expansiveness by compatibility and continuity respectively.
G.Jungck[7] defined two self maps to be compatible iff whenever $\left(x_{n}\right)$ is a sequence in X such that
$T x_{n}, I x_{n} \longrightarrow t$ for some $t \in X$, then $d\left(I T x_{n}, T I x_{n}\right) \longrightarrow 0$. Clearly, commuting maps are weakly commuting, and weakly commuting maps are compatible. Also non-expansiveness requires continuity of a map.

Lemma 2.5. (Proposition 2.2, [7]). Let $f, g:(X, d) \longrightarrow(X, d)$ be compatible.

1. If $f(t)=g(t)$, then $f g(t)=g f(t)$.
2. suppose that $\lim _{n} f\left(x_{n}\right)=\lim _{n} g\left(x_{n}\right)=t$ for some t in X.
(a) If f is continuous at $t, \lim _{n} g f\left(x_{n}\right)=f(t)$.
(b) If f and g are continuous at t, then $f(t)=g(t)$ and $f g(t)=g f(t)$.

Lemma 2.6. ([6]). Let T and I be compatible self maps of a metric space (X, d) where I is continuous. Suppose there exist real number $r>0$ and $a \in(0,1)$ such that for all $x, y \in X$,

$$
\begin{equation*}
d(T x, T y) \leqslant r d(I x, I y)+\operatorname{amax}\{d(T x, I x), d(T y, I y)\} \tag{5}
\end{equation*}
$$

Then $T w=I w$ for some $w \in X$ iff $A=\bigcap\left\{c l\left(T\left(K_{n}\right)\right): n \in N\right\} \neq \emptyset$, where $k_{n}=\left\{x \in X: d(T x, I x) \leqslant \frac{1}{n}\right\}$.
Using Lemmas 2.5 and 2.6 we have the following corollary
Corollary 2.7. Let T and I be two compatible self maps on a compact subset C of a complete metric space X Suppose that I is continuous linear and $T C \subseteq I C$ If there exists $a \in(0,1)$ such that T and I satisfy the following inequality
$d(T(x), T(y)) \leqslant a d(I(x), I(y))+(1-a) \max \{d(T(x), I(x)), d(T(y), I(y))\}$, for all $x, y \in C$. Then Tand I have a unique common fixed point in C.

Example 2.8. Let $X=[0,1]$ and $C=[0,1]$ with the Euclidean metric and define I and T by $I x=\frac{x}{2}, T x=\frac{x}{x+3}$ for any $x \in C$ Now C is compact and $I, T: C \longrightarrow C, T C=\left[0, \frac{1}{4}\right] \subset\left[0, \frac{1}{2}\right]=I C$ and I is linear and continuous. Clearly I and T are compatible on C and so satisfy in inequality(2) Then $x=0$ is a unique common fixed point in C.

References

[1] K. M. Das and K. V. Naik, Common fixed point theorem for commuting maps on a metric space, Proc., Amer. Math. Soc., 77 (1979), 369-373.
[2] J. Dugundij and A. Granas, Fixed Point Theory I, Polish Scientific Publisheres, Warsawa, 1982.
[3] B. Fisher and S. Sessa, On a fixed point theorem of Gregus, Internat. J. Math. Sci., 9 (1986), 23-28.
[4] B. Fisher, Common Fixed Point on a Banach space, C. Huni Juan, J., XI., (1982), 12-15.
[5] J. r. M. Gregus, A fixed point theorem in Banach space, Boll. Un. Mat. Ital. 5 (17-A) (1980), 193-198.
[6] G. Jungck, Common fixed point for commuting and compatible maps on compacta, Proceedings of the American Mathematical Society, 103 (1988), 977-983.
[7] G. Jungck, Commpatible mappings and common fixed points, Internet. J. Math. Sci., 9 (1986), 771-779.
[8] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004-1006.
[9] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math., 32 (46) (1982), 149-153.

Alireza Valipour Baboli

Department of Mathematics
College of Basic Sciences
Ph.D Student of Mathematics
Karaj Branch, Islamic Azad Univercity
Alborz, Iran
E-mail: a.valipour@umz.ac.ir

Mohammad Bagher Ghaemi
Department of Mathematics
Science and Technology
Associate Professor of Mathematics
Iran Univercity
Tehran, Iran
E-mail: mghaemi@iust.ac.ir

[^0]: Received: January 2015; Accepted: May 2015

 * Corresponding author

