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Abstract. In this paper it is shown that T and I have a unique
common fixed point on a compact subset C of a metric space X, where
T and I are two self maps on C, I is non-expansive and the pair (T, I)
is weakly commuting. In [3] Fisher and Sessa verified the same problem
but with C closed subset. Further we show this result by replacing
compatibility with weakly commutativity of pair (T, I) and continuity
with non-expansiveness of I.
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1. Introduction

Many authors have written some papers in which two self maps on a
closed convex set have a unique common fixed point for example [1], [3]
and [9]. In 1986, Fisher and Sessa proved a fixed point theorem for
two self maps on a subset of a Banach space which is closed convex(see
[3]). Sessa in [9] generalized a result of Das and Naik [1]. They defined
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two maps T and I on a metric space (X, d) into itself to be weakly
commuting iff

d(TIx, ITx)  d(Ix, Tx), (1)

for all x in X.
A self map I on a metric space X is said to be non-expansive provided
that

d(Ix, Iy)  d(x, y),

for all x, y in X. Two commuting maps clearly satisfy (1) but the con-
verse is not generally true as is shown in the following example.

Example 1.1. Let X = [0, 1], and suppose X is endowed with the
Euclidean metric. Define T and I by Tx =

x

x+ 4
and Ix =

x

2
for any x

in X. Then

d(TIx, ITx) =
x

x+ 8
− x

2x+ 8
=

x2

2(x+ 8)(x+ 4)

 x2 + 2x
2(x+ 4)

=
x

2
− x

x+ 4
= d(Ix, Tx).

But for any x = 0, T Ix = x

x+ 8
>

x

2x+ 8
= ITx.

Fisher and Sessa proved the following theorem.

Theorem 1.2. ([3]) Let T and I be two weakly commuting mappings
from C into itself satisfying the inequality

d(T (x), T (y))  ad(I(x), I(y)) + (1− a)max{d(T (x), I(x)), d(T (y), I(y))} (2)

for all x, y in C where 0 < a < 1 and C is a closed convex subset of a
Banach space X. If I is linear and non-expansive on C and further IC
contains TC, then Tand I have a unique common fixed point in C.

2. Main Results

Our aim is to modify of Theorem 1.2.
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Theorem 2.1. Let Tand I be two weakly commuting self maps on C

satisfying (2), where C is a compact subset of the Banach space X. If I
is non-expansive on C and IC contains TC, then T and I have a unique
common fixed point in C.

Proof. Let x = x0 be an arbitrary point in C and for any n ∈ N

choose xn+1 such that Txn = Ixn+1. Since C is compact so {xn} has a
convergence subsequence {yk}∞k=1 (converging to x∗ for some x∗ ∈ C. In
the following we show each yk with ykn where it represent k’th member
of {yn} and n’th element of {xn}). Now we show

d(Tx∗, Ix∗) = 0.

d(Tx∗, Ix∗)  limd(Tx∗, T ykn) + limd(Tykn, Iy
k
n) + limd(Iykn, Ix

∗)

 limad(Ix∗, Iykn) + lim(1− a)max{d(Tx∗, Ix∗), d(Tykn, Iykn)}
+ limd(Tykn, Iy

k
n) + limd(Iykn, Ix

∗).

There are two cases if

limd(Tx∗, Ix∗)  limd(Tykn, Iy
k
n),

then

ad(Tx∗, Ix∗)  (a+ 1)limd(x∗, ykn) + limd(Tykn, Iy
k
n)

= limd(Tykn, Iy
k
n)

 limd(Tykn, Ixn+1) + limd(Ixn+1, Iykn)

 limd(xn+1, ykn) = 0,

and limd(Tykn, Iy
k
n)  d(Tx∗, Ix∗), then

d(Tx∗, Ix∗)  (a+ 1)limd(x∗, ykn) + (2− a)limd(Tykn, Iy
k
n)

= (2− a)limd(Tykn, Iy
k
n)  (2− a)(limd(Tykn, Ixn+1) + limd(Ixn+1, Iykn))

 (2− a)limd(xn+1, ykn) = 0.

So
d(Tx∗, Ix∗) = 0,
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Set
Kn = {x ∈ C : d(Tx, Ix)  1

n
} and Hn = {x ∈ C : d(Tx, Ix)  a+ 1

a.n
}.

Clearly for each n,Kn = ∅ and K1 ⊇ K2 ⊇ ... ⊇ Kn ⊇ .... Thus each
of the sets TKn, where TKn denotes the closure of TKn, must be non-
empty for n = 1, 2, ... and TK1 ⊇ TK2 ⊇ ... ⊇ TKn ⊇ ....
Further, for arbitrary x, y ∈ Kn,

d(Tx, Ty)  ad(Ix, Iy) + (1− a)max{d(Tx, Ix), d(Ty, Iy)}

 a[d(Ix, Tx) + d(Tx, Ty) + d(Ty, Iy)] +
(1− a)
n

 (a+ 1)
n

+ ad(Tx, Ty)

and so
d(Tx, Ty)  (a+ 1)

(1− a)n
,

Thus
limn−→∞ diam(TKn) =limn−→∞ diam(TKn) = 0.
It follows, by a well known result of Cantor (see, e.g [2],p 156) the
intersection

∞
n=1 TKn contains exactly one point w. Now let y be an

arbitrary point in TKn. Then for arbitrary  > 0 there is a point y in
Kn such that d(Ty, y) < . (3)

Using the weak commutativity of T and I non-expansiveness of I and
applying (1),(2) and (3) we have

d(Ty, Iy)  d(Ty, TIy) + d(TIy, ITy) + d(ITy, Iy)

 ad(Iy, I2y) + (1− a)max{d(Ty, Iy), d(TIy, I2y)}
+ d(TIy, ITy) + d(ITy, Iy)

 ad(y, Iy) + (1− a)max{d(Ty, Iy), d(TIy, ITy) + d(ITy, I2y)}

 a[d(y, Ty) + d(Ty, Iy)] + (1− a)max{d(Ty, Iy), d(Iy, T y)

+ d(Ty, Iy)}+ 1
n
+ 

 a(+
1
n
) + (1− a)max{d(Ty, Iy), 1

n
+
1
n
}+ 1

n
+ 

 (1 + a)(+
1
n
) + (1− a)max{d(Ty, Iy), 2

n
}.
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applying (1),(2) and (3) we have

d(Ty, Iy)  d(Ty, TIy) + d(TIy, ITy) + d(ITy, Iy)

 ad(Iy, I2y) + (1− a)max{d(Ty, Iy), d(TIy, I2y)}
+ d(TIy, ITy) + d(ITy, Iy)

 ad(y, Iy) + (1− a)max{d(Ty, Iy), d(TIy, ITy) + d(ITy, I2y)}

 a[d(y, Ty) + d(Ty, Iy)] + (1− a)max{d(Ty, Iy), d(Iy, T y)

+ d(Ty, Iy)}+ 1
n
+ 

 a(+
1
n
) + (1− a)max{d(Ty, Iy), 1

n
+
1
n
}+ 1

n
+ 

 (1 + a)(+
1
n
) + (1− a)max{d(Ty, Iy), 2

n
}.
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Since ε is arbitrary it follows that

d(Ty, Iy) 6
(a+ 1)
n

+ (1− a)max{d(Ty, Iy), 2
n
}. (4)

There are two possible cases for the max-part in(4).

If d(Ty, Iy) 6
2
n

,then we have d(Ty, Iy) 6
2
n
<

(a+ 1)
an

directly.

But if d(Ty, Iy) >
2
n

,(4) implies d(Ty, Iy) 6
a+ 1
n

+ (1− a)d(Ty, Iy)
so

d(Ty, Iy) 6
(a+ 1)
a.n

.

In both cases we see d(Ty, Iy) 6
a+ 1
an

and so y lies in Hn.

Thus TKn ⊆ Hn and so the point w must be in Hn for n = 1, 2, ....
It follows that

d(Tw, Iw) 6
(a+ 1)
a.n

,

for n = 1, 2, ... and so Tw = Iw.
Since (1) holds, we also have ITw = TIw = T 2w.
Thus
d(T 2w, Tw) 6 ad(ITw, Iw) + (1 − a)max{d(T 2w, ITw), d(Tw, Iw)} =
ad(T 2w, Tw), so T 2w = Tw and Tw = w′ is a fixed point of T for a < 1.
Further, Iw′ = ITw = TIw = TTw = Tw′ = w′ and so w′ is also a
fixed point of I. uniqueness, suppose w′′ is a common fixed point too
Then

d(w′, w′′) = d(Tw′, Tw′′)

6 ad(Iw′, Iw′′) + (1− a)max{d(Tw′, Iw′), d(Tw′′, Iw′′)}
6 ad(w′, w′′)

and the uniqueness of the common fixed point follows since a < 1. �

The following example satisfies Theorem 2.1.Notice that it does not sat-
isfy conditions in Theorem 1.2 because C is non-convex.
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Example 2.2. Choosing C = [0,
1
2
]

{1}, Ix = x

2
and Tx =

x

x+ 4
then

TC = [0,
1
9
]

{1
5
} ⊆ [0,

1
4
]

{1
2
} = IC I is non-expansive and the pair

(I, T ) is weakly commuting, where both of them are self maps. Further
I and T have a unique common fixed point which we know it is 0. The
following corollary is a trivial conclusion of Theorem 2.1.

Corollary 2.3. Let T be a mapping from C into itself satisfying the
inequality

d(T (x), T (y))  ad(I(x), I(y)) + (1− a)max{d(T (x), I(x)), d(T (y), I(y))},

for all x, y ∈ C, where C is a compact sub set of the Banach space X ,
I is the identity map on C , and 0 < a < 1. Then T has a unique fixed
point.

We note that the weak commutativity in Theorem 2.1 is a necessary
condition. It suffices to consider the following example.

Example 2.4. Let X = R and let C = [0, 1]. Define T and I by

Tx =
1
3
, Ix =

x

2
for any x ∈ C, it is clear that all the conditions of

Theorem 2.1 are satisfied except weak commutativity since for

x =
1
2
, d(TI(

1
2
), IT (

1
2
)) =

1
6
>

1
12
= d(T (

1
2
), I(

1
2
)). However T and I

do not have a common fixed point.
In 1990, G. Jungck extended a fixed point theorem of Fisher and Sessa by
replacing the requirements of weak commutativity and non-expansiveness
by compatibility and continuity respectively.
G.Jungck[7] defined two self maps to be compatible iff whenever (xn) is
a sequence in X such that
Txn, Ixn −→ t for some t ∈ X, then d(ITxn, T Ixn) −→ 0. Clearly,
commuting maps are weakly commuting, and weakly commuting maps
are compatible. Also non-expansiveness requires continuity of a map.

Lemma 2.5. (Proposition 2.2, [7]). Let f, g : (X, d) −→ (X, d) be com-
patible.
1. If f(t) = g(t), then fg(t) = gf(t).
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2. suppose that limnf(xn) = limng(xn) = t for some t in X.
(a) If f is continuous at t , limngf(xn) = f(t).
(b) If f and g are continuous at t, then f(t) = g(t) and fg(t) = gf(t).

Lemma 2.6. ([6]). Let T and I be compatible self maps of a metric space
(X, d) where I is continuous. Suppose there exist real number r > 0 and
a ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty)  rd(Ix, Iy) + amax{d(Tx, Ix), d(Ty, Iy)} (5)

Then Tw = Iw for some w ∈ Xiff A =

{cl(T (Kn)) : n ∈ N} = ∅,

where kn = {x ∈ X : d(Tx, Ix)  1
n
}.

Using Lemmas 2.5 and 2.6 we have the following corollary

Corollary 2.7. Let T and I be two compatible self maps on a compact
subset C of a complete metric space X Suppose that I is continuous
linear and TC ⊆ IC If there exists a ∈ (0, 1) such that T and I satisfy
the following inequality

d(T (x), T (y))  ad(I(x), I(y)) + (1− a)max{d(T (x), I(x)), d(T (y), I(y))},

for all x, y ∈ C. Then Tand I have a unique common fixed point in C.

Example 2.8. Let X = [0, 1] and C = [0, 1] with the Euclidean metric
and define I and T by Ix =

x

2
, Tx =

x

x+ 3
for any x ∈ C Now C is

compact and I, T : C −→ C, TC = [0,
1
4
] ⊂ [0, 1

2
] = IC and I is linear

and continuous. Clearly I and T are compatible on C and so satisfy in
inequality(2) Then x = 0 is a unique common fixed point in C.
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