Common Fixed Point Theorem
in Metric Spaces of Fisher and Sessa

A. R. Valipour Baboli
Karaj Branch, Islamic Azad University

M. B. Ghaemi*
Iran University of Science and Technology

Abstract. In this paper it is shown that T and I have a unique common fixed point on a compact subset C of a metric space X, where T and I are two self maps on C, I is non-expansive and the pair (T, I) is weakly commuting. In [3] Fisher and Sessa verified the same problem but with C closed subset. Further we show this result by replacing compatibility with weakly commutativity of pair (T, I) and continuity with non-expansiveness of I.

AMS Subject Classification: 47H09; 47H10

Keywords and Phrases: Common fixed point, commuting and compatible maps, compact space

1. Introduction

Many authors have written some papers in which two self maps on a closed convex set have a unique common fixed point for example [1], [3] and [9]. In 1986, Fisher and Sessa proved a fixed point theorem for two self maps on a subset of a Banach space which is closed convex(see [3]). Sessa in [9] generalized a result of Das and Naik [1]. They defined
two maps T and I on a metric space (X,d) into itself to be weakly commuting iff
\[d(TIx, ITx) \leq d(Ix, Tx), \]
for all x in X.

A self map I on a metric space X is said to be non-expansive provided that
\[d(Ix, Iy) \leq d(x, y), \]
for all x, y in X. Two commuting maps clearly satisfy (1) but the converse is not generally true as is shown in the following example.

Example 1.1. Let $X = [0,1]$, and suppose X is endowed with the Euclidean metric. Define T and I by $Tx = \frac{x}{x+4}$ and $Ix = \frac{x}{2}$ for any x in X. Then
\[
d(TIx, ITx) = \frac{x}{x+8} - \frac{x}{2x+8} = \frac{x^2}{2(x+8)(x+4)} \leq \frac{x^2+2x}{2(x+4)} = \frac{x}{2} - \frac{x}{x+4} = d(Ix, Tx).
\]

But for any $x \neq 0$, $TIx = \frac{x}{x+8} > \frac{x}{2x+8} = ITx$.

Fisher and Sessa proved the following theorem.

Theorem 1.2. ([3]) Let T and I be two weakly commuting mappings from C into itself satisfying the inequality
\[d(T(x), T(y)) \leq ad(I(x), I(y)) + (1-a)\max\{d(T(x), I(x)), d(T(y), I(y))\} \]

for all x, y in C where $0 < a < 1$ and C is a closed convex subset of a Banach space X. If I is linear and non-expansive on C and further IC contains TC, then T and I have a unique common fixed point in C.

2. **Main Results**

Our aim is to modify of Theorem 1.2.
Theorem 2.1. Let T and I be two weakly commuting self maps on C satisfying (2), where C is a compact subset of the Banach space X. If I is non-expansive on C and IC contains TC, then T and I have a unique common fixed point in C.

Proof. Let $x = x_0$ be an arbitrary point in C and for any $n \in N$ choose x_{n+1} such that $Tx_n = Ix_{n+1}$. Since C is compact so $\{x_n\}$ has a convergence subsequence $\{y_k\}_{k=1}^{\infty}$ (converging to x^* for some $x^* \in C$. In the following we show each y_k with y_k^* where it represent k’th member of $\{y_n\}$ and n’th element of $\{x_n\}$). Now we show

$$d(Tx^*, Ix^*) = 0.$$

$$d(Tx^*, Ix^*) \leq \limd(Tx^*, Ty^k_n) + \limd(Ty^k_n, Iy^k_n) + \limd(Iy^k_n, Ix^*)$$

$$\leq \limd(Ix^*, Iy^k_n) + \lim(1-a) \max\{d(Tx^*, Ix^*), d(Ty^k_n, Iy^k_n)\}$$

$$+ \limd(Ty^k_n, Iy^k_n) + \limd(Iy^k_n, Ix^*).$$

There are two cases if

$$\limd(Tx^*, Ix^*) \geq \limd(Ty^k_n, Iy^k_n),$$

then

$$ad(Tx^*, Ix^*) \leq (a+1)\limd(x^*, y^k_n) + \limd(Ty^k_n, Iy^k_n)$$

$$= \limd(Ty^k_n, Iy^k_n)$$

$$\leq \limd(Ty^k_n, Ix_{n+1}) + \limd(Ix_{n+1}, Iy^k_n)$$

$$\leq \limd(x_{n+1}, y^k_n) = 0,$$

and

$$\limd(Ty^k_n, Iy^k_n) \geq d(Tx^*, Ix^*),$$

then

$$d(Tx^*, Ix^*) \leq (a+1)\limd(x^*, y^k_n) + (2-a)\limd(Ty^k_n, Iy^k_n)$$

$$= (2-a)\limd(Ty^k_n, Iy^k_n)$$

$$\leq (2-a)(\limd(Ty^k_n, Ix_{n+1}) + \limd(Ix_{n+1}, Iy^k_n))$$

$$\leq (2-a)\limd(x_{n+1}, y^k_n) = 0.$$

So

$$d(Tx^*, Ix^*) = 0,$$
Set
\[K_n = \{ x \in C : d(Tx, Ix) \leq \frac{1}{n} \} \text{ and } H_n = \{ x \in C : d(Tx, Ix) \leq \frac{a + 1}{a_n} \} . \]
Clearly for each \(n, K_n \neq \emptyset \) and \(K_1 \supseteq K_2 \supseteq \ldots \supseteq K_n \supseteq \ldots \). Thus each of the sets \(\overline{TK_n} \), where \(\overline{TK_n} \) denotes the closure of \(TK_n \), must be non-empty for \(n = 1, 2, \ldots \) and \(\overline{TK_1} \supseteq \overline{TK_2} \supseteq \ldots \supseteq \overline{TK_n} \supseteq \ldots \).

Further, for arbitrary \(x, y \in K_n \),
\[
d(Tx, Ty) \leq a[d(Ix, Tx) + d(Tx, Ty) + d(Ty, Iy)] + \frac{1 - a}{n} \leq \frac{(a + 1)}{n} + ad(Tx, Ty)
\]
and so
\[
d(Tx, Ty) \leq \frac{(a + 1)}{(1 - a)n},
\]
Thus
\[
\lim_{n \to \infty} diam(\overline{TK_n}) = \lim_{n \to \infty} diam(\overline{TK_n}) = 0.
\]
It follows, by a well known result of Cantor (see, e.g [2], p 156) the intersection \(\bigcap_{n=1}^{\infty} \overline{TK_n} \) contains exactly one point \(w \). Now let \(y \) be an arbitrary point in \(\overline{TK_1} \). Then for arbitrary \(\varepsilon > 0 \) there is a point \(y' \) in \(K_n \) such that
\[
d(Ty', y) < \varepsilon. \tag{3}
\]
Using the weak commutativity of \(T \) and \(I \) non-expansiveness of \(I \) and applying (1), (2) and (3) we have
\[
d(Ty, Iy) \leq d(Ty, TIy') + d(TIy', ITy') + d(ITy', Iy)
\leq ad(Iy, ITy') + (1 - a)\max\{d(Ty, Iy), d(TIy', I^2y')\}
+ d(TIy', ITy') + d(ITy', Iy)
\leq ad(y, Iy') + (1 - a)\max\{d(Ty, Iy), d(TIy', ITy') + d(ITy', I^2y')\}
\leq a[d(y, Ty') + d(Ty', Iy')] + (1 - a)\max\{d(Ty, Iy), d(Iy', Ty')
+ d(Ty', Iy')\} + \frac{1}{n} + \varepsilon
\leq a(\varepsilon + \frac{1}{n}) + (1 - a)\max\{d(Ty, Iy), \frac{1}{n} + \frac{1}{n}\} + \frac{1}{n} + \varepsilon
\leq (1 + a)(\varepsilon + \frac{1}{n}) + (1 - a)\max\{d(Ty, Iy), \frac{2}{n}\}.
\]
Since \(\epsilon \) is arbitrary it follows that
\[
d(Ty, Iy) \leq \frac{(a + 1)}{n} + (1 - a)\max\{d(Ty, Iy), \frac{2}{n}\}. \tag{4}
\]

There are two possible cases for the max-part in (4).
If \(d(Ty, Iy) \leq \frac{2}{n} \), then we have \(d(Ty, Iy) \leq \frac{2}{n} < \frac{(a + 1)}{an} \) directly.
But if \(d(Ty, Iy) > \frac{2}{n} \), (4) implies
\[
d(Ty, Iy) \leq \frac{(a + 1)}{n} + (1 - a)d(Ty, Iy)
\]
so
\[
d(Ty, Iy) \leq (a + 1)\frac{a}{a.n}.
\]

In both cases we see \(d(Ty, Iy) \leq \frac{a + 1}{a.n} \) and so \(y \) lies in \(H_n \).
Thus \(TK_n \subseteq H_n \) and so the point \(w \) must be in \(H_n \) for \(n = 1, 2, ... \).
It follows that
\[
d(Tw, Iw) \leq (a + 1)\frac{a}{a.n},
\]
for \(n = 1, 2, ... \) and so \(Tw = Iw \).
Since (1) holds, we also have \(ITw = TIw = T^2w \).
Thus
\[
d(T^2w, Tw) \leq ad(ITw, Iw) + (1 - a)\max\{d(T^2w, ITw), d(Tw, Iw)\} = ad(T^2w, Tw),
\]
so \(T^2w = Tw \) and \(Tw = w' \) is a fixed point of \(T \) for \(a < 1 \).
Further, \(Iw' = ITw = TIw = TTw = Tw' = w' \) and so \(w' \) is also a fixed point of \(I \). uniqueness, suppose \(w'' \) is a common fixed point too Then
\[
d(w', w'') = d(Tw', Tw'')
\leq ad(Iw', Iw'') + (1 - a)\max\{d(Tw', Iw'), d(Tw'', Iw'')\}
\leq ad(w', w'')
\]
and the uniqueness of the common fixed point follows since \(a < 1 \). \(\square \)

The following example satisfies Theorem 2.1. Notice that it does not satisfy conditions in Theorem 1.2 because \(C \) is non-convex.
Example 2.2. Choosing \(C = [0, \frac{1}{2}] \cup \{1\}, Ix = \frac{x}{2} \) and \(Tx = \frac{x}{x + 4} \) then \(TC = [0, \frac{1}{9}] \cup \{\frac{1}{5}\} \subseteq [0, \frac{1}{4}] \cup \{\frac{1}{2}\} = IC \) \(I \) is non-expansive and the pair \((I, T)\) is weakly commuting, where both of them are self maps. Further \(I \) and \(T \) have a unique common fixed point which we know it is 0. The following corollary is a trivial conclusion of Theorem 2.1.

Corollary 2.3. Let \(T \) be a mapping from \(C \) into itself satisfying the inequality

\[
d(T(x), T(y)) \leq ad(I(x), I(y)) + (1 - a)\max\{d(T(x), I(x)), d(T(y), I(y))\},
\]

for all \(x, y \in C \), where \(C \) is a compact sub set of the Banach space \(X \), \(I \) is the identity map on \(C \), and \(0 < a < 1 \). Then \(T \) has a unique fixed point.

We note that the weak commutativity in Theorem 2.1 is a necessary condition. It suffices to consider the following example.

Example 2.4. Let \(X = R \) and let \(C = [0, 1] \). Define \(T \) and \(I \) by \(Tx = \frac{1}{3}, Ix = \frac{x}{2} \) for any \(x \in C \), it is clear that all the conditions of Theorem 2.1 are satisfied except weak commutativity since for \(x = \frac{1}{2} \), \(d(TI(\frac{1}{2}), IT(\frac{1}{2})) = \frac{1}{6} > \frac{1}{12} = d(T(\frac{1}{2}), I(\frac{1}{2})) \). However \(T \) and \(I \) do not have a common fixed point.

In 1990, G. Jungck extended a fixed point theorem of Fisher and Sessa by replacing the requirements of weak commutativity and non-expansiveness by compatibility and continuity respectively.

G. Jungck[7] defined two self maps to be compatible iff whenever \((x_n)\) is a sequence in \(X \) such that \(Tx_n, Ix_n \to t \) for some \(t \in X \), then \(d(ITx_n, TIx_n) \to 0 \). Clearly, commuting maps are weakly commuting, and weakly commuting maps are compatible. Also non-expansiveness requires continuity of a map.

Lemma 2.5. (Proposition 2.2, [7]). Let \(f, g : (X, d) \to (X, d) \) be compatible.
1. If \(f(t) = g(t) \), then \(fg(t) = gf(t) \).
2. Suppose that \(\lim_n f(x_n) = \lim_n g(x_n) = t \) for some \(t \) in \(X \).

(a) If \(f \) is continuous at \(t \), \(\lim_n gf(x_n) = f(t) \).
(b) If \(f \) and \(g \) are continuous at \(t \), then \(f(t) = g(t) \) and \(fg(t) = gf(t) \).

Lemma 2.6. ([6]). Let \(T \) and \(I \) be compatible self maps of a metric space \((X, d) \) where \(I \) is continuous. Suppose there exist real number \(r > 0 \) and \(a \in (0, 1) \) such that for all \(x, y \in X \),

\[
d(Tx, Ty) \leq rd(Ix, Iy) + a \max\{d(Tx, Ix), d(Ty, Iy)\}
\]

Then \(Tw = Iw \) for some \(w \in X \) iff \(A = \bigcap\{cl(T(K_n)) : n \in N\} \neq \emptyset \),

where \(k_n = \{x \in X : d(Tx, Ix) \leq \frac{1}{n}\} \).

Using Lemmas 2.5 and 2.6 we have the following corollary

Corollary 2.7. Let \(T \) and \(I \) be two compatible self maps on a compact subset \(C \) of a complete metric space \(X \) Suppose that \(I \) is continuous linear and \(TC \subseteq IC \) If there exists \(a \in (0, 1) \) such that \(T \) and \(I \) satisfy the following inequality

\[
d(T(x), T(y)) \leq ad(I(x), I(y)) + (1 - a)\max\{d(T(x), I(x)), d(T(y), I(y))\},
\]

for all \(x, y \in C \). Then \(T \) and \(I \) have a unique common fixed point in \(C \).

Example 2.8. Let \(X = [0, 1] \) and \(C = [0, 1] \) with the Euclidean metric and define \(I \) and \(T \) by \(Ix = \frac{x}{2}, Tx = \frac{x}{x + 3} \) for any \(x \in C \) Now \(C \) is compact and \(I, T : C \rightarrow C, TC = [0, \frac{1}{4}] \subseteq [0, \frac{1}{2}] = IC \) and \(I \) is linear and continuous. Clearly \(I \) and \(T \) are compatible on \(C \) and so satisfy in inequality(2) Then \(x = 0 \) is a unique common fixed point in \(C \).

References

Alireza Valipour Baboli
Department of Mathematics
College of Basic Sciences
Ph.D Student of Mathematics
Karaj Branch, Islamic Azad University
Alborz, Iran
E-mail: a.valipour@umz.ac.ir

Mohammad Bagher Ghaemi
Department of Mathematics
Science and Technology
Associate Professor of Mathematics
Iran University
Tehran, Iran
E-mail: mghaemi@iust.ac.ir