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1 Preliminaries

One of the attractive topics in mathematical analysis is finding the so-
lution to a functional equation, i.e., a function that satisfies the given
equation.
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A function A : R — R is called additive if the equation
Az +y) = A(z) + A(y)

holds for all z,y € R.

A function B : R x R — R is called bi-additive if B is additive in
each variable. A bi-additive function B is called symmetric if B(z,y) =
B(y,x) for all z,y € R.

Note that the additive function A : R — R is Q-homogeneous, i.e.,

A(gqr) = qA(x) (1)

for all x € R and g € Q (see [12, Theorem 5.2.1]).

The existence of discontinuous additive functions was an open prob-
lem for many years. Researchers could neither show that all additive
functions are continuous, nor give an example to a discontinuous addi-
tive function. In 1905 G. Hamel [1 1] succeded in proving that there exist
discontinuous additive functions.

Theorem 1.1. [15] Let m € Z, and assume that A : R — R is an
additive function. If the function A satisfies

A(x™) = 2™ 1A (2), z € R\{0},
then A(x) = A(1)x for every x € R.

A function p: R — R is called quadratic if the equation

p(r +y) + p(r —y) = 2p(z) + 2p(y)

holds for all z,y € R.

In [2], Aczél et al. have been proved that a function p : R — R
is quadratic if and only if, there is a symmetric bi-additive function
B : R xR — R such that p(z) = B(z, z) for all z € R. This B is unique.

Recently, some mathematicians have studied the solution of quadratic
functional equation on R under certain additional conditions (see [5, 6,

).
In 1965, Aczél [1] showed that a quadratic function p : R — R can
be associated with a symmetric and bi-additive function B: Rx R — R
given by the following formula

1

B(z,y) = 5lo(z +y) —plz) = ply)],  zyeR. (2)
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So, by using the Q-homogeneity of additive functions, we have

B(px,qy) = pqB(z,y),  plgz) = B(qz, qz) = ¢*p(x)

for all z,y € R and p,q € Q. Also, using (2) and induction on n, one
can show that

P<ZM>=ZP(W¢)+2 > Blwj,w)
i=0 i=0

0<j<k<n

for all n € N and wg, --- ,w, € R.

Recall that an additive function o : R — R is called derivation if
o(xy) = zo(y) + yo(x) is fulfilled for all z,y € R. Thus, every deriva-
tion o satisfies o(2?) = 2z0(x) for all x € R. Moreover, there exist
nontrivial derivations on R (see [12, Theorem 14.2.2]). Also, both o(x?)
and (o(x))? are quadratic functions [3].

Lemma 1.2. [17, 1/] Let A be an additive function.

(i) The equation
A(z?) = 2z A(x) (3)

holds for all x € R\{0} if and only if A is a derivation.

(ii) The equation
A(z™h = —2724(2) (4)

holds for all x € R\{0} if and only if A is a derivation.

Theorem 1.3. [15] Let m,n € Z, and let o # 1 be a real number such
that m = an # 0. The additive function A : R — R satisfy the condition

A(@™) =ax™ " A(z")
for all x € R if and only if A is a derivation.

In 1968, A. Nishiyama and S. Horinouchi [15] showed in the following
theorem under what conditions the solutions of an additive functional
equation are continuous.
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Theorem 1.4. [15] Assume that A : R — R is an additive function
such that

A(z™) = ax™ " A(z")

hold for every x € R\{0}, wherever o € R is constant and m,n € Z with
m# an. If a =1, then
A(x) = A(1)x

for every x € R. If a # 1, then A(x) =0 for every x € R.
Let the unit circle denoted by
St={(z,2) eR?*: 2 + 22 =1}.

Below are the theorems proved by Boros and Erdei [1], which will be
used in the proof of the main results.

Theorem 1.5. Let A € R and A: R — R be an additive function such
that

zA(x) + zA(z) = A (5)
holds for all (z,z) € S*. Then F(x) = A(x) — Az is derivation.
Theorem 1.6. Let A: R — R be an additive function such that

zA(z) — zA(x) =0 (6)
holds for all (z,z) € S*. Then A is linear.

We also need the following Lemma:

Lemma 1.7. [5] Let m € N and K be a field. Assume that S is a set,
W C K contains at least m+1 elements, and the functions Aj : S — K,
7 =0,1,...,m, satisfy

Z AJ’ (IL‘)tj =0
7=0

forallz € S andt € W. Then Aj(z) =0 forallz € S and 0 < j < m.
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Numerous authors have conducted research on functional equations,
including additive, quadratic, Drygas and Pexider equations, as well as
their generalized form ([3, 4, 5, 6, 7]). In this paper, motivated by [1, 5],
we characterize the solutions of the following Pexider functional equation

N@+2) + falw = 2) = f3(x) + fa(2),  z,z€R, (7)

under additional conditions that leads to continuous additive or deriva-
tion functions, where f; : R — R, for j = 1,2,3,4, are functions. The
general solutions of (7), which we will use in the proof of main results,
ere obtained by Ebanks et al. in [0, Theorem 4] as follows.

Theorem 1.8. The general solutions f; : R — R for j = 1,2,3,4 of
(7) are given by

fiw) = 5B ) = (A1 — A2)(&) +ex
alir) = 3B(w,0) = 5(A1+ A3)(@) + e
fol) = Bla,) - Ay(a) + s
fa(z) = B(z,z) + As(z) + 4

for every x € R, where A1, A3 : R — R are additive functions and
B :RxR — R is a symmetric bi-additive function and c1 +co = c3+c4.

2 Main Results

First, we discuss the conditions under which the functions f;’s become
derivations.

Theorem 2.1. Let m,n € Z, and let o # 1 be a real number such that
m=an # 0. Let f; : R = R for j = 1,2,3,4 satisfy the equation (7).
Then f;(0) =0 and the conditions
fi(@™) = ax™ " fi(a"), (8)
fa (™) = aa™ " o (2") (9)

hold for all z € R if and only if f;, (j =1,2,3,4), are derivation on R.
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Proof. If f;, j = 1,2,3,4, are derivation functions, then by applying
induction and using Lemma 1.2, it follows that

fi (%) = ka1 f(x)
where k € Z. So, the equations (8) and (9) are verified.
To prove the converse of the theorem, we consider the following cases:
Case 1. m >0, n > 0.
Replace z by tx in (8), where t € Q, apply Theorem 1.8 together ith
the assumption f;(0) = ¢; = 0.
Then we obtain
t" ™ [t2mB (2™, ™) —t"™ (A — Ag) (l‘m)] =t"ax™ [tQ”B (", 2") —t" (A — Ag) (x”)}
for all x € R, where A1, A3 : R — R are additive functions and B :
R xR — R is the following identity symmetric bi-additive function. So,
t2m+nan (xm, xm) o tm+2nal,mB (:L,n7 xn)
+ " [az™ (A — Ag) (2™) — 2™ (A — A) (2™)] = 0.
By Lemma 1.7, considering the coefficient of #*™*", we conclude that
"B (z™,2™) = 0 and so B(z,z) = 0 for every z € R.
Thus, by Theorem 1.3

file) = —5 (A1~ A2)(a)

is a derivation.
Similarly,

Fale) = —5 (A1 + A2)(a)

is a derivation. Hence,

f3(z) = —Ai(z) = fi(2) + fa(2), fa(x) = As(z) = fi(z) — fo(x)
are derivations.
Case 2. m <0, n <0.
Replace x by 27! in (8) and (9), we get
fi(z™™) = oz (),
fo(27™) = az™™ "M fy (27,
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where 0 # —m = a(—n), @« # 1, —m > 0 and —n > 0. By applying
Case 1, we gain the desired result.

Case 3. m < 0,n > 0.

Substitute 2™ and then z" in place of = in (8), to obtain

fl (xm2) _ axm(m—n)fl(xnm),

fl (:Enm) _ azvn(m—n)fl (xn2)

for all x € R. From the resulting equations, we arrive at
fl (ImQ) — a2xm2—n2 fl (l,ng)
and similarly,
Fo(a™) = a?a™ " fo(a™)

whence m? = o?n? and m? # 0. If o # 1, the result follows by Case 1.
If > = 1, then @ = —1 (since o # 1) and hence m = (—1)n.
Therefore, equations (8) and (9) become

—anl xn)7

(27") =
f2 (a77) = =72 fa(a").

1 ("

For arbitrary ¢ > 0, set ¥ = 2™ with x € R\{0}, so

fi(07h) = =072 f1(9),
fo (1971) = —1972.]02(19).
Also, these equations hold for ¢ < 0, since f1 and fs are odd functions.
Thus, according to Lemma 1.2, the result follows.
Case 4. m > 0, n < 0.

In this case, equations (8) and (9), reduce to the same form as in
case 3

fi@) = Zamm g am,

—=Q

This completes the proof. ([l
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Example 2.2. Let j = 1,2,3,4. Define f; : R — R by

X

()

X

(z)
()
()
(z)

o()
(z) -

o\xT
x
T+
o\T

Dre T

X

for all z € R, where o is nontrivial derivation on R. Then, f; satisfying
the equation (7) and f;(0) = 0. However, f» does not satisfy condition

(9)-

Theorem 2.3. Let j =1,2,3,4. Assume that the functions f; : R — R
satisfy the equation (7), f;(0) =0 and the conditions

fi(@™) = ax™ " fi(2"), (10)
fa (2™) = ax™ ™" fo(2") (11)

hold for every x € R\{0}, where a € R is constant and m,n € Z with
m# an. If a =1, then

filx) = Mz
fa(x) = Aoz
fa(x) = (A1 + A2)z
Ja(z) = (A1 — Ao)z

for allz € R, where Ay = f1(1) and A2 = fo(1). If o # 1, then fj(x) =0
for every x € R.

Proof. Let « =1 and m # an.

If m =0orn =0, from (10), (11) and f;(0) = 0for j = 1,2, 3,4, then
fi(z) =xfi1(1) and fa(x) = xf2(1) for all x € R. Therefore, by Theorem
L8, f3(zx) = fi(x) + f2(x) = (f1 + f2)(1) and fa(z) = fi(z) — fa(z) =
z(f1 — f2)(1) for all x € R.

Now, suppose that m # 0 and n # 0. By a similar methods in the
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proof of Theorem 2.1, it can be shown that
1
fi(@) = =5 (41 - Az)()

Fale) = (A1 + A2)()

f3(2) = =Ai(z) = fi(z) + fo(z)
{ fa(z) = Az(2) = fi(z) = fa(2)

are additive functions. Hence, by Theorem 1.4, the result is verified in
this case.

Let a # 1 and m # an and take = 1 in (10) and (11). Then
fi(1) = f2(1) = 0, since o # 1.

If m=0orn=0,then fi(z) = axfi(1) and fa(z) = azf2(1) for all
xz € R. Thus f;j(z) =0,1 < j <4, for every x € R.

In the case m # 0 and n # 0, by Theorem 1.4, the proof is complete.

O
In the sequel, we find the solution of the system (7) on the restricted
domain S*.

Theorem 2.4. Let A, A2 € R. Suppose that f; : R — R forj =1,2,3,4
satisfy equation (7), with f;(0) =0 and assume that for all (z,z) € S*

xf1 (z) + zfi1(z) = A1, (12)
zfa (z) + 2f2(2) = Aa. (13)
Then
Fi(x) = fi(z) — M
Fao(x) = fo(z) — Ao
Fi(x) = f3(x) — (A1 + A2)
Fa(z) = fa(z) — (M — Ao)z

are derivations.
Proof. Using Theorem 1.8, (12) and (13), we have

SleB(e,2) — 2(Ay — A2)() + 2B(z,2) — 2(A1 — A)(2)] = M1, (14)

%[mB(w, 2) — 2(A1 + Ao)(x) + 2B(2, 2) — 2(A1 + A9)(2)] = A (15)
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for all (z,z) € S!, where A1, 43 : R — R are additive functions and
B :R xR — R is a symmetric bi-additive function.
Subtracting (15) from (14), we obtain

xAg(z) + 2zA2(2) = A\ — Mg, (z,2) € S!

Substitute —z for x and —z for z in (14), we obtain

%[—Z‘B(l',l‘) —x(Ay — Ag)(z) — 2B(z,2) — 2(A1 — A2)(2)] = N, (16)
for all (z,2) € S'. Adding (15) and (16), we see that

xA1(z) + 2zA1(2) = —(A1 + Ao) (17)

for all (z,z) € S'. Thus by Theorem 1.5, Aj(z) + (A1 + A2)x and
As(x) — (A1 — A2)x are derivations.
Adding (14) and (15) and applying (17), we get

zB(z,x) + zB(z,2) =0
for all (z,z) € S*.
Now, set z =v/1 — 22 in the above equation. Then
zB(z,z) +V/1 - 22B (\/1 — 21— x2) —0 (18)

for all z € R.
Replacing = with —z in (18), we get

— zB(z,x) +V/1 - 22B (\/1 - 132,\/1 - :1:2) =0 (19)

for all x € R.
Subtracting (19) from (18), we obtain zB(z,x) = 0 for all z € R.
Hence, B(x,x) =0 for all x € R. Therefore by Theorem 1.8,

/

Fi(x) = —%(Al(x) + (A + A2)z — Ag(x) + (A1 — Ao)x) = fi(x) — Mz

Folw) = 5 (A1) + O + Ao + Aolz) — (M = X)) = fola) — Do
Fs(x) = —A1(x) — (M + A2)x = fa(x) — (M + Aoz
( Fa(w) = A2(x) — (M1 — A2)z = fa(w) — (M1 — A2)

are derivations. ([
In Theorem 2.4, by taking A\; = Ay = 0 we get the following result.
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Corollary 2.5. Assume that f; : R — R for j =1,2,3,4, satisfy equa-
tion (7), f;(0) =0 and

zfi (z) +2f1(2) =
zfa (x) + 2fa(2) =

hold for all (x,z) € St. Then f;, j = 1,2,3,4, are derivations.

)

Theorem 2.6. If f; : R — R, j = 1,2,3,4, satisfy the Pexider equation
(7), f;(0) =0 and

xf1(z) — zfi(x) =0, (20)
xfa(z) — zfa(x) =0 (21)
hold for all (z,2) € S, then f;, j = 1,2,3,4, are linear.

Proof. Since f;(0) = 0 for j = 1,2,3,4, then by Theorem 1.8, ¢; = 0.
Conditions (20) and (21) yields

xB(z,2z) —x(A1 — A2)(2) — zB(x,z) + 2(A1 — A2)(z) =0,  (22)
xB(z,z) —x(A1 + A2)(2) — z2B(z,z) + 2(A1 + A2)(x) =0 (23)

for all (z,z) € S!, where A1, 42 : R — R are additive functions and
B :R xR — R is a symmetric bi-additive function.
Subtracting (23) from (22), we get

xAz(2z) — zA2(x) =0

for all (z,z) € S'. Thus by Theorem 1.6, Ay is linear.
Now, substitute (—z, —z) for (z,z) in (22), we obtain

—2B(z,2) —x(A1 — A2)(2) + zB(z,x) + 2(A1 — A)(x) =0, (24)

for all (z,z) € S
Adding (23) with (24), we obtain

xA1(2) — zA1(x) =0, (z,2) € St

Therefore, by Theorem 1.6, we conclude that A; is linear.
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Adding (22) to (23) we get
xB(z,z) — zB(z,x) = 2A1(2) — zA1(x) =0

for all (z,2) € S*. Hence

xB (\/1—:1:2,\/1—x2> =1 - 22B(z, ) (25)

for all x € R.
Substituting —z in place of x in (25), we have

—xB <\/17x2,\/17x2> =v'1—22B(z,z) (26)

for all x € R.
From (25) and (26), we get B(z,z) =0forallz € R. So f; : R = R
for j =1,2,3,4 are linear. O

Conclusion

We obtain the additive solutions of the Pexider functional equation (7)
under conditional equations that leads to continuous additive or deriva-
tion functions.
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