Journal of Mathematical Extension

Journal Pre-proof ISSN: 1735-8299

URL: http://www.ijmex.com Original Research Paper

Solutions of Pexiderized Functional Equation on Restricted Domain

S. Izadi

Shiraz University of Technology

S. Jahedi*

Shiraz University of Technology

M. Dehghanian

Sirjan University of Technology

Abstract. The aim of this paper is to investigate the solutions of the Pexider-quadratic functional equation under additional conditions that leads to continuous additive or derivation functions.

AMS Subject Classification: 39B22; 39B55

Keywords and Phrases: Bi-additive functional equation, derivation, additive functional equation, Pexider functional equation, quadratic functional equation

1 Preliminaries

One of the attractive topics in mathematical analysis is finding the solution to a functional equation, i.e., a function that satisfies the given equation.

Received: June 2025; Accepted: November 2025

*Corresponding Author

A function $A: \mathbb{R} \to \mathbb{R}$ is called additive if the equation

$$A(x+y) = A(x) + A(y)$$

holds for all $x, y \in \mathbb{R}$.

A function $B: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is called bi-additive if B is additive in each variable. A bi-additive function B is called symmetric if B(x,y) = B(y,x) for all $x,y \in \mathbb{R}$.

Note that the additive function $A: \mathbb{R} \to \mathbb{R}$ is \mathbb{Q} -homogeneous, i.e.,

$$A(qx) = qA(x) \tag{1}$$

for all $x \in \mathbb{R}$ and $q \in \mathbb{Q}$ (see [12, Theorem 5.2.1]).

The existence of discontinuous additive functions was an open problem for many years. Researchers could neither show that all additive functions are continuous, nor give an example to a discontinuous additive function. In 1905 G. Hamel [11] succeeded in proving that there exist discontinuous additive functions.

Theorem 1.1. [15] Let $m \in \mathbb{Z}$, and assume that $A : \mathbb{R} \to \mathbb{R}$ is an additive function. If the function A satisfies

$$A(x^m) = x^{m-1}A(x), \qquad x \in \mathbb{R} \setminus \{0\},$$

then A(x) = A(1)x for every $x \in \mathbb{R}$.

A function $\rho: \mathbb{R} \to \mathbb{R}$ is called quadratic if the equation

$$\rho(x+y) + \rho(x-y) = 2\rho(x) + 2\rho(y)$$

holds for all $x, y \in \mathbb{R}$.

In [2], Aczél et al. have been proved that a function $\rho : \mathbb{R} \to \mathbb{R}$ is quadratic if and only if, there is a symmetric bi-additive function $B : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that $\rho(x) = B(x, x)$ for all $x \in \mathbb{R}$. This B is unique.

Recently, some mathematicians have studied the solution of quadratic functional equation on \mathbb{R} under certain additional conditions (see [5, 6, 10]).

In 1965, Aczél [1] showed that a quadratic function $\rho: \mathbb{R} \to \mathbb{R}$ can be associated with a symmetric and bi-additive function $B: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by the following formula

$$B(x,y) = \frac{1}{2} [\rho(x+y) - \rho(x) - \rho(y)], \qquad x, y \in \mathbb{R}.$$
 (2)

So, by using the Q-homogeneity of additive functions, we have

$$B(px,qy) = pqB(x,y),$$
 $\rho(qx) = B(qx,qx) = q^2\rho(x)$

for all $x, y \in \mathbb{R}$ and $p, q \in \mathbb{Q}$. Also, using (2) and induction on n, one can show that

$$\rho\left(\sum_{i=0}^{n} \omega_{i}\right) = \sum_{i=0}^{n} \rho\left(\omega_{i}\right) + 2 \sum_{0 \leq j < k \leq n} B\left(\omega_{j}, \omega_{k}\right)$$

for all $n \in \mathbb{N}$ and $\omega_0, \dots, \omega_n \in \mathbb{R}$.

Recall that an additive function $\sigma: \mathbb{R} \to \mathbb{R}$ is called derivation if $\sigma(xy) = x\sigma(y) + y\sigma(x)$ is fulfilled for all $x, y \in \mathbb{R}$. Thus, every derivation σ satisfies $\sigma(x^2) = 2x\sigma(x)$ for all $x \in \mathbb{R}$. Moreover, there exist nontrivial derivations on \mathbb{R} (see [12, Theorem 14.2.2]). Also, both $\sigma(x^2)$ and $(\sigma(x))^2$ are quadratic functions [3].

Lemma 1.2. [13, 14] Let A be an additive function.

(i) The equation

$$A(x^2) = 2xA(x) \tag{3}$$

holds for all $x \in \mathbb{R} \setminus \{0\}$ if and only if A is a derivation.

(ii) The equation

$$A(x^{-1}) = -x^{-2}A(x) \tag{4}$$

holds for all $x \in \mathbb{R} \setminus \{0\}$ if and only if A is a derivation.

Theorem 1.3. [15] Let $m, n \in \mathbb{Z}$, and let $\alpha \neq 1$ be a real number such that $m = \alpha n \neq 0$. The additive function $A : \mathbb{R} \to \mathbb{R}$ satisfy the condition

$$A(x^m) = \alpha x^{m-n} A(x^n)$$

for all $x \in \mathbb{R}$ if and only if A is a derivation.

In 1968, A. Nishiyama and S. Horinouchi [15] showed in the following theorem under what conditions the solutions of an additive functional equation are continuous.

Theorem 1.4. [15] Assume that $A : \mathbb{R} \to \mathbb{R}$ is an additive function such that

$$A\left(x^{m}\right) = \alpha x^{m-n} A(x^{n})$$

hold for every $x \in \mathbb{R} \setminus \{0\}$, wherever $\alpha \in \mathbb{R}$ is constant and $m, n \in \mathbb{Z}$ with $m \neq \alpha n$. If $\alpha = 1$, then

$$A(x) = A(1)x$$

for every $x \in \mathbb{R}$. If $\alpha \neq 1$, then A(x) = 0 for every $x \in \mathbb{R}$.

Let the unit circle denoted by

$$S^1 = \{(x, z) \in \mathbb{R}^2 : x^2 + z^2 = 1\}.$$

Below are the theorems proved by Boros and Erdei [4], which will be used in the proof of the main results.

Theorem 1.5. Let $\lambda \in \mathbb{R}$ and $A : \mathbb{R} \to \mathbb{R}$ be an additive function such that

$$xA(x) + zA(z) = \lambda \tag{5}$$

holds for all $(x, z) \in S^1$. Then $\mathcal{F}(x) = A(x) - \lambda x$ is derivation.

Theorem 1.6. Let $A : \mathbb{R} \to \mathbb{R}$ be an additive function such that

$$xA(z) - zA(x) = 0 (6)$$

holds for all $(x, z) \in S^1$. Then A is linear.

We also need the following Lemma:

Lemma 1.7. [5] Let $m \in \mathbb{N}$ and \mathbb{K} be a field. Assume that S is a set, $W \subset \mathbb{K}$ contains at least m+1 elements, and the functions $\Delta_j : S \to \mathbb{K}$, j = 0, 1, ..., m, satisfy

$$\sum_{j=0}^{m} \Delta_j(x) t^j = 0$$

for all $x \in S$ and $t \in W$. Then $\Delta_j(x) = 0$ for all $x \in S$ and $0 \le j \le m$.

Numerous authors have conducted research on functional equations, including additive, quadratic, Drygas and Pexider equations, as well as their generalized form ([3, 4, 5, 6, 7]). In this paper, motivated by [4, 5], we characterize the solutions of the following Pexider functional equation

$$f_1(x+z) + f_2(x-z) = f_3(x) + f_4(z), \qquad x, z \in \mathbb{R},$$
 (7)

under additional conditions that leads to continuous additive or derivation functions, where $f_j : \mathbb{R} \to \mathbb{R}$, for j = 1, 2, 3, 4, are functions. The general solutions of (7), which we will use in the proof of main results, ere obtained by Ebanks et al. in [9, Theorem 4] as follows.

Theorem 1.8. The general solutions $f_j : \mathbb{R} \to \mathbb{R}$ for j = 1, 2, 3, 4 of (7) are given by

$$\begin{cases} f_1(x) = \frac{1}{2}B(x,x) - \frac{1}{2}(A_1 - A_2)(x) + c_1 \\ f_2(x) = \frac{1}{2}B(x,x) - \frac{1}{2}(A_1 + A_2)(x) + c_2 \\ f_3(x) = B(x,x) - A_1(x) + c_3 \\ f_4(x) = B(x,x) + A_2(x) + c_4 \end{cases}$$

for every $x \in \mathbb{R}$, where $A_1, A_2 : \mathbb{R} \to \mathbb{R}$ are additive functions and $B : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a symmetric bi-additive function and $c_1 + c_2 = c_3 + c_4$.

2 Main Results

First, we discuss the conditions under which the functions f_j 's become derivations.

Theorem 2.1. Let $m, n \in \mathbb{Z}$, and let $\alpha \neq 1$ be a real number such that $m = \alpha n \neq 0$. Let $f_j : \mathbb{R} \to \mathbb{R}$ for j = 1, 2, 3, 4 satisfy the equation (7). Then $f_j(0) = 0$ and the conditions

$$f_1(x^m) = \alpha x^{m-n} f_1(x^n), \tag{8}$$

$$f_2(x^m) = \alpha x^{m-n} f_2(x^n) \tag{9}$$

hold for all $x \in \mathbb{R}$ if and only if f_j , (j = 1, 2, 3, 4), are derivation on \mathbb{R} .

Proof. If f_j , j = 1, 2, 3, 4, are derivation functions, then by applying induction and using Lemma 1.2, it follows that

$$f_j(x^{\kappa}) = \kappa x^{\kappa - 1} f_j(x)$$

where $\kappa \in \mathbb{Z}$. So, the equations (8) and (9) are verified.

To prove the converse of the theorem, we consider the following cases:

Case 1. m > 0, n > 0.

Replace x by tx in (8), where $t \in \mathbb{Q}$, apply Theorem 1.8 together ith the assumption $f_i(0) = c_i = 0$.

Then we obtain

$$t^{n}x^{n}\left[t^{2m}B\left(x^{m},x^{m}\right)-t^{m}(A_{1}-A_{2})\left(x^{m}\right)\right]=t^{m}\alpha x^{m}\left[t^{2n}B\left(x^{n},x^{n}\right)-t^{n}(A_{1}-A_{2})\left(x^{n}\right)\right]$$

for all $x \in \mathbb{R}$, where $A_1, A_2 : \mathbb{R} \to \mathbb{R}$ are additive functions and $B : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is the following identity symmetric bi-additive function. So,

$$t^{2m+n}x^{n}B(x^{m}, x^{m}) - t^{m+2n}\alpha x^{m}B(x^{n}, x^{n}) + t^{m+n}\left[\alpha x^{m}(A_{1} - A_{2})(x^{n}) - x^{n}(A_{1} - A_{2})(x^{m})\right] = 0.$$

By Lemma 1.7, considering the coefficient of t^{2m+n} , we conclude that $x^n B(x^m, x^m) = 0$ and so B(x, x) = 0 for every $x \in \mathbb{R}$.

Thus, by Theorem 1.3

$$f_1(x) = -\frac{1}{2}(A_1 - A_2)(x)$$

is a derivation.

Similarly,

$$f_2(x) = -\frac{1}{2}(A_1 + A_2)(x)$$

is a derivation. Hence,

$$f_3(x) = -A_1(x) = f_1(x) + f_2(x),$$
 $f_4(x) = A_2(x) = f_1(x) - f_2(x)$

are derivations.

Case 2. m < 0, n < 0.

Replace x by x^{-1} in (8) and (9), we get

$$f_1(x^{-m}) = \alpha x^{-m-(-n)} f_1(x^{-n}),$$

 $f_2(x^{-m}) = \alpha x^{-m-(-n)} f_2(x^{-n}),$

where $0 \neq -m = \alpha(-n)$, $\alpha \neq 1$, -m > 0 and -n > 0. By applying Case 1, we gain the desired result.

Case 3. m < 0, n > 0.

Substitute x^m and then x^n in place of x in (8), to obtain

$$f_1(x^{m^2}) = \alpha x^{m(m-n)} f_1(x^{nm}),$$

$$f_1(x^{nm}) = \alpha x^{n(m-n)} f_1(x^{n^2})$$

for all $x \in \mathbb{R}$. From the resulting equations, we arrive at

$$f_1(x^{m^2}) = \alpha^2 x^{m^2 - n^2} f_1(x^{n^2})$$

and similarly,

$$f_2(x^{m^2}) = \alpha^2 x^{m^2 - n^2} f_2(x^{n^2})$$

whence $m^2 = \alpha^2 n^2$ and $m^2 \neq 0$. If $\alpha^2 \neq 1$, the result follows by Case 1. If $\alpha^2 = 1$, then $\alpha = -1$ (since $\alpha \neq 1$) and hence m = (-1)n. Therefore, equations (8) and (9) become

$$f_1(x^{-n}) = -x^{-2n} f_1(x^n),$$

 $f_2(x^{-n}) = -x^{-2n} f_2(x^n).$

For arbitrary $\vartheta > 0$, set $\vartheta = x^n$ with $x \in \mathbb{R} \setminus \{0\}$, so

$$f_1(\vartheta^{-1}) = -\vartheta^{-2}f_1(\vartheta),$$

$$f_2(\vartheta^{-1}) = -\vartheta^{-2}f_2(\vartheta).$$

Also, these equations hold for $\vartheta < 0$, since f_1 and f_2 are odd functions. Thus, according to Lemma 1.2, the result follows.

Case 4. m > 0, n < 0.

In this case, equations (8) and (9), reduce to the same form as in case 3

$$f_1(x^n) = \frac{1}{\alpha} x^{n-m} f_1(x^m),$$

 $f_2(x^n) = \frac{1}{\alpha} x^{n-m} f_2(x^m).$

This completes the proof. \Box

Example 2.2. Let j = 1, 2, 3, 4. Define $f_j : \mathbb{R} \to \mathbb{R}$ by

$$\begin{cases} f_1(x) = \sigma(x) \\ f_2(x) = x \\ f_3(x) = x + \sigma(x) \\ f_4(x) = \sigma(x) - x \end{cases}$$

for all $x \in \mathbb{R}$, where σ is nontrivial derivation on \mathbb{R} . Then, f_i satisfying the equation (7) and $f_j(0) = 0$. However, f_2 does not satisfy condition (9).

Theorem 2.3. Let j = 1, 2, 3, 4. Assume that the functions $f_j : \mathbb{R} \to \mathbb{R}$ satisfy the equation (7), $f_i(0) = 0$ and the conditions

$$f_1(x^m) = \alpha x^{m-n} f_1(x^n),$$
 (10)

$$f_1(x^m) = \alpha x^{m-n} f_1(x^n),$$

$$f_2(x^m) = \alpha x^{m-n} f_2(x^n)$$
(10)

hold for every $x \in \mathbb{R} \setminus \{0\}$, where $\alpha \in \mathbb{R}$ is constant and $m, n \in \mathbb{Z}$ with $m \neq \alpha n$. If $\alpha = 1$, then

$$\begin{cases} f_1(x) = \lambda_1 x \\ f_2(x) = \lambda_2 x \\ f_3(x) = (\lambda_1 + \lambda_2) x \\ f_4(x) = (\lambda_1 - \lambda_2) x \end{cases}$$

for all $x \in \mathbb{R}$, where $\lambda_1 = f_1(1)$ and $\lambda_2 = f_2(1)$. If $\alpha \neq 1$, then $f_j(x) = 0$ for every $x \in \mathbb{R}$.

Proof. Let $\alpha = 1$ and $m \neq \alpha n$.

If m = 0 or n = 0, from (10), (11) and $f_j(0) = 0$ for j = 1, 2, 3, 4, then $f_1(x) = x f_1(1)$ and $f_2(x) = x f_2(1)$ for all $x \in \mathbb{R}$. Therefore, by Theorem 1.8, $f_3(x) = f_1(x) + f_2(x) = x(f_1 + f_2)(1)$ and $f_4(x) = f_1(x) - f_2(x) = f_1(x) - f_2(x) = f_1(x) + f_2(x) = f$ $x(f_1-f_2)(1)$ for all $x \in \mathbb{R}$.

Now, suppose that $m \neq 0$ and $n \neq 0$. By a similar methods in the

proof of Theorem 2.1, it can be shown that

$$\begin{cases} f_1(x) = -\frac{1}{2}(A_1 - A_2)(x) \\ f_2(x) = -\frac{1}{2}(A_1 + A_2)(x) \\ f_3(x) = -A_1(x) = f_1(x) + f_2(x) \\ f_4(x) = A_2(x) = f_1(x) - f_2(x) \end{cases}$$

are additive functions. Hence, by Theorem 1.4, the result is verified in this case.

Let $\alpha \neq 1$ and $m \neq \alpha n$ and take x = 1 in (10) and (11). Then $f_1(1) = f_2(1) = 0$, since $\alpha \neq 1$.

If m = 0 or n = 0, then $f_1(x) = \alpha x f_1(1)$ and $f_2(x) = \alpha x f_2(1)$ for all $x \in \mathbb{R}$. Thus $f_j(x) = 0, 1 \le j \le 4$, for every $x \in \mathbb{R}$.

In the case $m \neq 0$ and $n \neq 0$, by Theorem 1.4, the proof is complete.

In the sequel, we find the solution of the system (7) on the restricted domain S^1 .

Theorem 2.4. Let $\lambda_1, \lambda_2 \in \mathbb{R}$. Suppose that $f_j : \mathbb{R} \to \mathbb{R}$ for j = 1, 2, 3, 4satisfy equation (7), with $f_i(0) = 0$ and assume that for all $(x, z) \in S^1$

$$xf_1(x) + zf_1(z) = \lambda_1, \tag{12}$$

$$xf_2(x) + zf_2(z) = \lambda_2. \tag{13}$$

Then

$$\begin{cases} \mathcal{F}_{1}(x) = f_{1}(x) - \lambda_{1}x \\ \mathcal{F}_{2}(x) = f_{2}(x) - \lambda_{2}x \\ \mathcal{F}_{3}(x) = f_{3}(x) - (\lambda_{1} + \lambda_{2})x \\ \mathcal{F}_{4}(x) = f_{4}(x) - (\lambda_{1} - \lambda_{2})x \end{cases}$$

are derivations.

Proof. Using Theorem 1.8, (12) and (13), we have

$$\frac{1}{2}[xB(x,x) - x(A_1 - A_2)(x) + zB(z,z) - z(A_1 - A_2)(z)] = \lambda_1, \quad (14)$$

$$\frac{1}{2}[xB(x,x) - x(A_1 + A_2)(x) + zB(z,z) - z(A_1 + A_2)(z)] = \lambda_2 \quad (15)$$

$$\frac{1}{2}[xB(x,x) - x(A_1 + A_2)(x) + zB(z,z) - z(A_1 + A_2)(z)] = \lambda_2$$
 (15)

for all $(x, z) \in S^1$, where $A_1, A_2 : \mathbb{R} \to \mathbb{R}$ are additive functions and $B : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a symmetric bi-additive function.

Subtracting (15) from (14), we obtain

$$xA_2(x) + zA_2(z) = \lambda_1 - \lambda_2, \quad (x, z) \in S^1$$

Substitute -x for x and -z for z in (14), we obtain

$$\frac{1}{2}[-xB(x,x) - x(A_1 - A_2)(x) - zB(z,z) - z(A_1 - A_2)(z)] = \lambda_1, (16)$$

for all $(x,z) \in S^1$. Adding (15) and (16), we see that

$$xA_1(x) + zA_1(z) = -(\lambda_1 + \lambda_2)$$
(17)

for all $(x,z) \in S^1$. Thus by Theorem 1.5, $A_1(x) + (\lambda_1 + \lambda_2)x$ and $A_2(x) - (\lambda_1 - \lambda_2)x$ are derivations.

Adding (14) and (15) and applying (17), we get

$$xB(x,x) + zB(z,z) = 0$$

for all $(x, z) \in S^1$.

Now, set $z = \sqrt{1-x^2}$ in the above equation. Then

$$xB(x,x) + \sqrt{1-x^2}B\left(\sqrt{1-x^2},\sqrt{1-x^2}\right) = 0$$
 (18)

for all $x \in \mathbb{R}$.

Replacing x with -x in (18), we get

$$-xB(x,x) + \sqrt{1-x^2}B\left(\sqrt{1-x^2},\sqrt{1-x^2}\right) = 0$$
 (19)

for all $x \in \mathbb{R}$.

Subtracting (19) from (18), we obtain xB(x,x)=0 for all $x \in \mathbb{R}$. Hence, B(x,x)=0 for all $x \in \mathbb{R}$. Therefore by Theorem 1.8,

$$\begin{cases} \mathcal{F}_{1}(x) = -\frac{1}{2}(A_{1}(x) + (\lambda_{1} + \lambda_{2})x - A_{2}(x) + (\lambda_{1} - \lambda_{2})x) = f_{1}(x) - \lambda_{1}x \\ \mathcal{F}_{2}(x) = -\frac{1}{2}(A_{1}(x) + (\lambda_{1} + \lambda_{2})x + A_{2}(x) - (\lambda_{1} - \lambda_{2})x) = f_{2}(x) - \lambda_{2}x \\ \mathcal{F}_{3}(x) = -A_{1}(x) - (\lambda_{1} + \lambda_{2})x = f_{3}(x) - (\lambda_{1} + \lambda_{2})x \\ \mathcal{F}_{4}(x) = A_{2}(x) - (\lambda_{1} - \lambda_{2})x = f_{4}(x) - (\lambda_{1} - \lambda_{2})x \end{cases}$$

are derivations. \Box

In Theorem 2.4, by taking $\lambda_1 = \lambda_2 = 0$ we get the following result.

Corollary 2.5. Assume that $f_j : \mathbb{R} \to \mathbb{R}$ for j = 1, 2, 3, 4, satisfy equation (7), $f_j(0) = 0$ and

$$xf_1(x) + zf_1(z) = 0,$$

 $xf_2(x) + zf_2(z) = 0$

hold for all $(x,z) \in S^1$. Then f_i , j = 1, 2, 3, 4, are derivations.

Theorem 2.6. If $f_j : \mathbb{R} \to \mathbb{R}$, j = 1, 2, 3, 4, satisfy the Pexider equation (7), $f_j(0) = 0$ and

$$xf_1(z) - zf_1(x) = 0, (20)$$

$$xf_2(z) - zf_2(x) = 0 (21)$$

hold for all $(x, z) \in S^1$, then f_j , j = 1, 2, 3, 4, are linear.

Proof. Since $f_j(0) = 0$ for j = 1, 2, 3, 4, then by Theorem 1.8, $c_j = 0$. Conditions (20) and (21) yields

$$xB(z,z) - x(A_1 - A_2)(z) - zB(x,x) + z(A_1 - A_2)(x) = 0,$$
 (22)

$$xB(z,z) - x(A_1 + A_2)(z) - zB(x,x) + z(A_1 + A_2)(x) = 0$$
 (23)

for all $(x,z) \in S^1$, where $A_1, A_2 : \mathbb{R} \to \mathbb{R}$ are additive functions and $B : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a symmetric bi-additive function.

Subtracting (23) from (22), we get

$$xA_2(z) - zA_2(x) = 0$$

for all $(x, z) \in S^1$. Thus by Theorem 1.6, A_2 is linear. Now, substitute (-x, -z) for (x, z) in (22), we obtain

$$-xB(z,z) - x(A_1 - A_2)(z) + zB(x,x) + z(A_1 - A_2)(x) = 0, \quad (24)$$

for all $(x,z) \in S^1$.

Adding (23) with (24), we obtain

$$xA_1(z) - zA_1(x) = 0,$$
 $(x, z) \in S^1.$

Therefore, by Theorem 1.6, we conclude that A_1 is linear.

Adding (22) to (23) we get

$$xB(z,z) - zB(x,x) = xA_1(z) - zA_1(x) = 0$$

for all $(x, z) \in S^1$. Hence

$$xB\left(\sqrt{1-x^2},\sqrt{1-x^2}\right) = \sqrt{1-x^2}B(x,x)$$
 (25)

for all $x \in \mathbb{R}$.

Substituting -x in place of x in (25), we have

$$-xB\left(\sqrt{1-x^2},\sqrt{1-x^2}\right) = \sqrt{1-x^2}B(x,x)$$
 (26)

for all $x \in \mathbb{R}$.

From (25) and (26), we get B(x,x) = 0 for all $x \in \mathbb{R}$. So $f_j : \mathbb{R} \to \mathbb{R}$ for j = 1, 2, 3, 4 are linear. \square

Conclusion

We obtain the additive solutions of the Pexider functional equation (7) under conditional equations that leads to continuous additive or derivation functions.

Acknowledgements

The authors thank the referees for their helpful comments and suggestions, which have improved this paper.

References

- [1] J. Aczél, The general solution of two functional equations by reduction to functions additive in two variables and with the aid of Hamel bases, *Glasnik Mat.-Fiz. Astronom. Ser. II Drustvo Mat. Fiz. Hrvatske*, 20 (1965), 65-73.
- [2] J. Aczél and J. Dhombres, Functional Equations In Several Variables, Cambridge University Press, Cambridge, 1989.

- [3] M. Amou, Quadratic functions satisfying an additional equation, *Acta Math. Hungar.*, 162 (2020), 40-51.
- [4] Z. Boros and P. Erdei, A conditional equation for additive functions, *Aeguat. Math.*, 70 (2005), 309-313.
- [5] Z. Boros and E. Garda-Mátyás, Conditional equations for quadratic functions, *Acta Math. Hungar.*, 154 (2) (2018), 389-401.
- [6] Z. Boros and E. Garda-Mátyás, Quadratic functions fulfilling an additional condition along the hyperbola xy = 1, $Aequat.\ Math.$, 97 (2023), 1141-1155.
- [7] M. Dehghanian, S. Izadi and S. Jahedi, The solution of Drygas functional equations with additional conditions, *Acta Math. Hungar.* 174 (2024), 510-521.
- [8] H. Drygas, Quasi-Inner Products And Their Applications, In: A. K. Gupta (ed.), Advances in Multivariate Statistical Analysis, 13-30, Reidel Publ. Co., 1987.
- [9] B. R. Ebanks, Pl. Kannappan and P. K. Sahoo, A common generalization of functional equations characterizing normed and quasi-inner-product spaces, *Canad. Math. Bull.*, 35 (1992), 321-327.
- [10] E. Garda-Mátyás, Quadratic functions fulfilling an additional condition along hyperbolas or the unit circle, Aequat. Math., 93 (2) (2019), 451-465.
- [11] G. Hamel, Eine Basis aller Zahlen und die unstetigen Lsungen der Funktionalgleichung f(x+y) = f(x) + f(y), Math. Ann., 60 (1905), 459462.
- [12] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, 2nd edn. Birkhauser, Basel, 2009.
- [13] S. Kurepa, The Cauchy Functional Equation and Scalar Product in Vector Spaces, *Glasnik Mat. Fiz. Astronom. Drutvo Mat. Fiz. Hrvatske [Set. Il]*, 19 (1964), 23-36.

- [14] S. Kurepa, Remarks on the Cauchy Functional Equation, *Publ. Inst. Math. Beograd*, 5 (19) (1965), 85-88.
- [15] A. Nishiyama and S. Horinouchi, On a system of functional equations, *Aequat. Math.*, 1 (1968), 15.

Sadegh Izadi

PhD Candidate of Pure Mathematics Department of Mathematics Shiraz University of Technology Shiraz, Iran

E-mail: s.izadi@sutech.ac.ir

Sedigheh Jahedi

Associate Professor of Pure Mathematics Department of Mathematics Shiraz University of Technology Shiraz, Iran

 $\hbox{E-mail: jahedi@sutech.ac.ir}$

Mehdi Dehghanian

Associate Professor of Pure Mathematics Department of Mathematics Sirjan University of Technology Sirjan, Iran

E-mail: mdehghanian@sirjantech.ac.ir