Hyers-Ulam-Rassias Approximation on m-Lie Algebras

H. Azadi Kenary*

Yasouj University
Kh. Shafaat
Yasouj University
H. Keshavarz

Yasouj University

Abstract

Using the fixed point method, we establish the stability of m-Lie homomorphisms and Jordan m-Lie homomorphisms on m-Lie algebras associated to the following additive functional equation

$$
2 \mu f\left(\sum_{i=1}^{m} m x_{i}\right)=\sum_{i=1}^{m} f\left(\mu\left(m x_{i}+\sum_{j=1, i \neq j}^{m} x_{j}\right)\right)+f\left(\sum_{i=1}^{m} \mu x_{i}\right)
$$

where m is an integer greater than 2 and all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}:=\left\{e^{i \theta} ; 0 \leq \theta \leq \frac{2 \pi}{n_{0}}\right\}$.
AMS Subject Classification: 17A42; 39B82.
Keywords and Phrases: m-Lie algebra, homomorphism, Jordan homomorphism, stability, fixed point approach, functional equation

1. Introduction

Let n be a natural number greater or equal to 3 . The notion of an $n-$ Lie algebra was introduced by V.T. Filippov. The Lie product is taken

[^0]between n elements of the algebra instead of two. This new bracket is n-linear, anti-symmetric and satisfies a generalization of the Jacobi identity.
An n-Lie algebra is a natural generalization of a Lie algebra. Namely:
A vector space V together with a multi-linear, antisymmetric n-ary operation []: $\Lambda^{n} V \rightarrow V$ is called an $n-$ Lie algebra, $n \geq 3$, if the n-ary bracket is a derivation with respect to itself, i.e,
\[

$$
\begin{equation*}
\left[\left[x_{1}, \ldots, x_{n}\right], x_{n+1}, \ldots, x_{2 n-1}\right]=\sum_{i=1}^{n}\left[x_{1}, \ldots x_{i-1}\left[x_{i}, x_{n+1}, \ldots, x_{2 n-1}\right], \ldots, x_{n}\right] \tag{1}
\end{equation*}
$$

\]

where $x_{1}, x_{2}, \ldots, x_{2 n-1} \in V$. Equation (1) is called the generalized Jacobi identity. The meaning of this identity is similar to that of the usual Jacobi identity for a Lie algebra (which is a $2-$ Lie algebra).
From now on, we only consider n-Lie algebras over the field of complex numbers. An n-Lie algebra A is a normed $n-$ Lie algebra if there exists a norm $\|\|$ on A such that $\|\left[x_{1}, x_{2}, \ldots, x_{n}\right]\|\leq\| x_{1}\| \| x_{2}\|\ldots\| x_{n} \|$ for all $x_{1}, x_{2}, \ldots, x_{n} \in A$. A normed n-Lie algebra A is called a Banach $n-$ Lie algebra, if $(A,\| \|)$ is a Banach space.

Let $\left(A,[]_{A}\right)$ and $\left(B,[]_{B}\right)$ be two Banach n-Lie algebras. A \mathbb{C}-linear mapping $H:\left(A,[]_{A}\right) \rightarrow\left(B,[]_{B}\right)$ is called an n-Lie homomorphism if $H\left(\left[x_{1} x_{2} \ldots x_{n}\right]_{A}\right)=\left[H\left(x_{1}\right) H\left(x_{2}\right) \ldots H\left(x_{n}\right)\right]_{B}$ for all $x_{1}, x_{2}, \ldots, x_{n} \in$ A. A \mathbb{C}-linear mapping $H:\left(A,[]_{A}\right) \rightarrow\left(B,[]_{B}\right)$ is called a Jordan n-Lie homomorphism if $H\left([x x \ldots x]_{A}\right)=[H(x) H(x) \ldots H(x)]_{B}$ for all $x \in A$.

The study of stability problems had been formulated by Ulam [5] during a talk in 1940: Under what condition does there exist a homomorphism near an approximate homomorphism? In the following year, Hyers [3] was answered affirmatively the question of Ulam for Banach spaces, which states that if $\varepsilon>0$ and $f: X \rightarrow Y$ is a map with X a normed space, Y a Banach space such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon \tag{2}
\end{equation*}
$$

for all $x, y \in X$, then there exists a unique additive map $T: X \rightarrow Y$ such that $\|f(x)-T(x)\| \leq \varepsilon$ for all $x \in X$. A generalized version of the theorem of Hyers for approximately linear mappings was presented by Rassias [4] in 1978 by considering the case when inequality (2) is unbounded.

Due to that fact, the additive functional equation $f(x+y)=f(x)+f(y)$ is said to have the generalized Hyers-Ulam-Rassias stability property. A large list of references concerning the stability of functional equations can be found in [1, 2].
In this paper, by using the fixed point method, we establish the stability of m-Lie homomorphisms and Jordan m-Lie homomorphisms on m-Lie Banach algebras associated to the following generalized Jensen type functional equation

$$
\begin{equation*}
2 \mu f\left(\sum_{i=1}^{m} m x_{i}\right)-\sum_{i=1}^{m} f\left(\mu\left(m x_{i}+\sum_{j=1, i \neq j}^{m} x_{j}\right)\right)-f\left(\sum_{i=1}^{m} \mu x_{i}\right)=0 \tag{3}
\end{equation*}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}:=\left\{e^{i \theta} ; 0 \leq \theta \leq \frac{2 \pi}{n_{o}}\right\}$, where $m \geq 2$. Throughout this paper, assume that $\left(A,[]_{A}\right),\left(B,[]_{B}\right)$ are two m-Lie Banach algebras.

2. Main Results

Before proceeding to the main results, we recall a fundamental result in fixed point theory.

Theorem 2.1. [4] Let (Ω, d) be a complete generalized metric space and $T: \Omega \rightarrow \Omega$ be a strictly contractive function with Lipschitz constant L. Then for each given $x \in \Omega$, either $d\left(T^{m} x, T^{m+1} x\right)=\infty$ for all $m \geq 0$, or other exists a natural number m_{0} such that:
(i) $d\left(T^{m} x, T^{m+1} x\right)<\infty$ for all $m \geq m_{0}$;
(ii) the sequence $\left\{T^{m} x\right\}$ is convergent to a fixed point y^{*} of T;
(iii) y^{*} is the unique fixed point of T in $\Lambda=\left\{y \in \Omega: d\left(T^{m_{0}} x, y\right)<\infty\right\}$;
(iv) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, T y)$ for all $y \in \Lambda$.

Theorem 2.2. [2] Let V and W be real vector spaces. A mapping $f: V \rightarrow W$ satisfies the following functional equation

$$
2 f\left(\sum_{i=1}^{m} m x_{i}\right)=\sum_{i=1}^{m} f\left(m x_{i}+\sum_{j=1, i \neq j}^{m} x_{j}\right)+f\left(\sum_{i=1}^{m} x_{i}\right),
$$

if and only if f is additive.

We start our work with the main theorem of our paper.
Theorem 2.3. Let $n_{0} \in \mathbb{N}$ be a fixed positive integer. Let $f: A \rightarrow B$ be a mapping for which there exists a function $\varphi: A^{m} \rightarrow[0, \infty)$ such that

$$
\left\|2 \mu f\left(\sum_{i=1}^{m} m x_{i}\right)-\sum_{i=1}^{m} f\left(\mu\left(m x_{i}+\sum_{j=1, i \neq j}^{m} x_{j}\right)\right)-f\left(\sum_{i=1}^{m} \mu x_{i}\right)\right\|
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}:=\left\{e^{i \theta} ; 0 \leq \theta \leq \frac{2 \pi}{n_{0}}\right\}$ and all $x_{1}, \cdots, x_{m} \in A$, and that

$$
\begin{equation*}
\left\|f\left(\left[x_{1} x_{2} \cdots x_{n}\right]_{A}\right)-\left[f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{m}\right)\right]_{B}\right\|_{B} \leq \varphi\left(x_{1}, x_{2}, \cdots, x_{m}\right) \tag{5}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{m} \in A$. If there exists an $L<1$ such that

$$
\begin{equation*}
\varphi\left(x_{1}, x_{2}, \cdots, x_{m}\right) \leq m L \varphi\left(\frac{x_{1}}{m}, \frac{x_{2}}{m}, \cdots, \frac{x_{m}}{m}\right) \tag{6}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{m} \in A$, then there exists a unique m-Lie homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\| \leq \frac{\varphi(x, 0,0, \cdots, 0)}{m-m L} \tag{7}
\end{equation*}
$$

for all $x \in A$.
Proof. Let Ω be the set of all functions from A into B and let $d(g, h):=$ $\inf \left\{C \in \mathbb{R}^{+}:\|g(x)-h(x)\|_{B} \leq C \varphi(x, 0, \cdots, 0), \forall x \in A\right\}$. It is easy to show that (Ω, d) is a generalized complete metric space. Now we define the mapping $J: \Omega \rightarrow \Omega$ by $J(h)(x)=\frac{1}{m} h(m x)$ for all $x \in A$. Note that for all $g, h \in \Omega$, with $d(g, h)<C$ we have

$$
\begin{aligned}
\|g(x)-h(x)\| & \leq C \phi(x, 0, \cdots, 0) \\
\left\|\frac{1}{m} g(m x)-\frac{1}{m} h(m x)\right\| & \leq \frac{C \varphi(m x, 0, \cdots, 0)}{m} \\
\left\|\frac{1}{m} g(m x)-\frac{1}{m} h(m x)\right\| & \leq L C \varphi(x, 0, \cdots, 0) \\
d(J(g), J(h)) & \leq L C .
\end{aligned}
$$

for all $x \in A$. Hence we see that $d(J(g), J(h)) \leq L d(g, h)$ for all $g, h \in \Omega$. It follows from (6) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\varphi\left(m^{k} x_{1}, m^{k} x_{2}, \cdots, m^{k} x_{m}\right)}{m^{k}} \leq \lim _{k \rightarrow \infty} L^{k} \varphi\left(x_{1}, \cdots, x_{m}\right)=0 \tag{8}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{m} \in A$. Putting $\mu=1, x_{1}=x$ and $x_{j}=0(j=2, \cdots, m)$ in (4), we obtain

$$
\begin{equation*}
\left\|\frac{f(m x)}{m}-f(x)\right\| \leq \frac{\varphi(x, 0, \cdots, 0)}{m} \tag{9}
\end{equation*}
$$

for all $x \in A$. Therefore,

$$
\begin{equation*}
d(f, J(f)) \leq \frac{1}{m}<\infty \tag{10}
\end{equation*}
$$

By Theorem 2.1, J has a unique fixed point in the set $X_{1}:=\{h \in \Omega$: $d(f, h)<\infty\}$. Let H be the fixed point of $J . H$ is the unique mapping with $H(m x)=m H(x)$ for all $x \in A$, such that $\|f(x)-H(x)\|_{B} \leq$ $C \varphi(x, 0, \cdots, 0)$ for all $x \in A$ and some $C \in(0, \infty)$. On the other hand we have $\lim _{k \rightarrow \infty} d\left(J^{k}(f), H\right)=0$, and so

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{m^{k}} f\left(m^{k} x\right)=H(x) \tag{11}
\end{equation*}
$$

for all $x \in A$. Also by Theorem 2.1, we have

$$
\begin{equation*}
d(f, H) \leq \frac{d(f, J(f))}{1-L} \tag{12}
\end{equation*}
$$

From (10) and (12), we have $d(f, H) \leq \frac{1}{m-m L}$. This implies the inequality (7). By (5), we have

$$
\begin{aligned}
& \left\|H\left(\left[x_{1} x_{2} \cdots x_{m}\right]_{A}\right)-\left[H\left(x_{1}\right) H\left(x_{2}\right) H\left(x_{3}\right) \cdots H\left(x_{m}\right)\right]_{B}\right\| \\
& =\lim _{k \rightarrow \infty} \| \frac{H\left(\left[m^{k} x_{1} m^{k} x_{2} \cdots m^{k} x_{m}\right]_{A}\right)}{m^{m k}} \\
& -\frac{\left(\left[H\left(m^{k} x_{1}\right) H\left(m^{k} x_{2}\right) H\left(m^{k} x_{3}\right) \cdots H\left(m^{k} x_{m}\right)\right]_{B}\right)}{m^{m k}} \| \\
& \leq \lim _{k \rightarrow \infty} \frac{\varphi\left(m^{k} x_{1}, m^{k} x_{2}, \cdots, m^{k} x_{m}\right)}{m^{m k}}=0
\end{aligned}
$$

for all $x_{1}, \cdots, x_{m} \in A$. Hence $H\left(\left[x_{1} x_{2} \cdots x_{m}\right]_{A}\right)=\left[H\left(x_{1}\right) H\left(x_{2}\right) H\left(x_{3}\right) \cdots H\left(x_{m}\right)\right]_{B}$ for all $x_{1}, \cdots, x_{m} \in A$. On the other hand, it follows from (4), (8) and (11) that

$$
\begin{array}{r}
\left\|2 H\left(\sum_{i=1}^{m} m x_{i}\right)-\sum_{i=1}^{m} H\left(m x_{i}+\sum_{j=1, i \neq j}^{m} x_{j}\right)-H\left(\sum_{i=1}^{m} x_{i}\right)\right\| \\
=\lim _{k \rightarrow \infty} \frac{1}{m^{k}} \| 2 f\left(\sum_{i=1}^{m} m^{k+1} x_{i}\right)-\sum_{i=1}^{m} f\left(m^{k+1} x_{i}+\sum_{j=1, i \neq j}^{m} m^{k} x_{j}\right) \\
-f\left(\sum_{i=1}^{m} m^{k} x_{i}\right) \| \\
\leq \lim _{m \rightarrow \infty} \frac{\varphi\left(m^{k} x_{1}, m^{k} x_{2}, \cdots, m^{k} x_{m}\right)}{m^{k}}=0
\end{array}
$$

for all $x_{1}, \cdots, x_{m} \in A$. Then

$$
\begin{equation*}
2 H\left(\sum_{i=1}^{m} m x_{i}\right)=\sum_{i=1}^{m} H\left(m x_{i}+\sum_{j=1, i \neq j}^{m} x_{j}\right)+H\left(\sum_{i=1}^{m} x_{i}\right) \tag{13}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{m} \in A$. So by Theorem 2.2, H is additive. Letting $x_{i}=x$ for all $i=1,2, \cdots, m$ in (4), we obtain $\|\mu f(x)-f(\mu x)\|_{B} \leq$ $\varphi(x, x, \cdots, x)$ for all $x \in A$. It follows that

$$
\begin{aligned}
\|H(\mu x)-\mu H(x)\| & =\lim _{k \rightarrow \infty} \frac{\left\|f\left(\mu m^{k} x\right)-\mu f\left(m^{k} x\right)\right\|}{m^{k}} \\
& \leq \lim _{k \rightarrow \infty} \frac{\varphi\left(m^{k} x, m^{k} x, \cdots, m^{k} x\right)}{m^{k}}=0
\end{aligned}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}:=\left\{e^{i \theta} ; 0 \leq \theta \leq \frac{2 \pi}{n_{0}}\right\}$, and all $x \in A$. One can show that the mapping $H: A \rightarrow B$ is \mathbb{C}-linear. Hence, $H: A \rightarrow B$ is an m-Lie homomorphism satisfying (7), as desired.

Corollary 2.4. Let θ and p be non-negative real numbers such that
$p<1$. Suppose that a function $f: A \rightarrow B$ satisfies

$$
\begin{align*}
\| 2 \mu f\left(\sum_{i=1}^{m} m x_{i}\right)- & \sum_{i=1}^{m} f\left(\mu\left(m x_{i}+\sum_{j=1, i \neq j}^{m} x_{j}\right)\right) \\
& -f\left(\sum_{i=1}^{m} \mu x_{i}\right) \| \leq \theta\left(\sum_{i=1}^{m}\left\|x_{i}\right\|_{A}^{p}\right) \tag{14}
\end{align*}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}$ and all $x_{1}, \cdots, x_{m} \in A$ and

$$
\begin{equation*}
\left\|f\left(\left[x_{1} x_{2} \cdots x_{n}\right]_{A}\right)-\left[f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{m}\right)\right]_{B}\right\| \leq \theta\left(\sum_{i=1}^{m}\left\|x_{i}\right\|_{A}^{p}\right) \tag{15}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{n} \in A$. Then there exists a unique m-Lie homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\| \leq \frac{\theta\|x\|_{A}^{p}}{m-m^{p}} \tag{16}
\end{equation*}
$$

for all $x \in A$.
Proof. Put $\varphi\left(x_{1}, x_{2}, \cdots, x_{m}\right):=\theta \sum_{i=1}^{m}\left(\left\|x_{i}\right\|_{A}^{p}\right)$ for all $x_{1}, \cdots, x_{n} \in A$ in Theorem 2.3. Then (8) holds for $p<1$, and (16) holds when $L=$ m^{p-1}.

Similarly, we have the following and we will omit the proof.
Theorem 2.5. Let $n_{0} \in \mathbb{N}$ be a fixed positive integer. Let $f: A \rightarrow B$ be a mapping for which there exists a function $\varphi: A^{m} \rightarrow[0, \infty)$ satisfying (4) for all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}:=\left\{e^{i \theta} ; 0 \leq \theta \leq \frac{2 \pi}{n_{0}}\right\}$ and (5). If there exists an $L<1$ such that

$$
\begin{equation*}
\varphi\left(\frac{x_{1}}{m}, \frac{x_{2}}{m}, \cdots, \frac{x_{m}}{m}\right) \leq \frac{L \varphi\left(x_{1}, x_{2}, \cdots, x_{m}\right)}{m} \tag{17}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{m} \in A$, then there exists a unique m-Lie homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\| \leq \frac{L \varphi(x, 0,0, \cdots, 0)}{m-m L} \tag{18}
\end{equation*}
$$

for all $x \in A$.

Corollary 2.6. Let θ and p be non-negative real numbers such that $p>1$. Suppose that a function $f: A \rightarrow B$ satisfying (14) and (15). Then there exists a unique m-Lie homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\| \leq \frac{m \theta\|x\|_{A}^{p}}{m^{p+1}-m^{2}} \tag{19}
\end{equation*}
$$

for all $x \in A$.
Proof. Put $\varphi\left(x_{1}, x_{2}, \cdots, x_{m}\right):=\theta \sum_{i=1}^{m}\left(\left\|x_{i}\right\|_{A}^{p}\right)$ for all $x_{1}, \cdots, x_{n} \in A$ in Theorem 2.5. Then (18) holds for $p<1$, and (19) holds when $L=m^{(1-p)}$.

Theorem 2.7. Let $n_{0} \in \mathbb{N}$ be a fixed positive integer. Let $f: A \rightarrow B$ be a mapping for which there exists a function $\varphi: A^{m} \rightarrow[0, \infty)$ such that

$$
\left\|2 \mu f\left(\sum_{i=1}^{m} m x_{i}\right)-\sum_{i=1}^{m} f\left(\mu\left(m x_{i}+\sum_{j=1, i \neq j}^{m} x_{j}\right)\right)-f\left(\sum_{i=1}^{m} \mu x_{i}\right)\right\|^{\leq \varphi\left(x_{1}, x_{2}, \cdots, x_{m}\right)(20)}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}:=\left\{e^{i \theta} ; 0 \leq \theta \leq \frac{2 \pi}{n_{0}}\right\}$ and all $x_{1}, \cdots, x_{m} \in A$, and that

$$
\begin{equation*}
\left\|f\left([x x \cdots x]_{A}\right)-[f(x) f(x) \cdots f(x)]_{B}\right\|_{B} \leq \varphi(x, x, \cdots, x) \tag{21}
\end{equation*}
$$

for all $x \in A$. If there exists an $L<1$ such that

$$
\begin{equation*}
\varphi\left(x_{1}, x_{2}, \cdots, x_{m}\right) \leq m L \varphi\left(\frac{x_{1}}{m}, \frac{x_{2}}{m}, \cdots, \frac{x_{m}}{m}\right) \tag{22}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{m} \in A$, then there exists a unique Jordan m-Lie homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\| \leq \frac{\varphi(x, 0, \cdots, 0)}{m-m L} \tag{23}
\end{equation*}
$$

for all $x \in A$.
Proof. By the same reasoning as in the proof of Theorem 2.3, we can define the mapping $H(x)=\lim _{k \rightarrow \infty} \frac{1}{m^{k}} f\left(m^{k} x\right)$ for all $x \in A$. Moreover,
we can show that H is \mathbb{C}-linear. It follows from (21) that

$$
\begin{aligned}
& \left\|H\left([x x \cdots x]_{A}\right)-[H(x) H(x) \cdots H(x)]_{B}\right\| \\
& =\lim _{k \rightarrow \infty}\left\|\frac{H\left(\left[m^{k} x \cdots m^{k} x\right]_{A}\right)}{m^{m k}}-\frac{\left[H\left(m^{k} x\right) H\left(m^{k} x\right) \cdots H\left(m^{k} x\right)\right]_{B}}{m^{m k}}\right\| \\
& \leq \lim _{k \rightarrow \infty} \frac{1}{m^{m k}} \varphi\left(m^{k} x, m^{k} x, \ldots, m^{k} x\right)=0
\end{aligned}
$$

for all $x \in A$. So $H\left([x x \cdots x]_{A}\right)=[H(x) H(x) \cdots H(x)]_{B}$ for all $x \in A$. Hence $H: A \rightarrow B$ is a Jordan m - Lie homomorphism satisfying (23).

Corollary 2.8. Let θ and p be non-negative real numbers such that $p<1$. Suppose that a function $f: A \rightarrow B$ satisfies

$$
\begin{aligned}
\| 2 \mu f\left(\sum_{i=1}^{m} m x_{i}\right)-\sum_{i=1}^{m} f\left(\mu\left(m x_{i}+\sum_{j=1, i \neq j}^{m} x_{j}\right)\right) & -f\left(\sum_{i=1}^{m} \mu x_{i}\right) \| \\
& \leq \theta \sum_{i=1}^{n}\left(\left\|x_{i}\right\|_{A}^{p}\right)
\end{aligned}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}$ and all $x_{1}, \cdots, x_{m} \in A$ and $\| f\left([x x \cdots x]_{A}\right)-[f(x) f(x) \cdots$ $f(x)]_{B} \| \leq n \theta\left(\|x\|_{A}^{p}\right)$ for all $x \in A$. Then there exists a unique Jordan m-Lie homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leq \frac{\theta\|x\|_{A}^{p}}{m-m^{p}} \tag{24}
\end{equation*}
$$

for all $x \in A$.
Proof. It follows from Theorem 2.7 by putting $\varphi\left(x_{1}, x_{2}, \cdots, x_{m}\right):=$ $\theta \sum_{i=1}^{m}\left(\left\|x_{i}\right\|_{A}^{p}\right)$ for all $x_{1}, \cdots, x_{m} \in A$ and $L=m^{(p-1)}$.

Similarly, we have the following and we will omit the proof.
Theorem 2.9. Let $n_{0} \in \mathbb{N}$ be a fixed positive integer. Let $f: A \rightarrow B$ be a mapping for which there exists a function $\varphi: A^{m} \rightarrow[0, \infty)$ satisfying (4) for all $\mu \in \mathbb{T}_{\frac{1}{n_{o}}}:=\left\{e^{i \theta} ; 0 \leq \theta \leq \frac{2 \pi}{n_{o}}\right\}$ and (5). If there exists an $L<1$ such that $\varphi\left(\frac{x_{1}}{m}, \frac{x_{2}}{m}, \cdots, \frac{x_{m}}{m}\right) \leq \frac{L}{m} \varphi\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ for all $x_{1}, \cdots, x_{m} \in$
A, then there exists a unique Jordan m-Lie homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\| \leq \frac{L \varphi(x, 0,0, \cdots, 0)}{m-m L} \tag{25}
\end{equation*}
$$

for all $x \in A$.
Corollary 2.10. Let θ and p be non-negative real numbers such that $p>1$. Suppose that a function $f: A \rightarrow B$ satisfying (14) and (21). Then there exists a unique Jordan m-Lie homomorphism $H: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-H(x)\|_{B} \leq \frac{\theta\|x\|_{A}^{p}}{m^{p}-m} \tag{26}
\end{equation*}
$$

for all $x \in A$.
Proof. Put $\varphi\left(x_{1}, x_{2}, \cdots, x_{m}\right):=\theta \sum_{i=1}^{m}\left(\left\|x_{i}\right\|_{A}^{p}\right)$ for all $x_{1}, \cdots, x_{n} \in A$ in Theorem 2.9. Then (25) holds for $p>1$, and (26) holds when $L=m^{(1-p)}$.

References

[1] H. Azadi Kenary, Random approximation of an additive functional equation of m-Apollonius type, Acta Mathematica Scientia, Volume 32, Issue 5, September 2012, Pages 1813-1825.
[2] H. Azadi Kenary and Y. J. Cho, Stability of mixed additivequadratic Jensen type functional equation in various spaces, Computer and Mathematics with Applications, Vol. 61, Issue 9, (2011) 2704-2724.
[3] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27(1941) 222-224.
[4] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[5] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, science ed., Wiley, New York, 1940.

Hassan Azadi Kenary

Department of Mathematics
Associate Professor of Mathematics
College of Sciences, Yasouj University
Yasouj, Iran
E-mail: azadi@yu.ac.ir
Khadijeh Shafaat
Department of Mathematics
PhD student of Mathematics
College of Sciences, Yasouj University
Yasouj, Iran
E-mail: kh.shafaat@yahoo.com
Hamid Reza Keshavarz
Department of Mathematics
PhD student of Mathematics
College of Sciences, Yasouj University
Yasouj, Iran
E-mail:h.keshavarz@gmail.com

[^0]: Received: January 2015; Accepted: July 2015
 *Corresponding Author

