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1. Introduction

The traditional wavelet frames provide poor frequency localization in many applications
as they are not suitable for signals whose domain frequency channels are focused only on
the middle frequency region. Therefore, in order to make more kinds of signals suited
for analyzing by wavelet frames, it is necessary to extend the concept of wavelet frames
to a library of wavelet frames, called framelet packets or wavelet frame packets. The
original idea of framelet packets was introduced by Coifman et al.[4] to provide more
efficient decomposition of signals containing both transient and stationary components.
Chui and Li [3] generalized the concept of orthogonal wavelet packets to the case of non-
orthogonal wavelet packets so that they can be applied to the spline wavelets and so
on. Shen [19] generalized the notion of univariate orthogonal wavelet packets to the case
of multivariate orthogonal wavelets such that they may be used in a wider field. Other
notable generalizations are the wavelet packets and p-framelet packets on the positive
half-line R+ [15, 16], wavelet packets on locally compact Abelian groups [18], the vector-
valued wavelet packets [8], theM -band wavelet packets [10] and the tight framelet packets
on Rd [12].

On the otherhand, the standard orthogonal wavelets are not also suitable for the
analysis of high-frequency signals with relatively narrow bandwidth. To overcome this
shortcoming, M -band orthonormal wavelets were created as a direct generalization of the
2-band wavelets [20]. The motivation for a larger M(M > 2) comes from the fact that,
unlike the standard wavelet decomposition which results in a logarithmic frequency reso-
lution, theM -band decomposition generates a mixture of logarithmic and linear frequency
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resolution and hence generates a more flexible tiling of the time-frequency plane than that
resulting from 2-band wavelet. The other significant difference between 2-band wavelets
and M -band wavelets in construction lies in the aspect that the wavelet vectors are not
uniquely determined by the scaling vector and the orthonormal bases do not consist of
dilated and shifted functions through a single wavelet, but consist of ones by using M − 1
wavelets (see [1,6,11]). It is this point that brings more freedoms for optimal wavelet
bases.

A tight wavelet frame is a generalization of an orthonormal wavelet basis by introduc-
ing redundancy into a wavelet system. Tight wavelet frames have some desirable features
such as near translation invariant wavelet frame transforms and it may also be easier
to recognize patterns in a redundant transform. A catalyst for this development is the
unitary extension principle (UEP) introduced by Ron and Shen [14], which provides a
general construction of tight wavelet frames for L2(Rn) in the shift-invariant setting, and
included the pyramidal decomposition and reconstruction filter bank algorithms. The
resulting tight wavelet frames are based on a multiresolution analysis, and the generators
are often called mother framelets. The theory of tight wavelet frames has been extensively
studied and well developed over the recent years. To mention only a few references on
tight wavelet frames, the reader is referred to [2,5,7,13] and many references therein. In
the M -band setting, Han and Cheng [9] have provided the general construction of M -
band tight wavelet frames on R by following the procedure of Daubechies et al.[5] and
Petukhov [13] via extension principles.

Recently, Shah and Debnath [17] have introduced a general construction scheme for a
class of stationaryM -band tight framelet packets in L2(R) via extension principles. They
proved a lemma on the so-called splitting trick and splited the wavelet spaces Wj,ℓ, ℓ =
0, 1, . . . , L by means of the framelet symbols mℓ(ξ), ℓ = 0, 1, . . . , L and then by recursive
decomposition, constructed various M -band tight framelet packets in L2(R). In this
paper, we construct both stationary and non-stationary M -band tight framelet packets
in L2(R) by decomposing the MRA space VJ directly for a fixed level J > 0 to the level
0 with any combined MRA mask m = [m0,m1, . . . ,mL] satisfying the unitary extension

principle condition M(ξ)M∗(ξ) = IM , where M(ξ) =
{
mℓ

(
ξ + 2πp

M

)}M−1

ℓ,p=0
.

The rest of this paper is organized as follows. In Section 2 we review some basic
facts about M -band tight wavelet frames using extension principles. In Sections 3 and
4, we prove our main results regarding the construction of stationary and non-stationary
M -band tight framelet packets.

2. Preliminaries and M-band Wavelet Frames

We begin this section by reviewing some major concepts concerning M -band wavelet
frames. In the rest of this paper,, we use N,N0,Z and R to denote the sets of all natural
numbers, non-negative integers, integers and real numbers, respectively.
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The Fourier transform of a function f ∈ L1(R) is defined as usual by:

f̂(ξ) =

∫
R
f(x) e−iξxdx, ξ ∈ R

and its inverse is

f(x) =
1

2π

∫
R
f̂(ξ) eiξxdξ, x ∈ R.

For given Ψ := {ψ1, . . . , ψL} ⊂ L2(R), define the M -band wavelet system

X(Ψ) :=
{
ψℓ,j,k : j, k ∈ Z, 1 ≤ ℓ ≤ L

}
(2.1)

where ψℓ,j,k = M j/2ψℓ(M
j. − k). The wavelet system X(Ψ) is called a M-band wavelet

frame, or simply a M -band framelet system, if there exist positive numbers 0 < A ≤ B <
∞ such that for all f ∈ L2(R)

A
∥∥f∥∥2

2
≤

L∑
ℓ=1

∑
j∈Z

∑
k∈Z

∣∣⟨f, ψℓ,j,k

⟩∣∣2 ≤ B
∥∥f∥∥2

2
. (2.2)

The largest A and the smallest B for which (2.2) holds are called wavelet frame bounds.
A wavelet frame is a tight wavelet frame if A and B are chosen so that A = B = 1 and
then generators ψ1, ψ2, . . . , ψL are often referred as M -band framelets. Moreover, if only
the upper bound holds in the above inequality, then X(Ψ) is said to be a Bessel sequence
with Bessel constant B.

The construction of framelet systems often starts with the construction of MRA,
which is built on refinable functions. A function φ ∈ L2(R) is called M -refinable if it
satisfies a refinement equation:

φ(x) =
∑
k∈Z

h0[k]φ(Mx− k), (2.3)

for some h0 ∈ l2(Z). The Fourier transform of (2.3) yields

φ̂ (ξ) = m0

(
ξ

M

)
φ̂

(
ξ

M

)
, (2.4)

where

m0(ξ) =
1

M

∑
k∈Z

h0[k]e
ikξ,

is a 2π-periodic measurable function in L∞[−π, π] and is often called the refinement
symbol of φ. In this paper, we follow [1] for the definition of an M -band MRA. Given a
M -refinable function φ ∈ L2(R) with φ̂(0) ̸= 0, the sequence of subspaces {Vj : j ∈ Z}
defined by

Vj = span
{
φ
(
M jx− k

)
: k ∈ Z

}
, j ∈ Z (2.5)

will form an MRA for L2(R). Recall that {Vj : j ∈ Z} is called an MRA if it satisfies
(i) Vj ⊂ Vj+1 for every j ∈ Z; (ii)

∪
j∈ZVj is dense in L2(R) and (iii)

∩
j∈ZVj = {0}. In
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this paper, we only consider the refinable function φ ∈ L2(R) satisfying the following
properties:

lim
ξ→0

φ̂(ξ) = 1, ξ ∈ R; (2.6)

and ∑
k∈Z

|φ̂(ξ + 2kπ)|2 ∈ L∞[−π, π]. (2.7)

Given an MRA generated by the refinable function φ, one can construct (see [5]) a set of
MRA-based framelets Ψ := {ψ1, . . . , ψL} ⊂ V1 which is defined by

ψ̂ℓ (ξ) = mℓ

(
ξ

M

)
φ̂

(
ξ

M

)
, (2.8)

where

mℓ(ξ) =
1

M

∑
k∈Z

hℓ[k]e
ikξ, ℓ = 1, . . . , L

are the 2π-periodic measurable functions in L∞[−π, π] and are called the framelet symbols
or wavelet masks. The so-called unitary extension principle (UEP) provides a sufficient
condition on Ψ such that the resultingM -band system X(Ψ) forms a tight frame of L2(R).
In this connection, an explicit construction scheme is provided in [9] for the construction
of M -band tight framelets on R.

Theorem 2.1[9]. Suppose that the refinable function φ and the framelet symbols
m0,m1, . . . ,mL satisfy (2.4)−(2.7). Define ψ1, . . . , ψL by (2.8). LetM(ξ) = {mℓ (ξ + 2πp/M)}M−1

ℓ,p=0

such thatM(ξ)M∗(ξ) = IM , for a.e ξ ∈ σ(V0) :=
{
ξ ∈ [−π, π] :

∑
k∈Z |φ̂(ξ + 2kπ)|2 ̸= 0

}
,

then M -band wavelet system X(Ψ) forms a tight wavelet frame for L2(R) with frame
bound 1.

In order to prove the main results to be presented in next sections, we need the
following lemma (see [17]) which play a key role in the construction of M -band tight
framelet packets.

Lemma 2.2[17]. Let g ∈ L2(R) and {gj,k : k ∈ Z} be a Bessel’s sequence in L2(R) i.e.,∑
k∈Z

∣∣ĝ(ξ + 2kπ)
∣∣2 ≤ B, ξ ∈ R

for any fixed j ∈ Z. Let mℓ(ξ), ℓ = 0, 1, . . . , L be the framelet symbols associated with
the refinable function φ and the tight framelets ψℓ, ℓ = 1, . . . , L such that they satisfy the
UEP condition M(ξ)M∗(ξ) = IM . Suppose

gℓ(x) =M
∑
n∈Z

mℓ(n) g(Mx− n),

Sℓ = span
{
gℓj−1,k : k ∈ Z

}
,

and S = span {gj,k : k ∈ Z} , for ℓ = 0, 1, . . . , L. Then
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(i). For ℓ = 0, 1, . . . , L, each set
{
gℓj−1,k : k ∈ Z

}
forms a Bessel’s sequence with ∥gℓ∥22 ≤ B

and ∥g∥22 ≤ B.

(ii). For any sequence d ∈ l2(Z), there exists L+ 1 sequences {dℓ}Lℓ=0, defined by

dℓ(k) =
√
M

∑
n∈Z

mℓ

(
n−Mk

)
d(n), k ∈ Z (2.9)

such that

∥d∥2
l2(Z)

=
L∑

ℓ=0

∥dℓ∥2, (2.10)

and ∑
k∈Z

d(k) gj,k =
L∑

ℓ=0

∑
k∈Z

dℓ(k) g
ℓ
j−1,k. (2.11)

(iii). In particular for any f ∈ L2(R), let d(k) = ⟨f, gj,k⟩, k ∈ Z, then d ∈ l2(Z) and
(2.9)− (2.11) gives

dℓ(k) =
⟨
f, gℓj−1,k

⟩
, k ∈ Z, ℓ = 0, 1, . . . , L,

∑
k∈Z

|⟨f, gj,k⟩ |2 =
L∑

ℓ=0

∑
k∈Z

∣∣⟨f, gℓj−1,k

⟩∣∣2 ,
and ∑

k∈Z

⟨f, gj,k⟩gj,k =
L∑

ℓ=0

∑
k∈Z

⟨
f, gℓj−1,k

⟩
gℓj−1,k

respectively.

(iv). S has the decomposition

S = S0 + S1 + · · ·+ SL.

By virtue of the Lemma 2.2, Shah and Debnath [17] have constructed various sta-
tionary tight M-band framelet packets on R by the recursive decomposition of wavelet
spaces Wj,ℓ, ℓ = 0, 1, . . . , L, j ∈ Z. For n = 0, 1, 2, . . . , the basic M -band framelet packets
associated with the refinable function φ are defined as

ω̂n(ξ) = ω̂(L+1)r+ℓ(ξ) = mℓ

(
ξ

M

)
ω̂r

(
ξ

M

)
, ℓ = 0, 1, . . . , L, r = 0, 1, 2, . . . (2.12)

3. Stationary M-band Tight Framelet Packets

Besides the recursive derivation of stationary tight M -band framelet packets introduced
in [17], stationary tightM -band framelet packets can also be constructed by decomposing
the MRA space VJ directly for a fixed level J > 0 to the level 0.



6

To do so, let X(Ψ) be the M -band tight wavelet frame for L2(R) constructed via
UEP in an MRA {Vj : j ∈ Z} generated by the M -refinable function φ with combined
UEP mask h = [h0, h1, . . . , hL]. Then, for each j ∈ Z, we define

Vj = span {φj,k : k ∈ Z} , and Wj,ℓ = span {ψℓ,j,k : k ∈ Z} , ℓ = 0, 1, . . . , L.

Therefore, in view of tight frame decomposition, we have

Vj = Vj−1 +
L∑

ℓ=1

Wj−1,ℓ. (3.1)

It is immediate from the above decomposition that these L+ 1 spaces are in general not
orthogonal. Therefore, by the repeated applications of (3.1), we can further split the Vj
spaces as:

Vj = Vj−1 +
L∑

ℓ=1

Wj−1,ℓ = Vj−2 +

j−1∑
r=j−2

L∑
ℓ=1

Wr,ℓ = · · · = Vj0 +

j−1∑
r=j0

L∑
ℓ=1

Wr,ℓ =

j−1∑
r=−∞

L∑
ℓ=1

Wr,ℓ.

(3.2)

Now, at the first level of decomposition, by Lemma 2.2, VJ is decomposed into the L+ 1
spaces WJ−1,r, r ∈ Λ1 where

Λ1 =
{
r = (rJ , rJ−1, . . . , r1) : 0 ≤ rJ ≤ L, rJ−1 = · · · = r1 = 0

}
.

For this choice of r = (rJ , rJ−1, . . . , r1), we define

r(n) = rn, n = 1, 2, . . . , J,

ωr(x) =M
∑
n∈Z

hr(1)[n]φ(Mx− n),

and
WJ−1,r := span {ωr,J−1,k : k ∈ Z} .

Therefore, for any f ∈ L2(R), we have∑
k∈Z

|⟨f, φJ,k⟩|2 =
∑
r∈Λ1

∑
k∈Z

|⟨f, ωr,J−1,k⟩|2.

At the second level of decomposition, by Lemma 2.2, each space WJ−1,r , r ∈ Λ1 is decom-
posed with h into spaces WJ−2,r′ , r

′ ∈ Λr
2, where Λr

2 is a subset of Λ2 defined by

Λr
2 = {r′ ∈ Λ2 : r

′(1) = r(1)}

and Λ2 is a J-tuple index set defined by

Λ2 =
{
r = (rJ , rJ−1, . . . , r1) : 0 ≤ rJ−1, rJ ≤ L, rJ−2 = · · · = r1 = 0

}
,
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ωr′(x) =M
∑
n∈Z

hr′(2)[n]ωr(Mx− n),

WJ−2,r′ := span {ωr′,J−2,k : k ∈ Z} .

Thus, for any f ∈ L2(R), we have∑
k∈Z

|⟨f, ωr,J−1,k⟩|2 =
∑
r′∈Λr

2

∑
k∈Z

|⟨f, ωr′,J−2,k⟩|2.

Finally, at the p-th level (2 ≤ p ≤ J) of decomposition, by Lemma 2.2, each space
WJ−p+1,r , r ∈ Λp−1 is decomposed with h into spaces WJ−p,r′ , r

′ ∈ Λr
p, where Λr

p is a
subset of Λp defined by

Λr
p = {r′ ∈ Λp : r

′(n) = r(n), for 1 ≤ n ≤ p− 1} (3.3)

and Λp is a J-tuple index set defined by

Λp =
{
r = (rJ , rJ−1, . . . , r1) : 0 ≤ rJ−p ≤ L, rJ−p = · · · = r1 = 0

}
,

ωr′(x) =M
∑
n∈Z

hr′(p)[n]ωr(Mx− n), (3.4)

WJ−p,r′ := span {ωr′,J−p,k : k ∈ Z} .

Therefore for any f ∈ L2(R), we have∑
k∈Z

|⟨f, ωr,J−p+1,k⟩|2 =
∑
r′∈Λr

p

∑
k∈Z

|⟨f, ωr′,J−p,k⟩|2.

In particular, at the J-th level of decomposition, by Lemma 2.2, each spaceW1,r , r ∈ ΛJ−1

is decomposed with h into spaces W0,r′ , r
′ ∈ Λr

J , where Λr
J is a subset of ΛJ defined by

Λr
J = {r′ ∈ ΛJ : r′(n) = r(n), for 1 ≤ n ≤ J − 1}

and ΛJ is a J-tuple index set defined by

ΛJ =
{
r = (rJ , rJ−1, . . . , r1) : 0 ≤ rt ≤ L, 1 ≤ t ≤ J

}
, (3.5)

ωr′(x) =M
∑
n∈Z

hr′(J)[n]ωr(Mx− n),

W0,r′ := span {ωr′,0,k : k ∈ Z} .

Thus for any f ∈ L2(R), we have∑
k∈Z

|⟨f, ωr,1,k⟩|2 =
∑
r′∈Λr

J

∑
k∈Z

|⟨f, ωr′,0,k⟩|2.
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Combining all the inner product equations in the above construction, we get∑
k∈Z

|⟨f, φJ,k⟩|2 =
∑
r∈ΛJ

∑
k∈Z

|⟨f, ωr,0,k⟩|2, for any f ∈ L2(R). (3.6)

In other words, we obtain another representation of VJ as

VJ := span {ωr,0,k : r ∈ ΛJ , k ∈ Z} .

Theorem 3.1. Suppose X(Ψ) is a M-band tight wavelet frame constructed via UEP
in an MRA and h = [h0, h1, . . . , hL] is the combined mask satisfying the UEP condition
M(ξ)M∗(ξ) = IM . Then for any fixed J > 0, the family of functions

F =
{
ωr,0,k : r ∈ ΛJ

}
∪
{
ψℓ,j,k : ℓ = 1, . . . , L, j ≥ J, k ∈ Z

}
forms a tight frame for L2(R), where ΛJ is a index set defined in (3.5).

Proof. Since X(Ψ) is a tight wavelet frame of L2(R), then by (3.6), we have

∥∥f∥∥2

2
=

∑
k∈Z

∣∣⟨f, φJ,k⟩
∣∣2 + L∑

ℓ=1

∑
j≥J

∑
k∈Z

∣∣⟨f, ψℓ,j,k⟩
∣∣2

=
∑
r∈ΛJ

∑
k∈Z

∣∣⟨f, ωr,0,k⟩
∣∣2 + L∑

ℓ=1

∑
j≥J

∑
k∈Z

∣∣⟨f, ψℓ,j,k⟩
∣∣2

for any f ∈ L2(R).

Similar to the recursive construction of stationary tightM -band framelet packets (see
[17]), we can obtain a stationary tight M -band framelet packets by performing various
disjoint partitions ΓJ of ΛJ with each partition separating ΛJ into disjoint subsets of the
form

Ij,r =
{
(rJ , . . . , rj+1, r

′
j, . . . , r

′
1) ∈ ΛJ : r = (rJ , . . . , rj+1, 0, . . . , 0) ∈ ΛJ−j

}
,

i.e.,

ΓJ =
{
Ij,r :

∪
Ij,r = ΛJ

}
. (3.7)

Theorem 3.2. Suppose X(Ψ) is a M-band tight wavelet frame constructed via UEP
in an MRA and h = [h0, h1, . . . , hL] is the combined mask satisfying the UEP condition
M(ξ)M∗(ξ) = IM . Let ΓJ be a disjoint partition of ΛJ , where ΛJ and ΓJ are defined in
(3.5) and (3.7), respectively. Then the collection

FΓJ
=

{
ωr,j,k : Ij,r ∈ ΓJ , k ∈ Z

}
∪
{
ψℓ,j,k : ℓ = 1, . . . , L, j ≥ J, k ∈ Z

}
generates a tight frame for L2(R).

Proof. Since ΓJ is a disjoint partition of ΛJ , for any f ∈ L2(R), we have
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Ij,r∈ΓJ

∑
k∈Z

∣∣⟨f, ωr,j,k⟩
∣∣2 =

∑
Ij,r∈ΓJ

∑
r′∈Ij,r

∑
k∈Z

∣∣⟨f, ωr′,0,k⟩
∣∣2

=
∑
r∈ΛJ

∑
k∈Z

∣∣⟨f, ωr,0,k⟩
∣∣2.

By applying Theorem 3.1, Theorem 3.2 is proved.

4. Non-stationary M-band Tight Framelet Packets

In this section, we construct the M -band tight framelet packets on R by recursively
decomposing VJ with arbitrarily chosen combined UEP masks to the coarsest scale 0.
However, in this case we may change the underlying MRA spaces {Vj : j ∈ Z} associated
with X(Ψ) if one of the low-pass filters in the set of combined UEP masks decomposing
Vj does not coincide with the refinement mask of φ which generates MRA and all the
tight M -band framelet packets obtained in this way will be called non-stationary tight
M-band framelet packets.

To do so, let X(Ψ) be the given M -band tight wavelet frame for L2(R) constructed
via UEP in an MRA {Vj}j∈R generated by theM -refinable function φ. Firstly, we decom-
pose VJ := span {φJ,k : k ∈ Z} associated with the combined mask mJ = [mr : r ∈ Λ1]
satisfying the UEP condition M(ξ)M∗(ξ) = IM ,, where Λ1 is a J-tuple index set defined
by

Λ1 =
{
(rJ , rJ−1, . . . , r1) : 0 ≤ rJ ≤ J , rJ−1 = · · · = r1 = 0

}
,

in which J is a positive constant. By invoking Lemma 2.2, we can decompose VJ into
spaces WJ−1,r , r ∈ Λ1, where

ωr(x) =M
∑
n∈Z

mr[n]φ(Mx− n),

WJ−1,r := span
{
ωr,J−1,k : k ∈ Z

}
.

Therefore for any f ∈ L2(R), we have∑
k∈Z

∣∣⟨f, φJ,k⟩
∣∣2 = ∑

r∈Λ1

∑
k∈Z

∣∣⟨f, ωr,J−1,k⟩
∣∣2.

At the second level of decomposition, by Lemma 2.2, each space WJ−1,r , r ∈ Λ1 is decom-
posed with a combined UEP mask mJ−1,r = [mr′ : r

′ ∈ Λr
2] satisfying the UEP condition

M(ξ)M∗(ξ) = IM ,, where Λr
2 is a subset of Λ2 defined by

Λr
2 = {r′ ∈ Λ2 : r

′(1) = r(1)}

and Λ2 is a J-tuple index set defined by

Λ2 =
{
(rJ , rJ−1, . . . , r1) : 0 ≤ rJ ≤ J , 0 ≤ rJ−1 ≤ J (rJ ), rJ−2 = · · · = r1 = 0

}
,
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in which J (rJ ) is a positive constant for each (rJ) into spaces WJ−2,r′ , r
′ ∈ Λr

2, where

ωr′(x) =M
∑
n∈Z

mr′ [n]ωr(Mx− n),

WJ−2,r′ := span
{
ωr′,J−2,k : k ∈ Z

}
.

Thus, for any f ∈ L2(R), we have∑
k∈Z

∣∣⟨f, ωr,J−1,k⟩
∣∣2 = ∑

r′∈Λr
2

∑
k∈Z

∣∣⟨f, ωr′,J−2,k⟩
∣∣2.

Generally, at the p-th level (2 ≤ p ≤ J) of decomposition, by Lemma 2.2, each space
WJ−p+1,r , r ∈ Λp−1 is decomposed with a combined UEP mask mJ−p+1,r = [mr′ : r

′ ∈ Λr
p]

satisfying the UEP condition M(ξ)M∗(ξ) = IM ,, where Λr
p is a subset of Λp defined by

Λr
p =

{
r′ ∈ Λp : r

′(n) = r(n), for 1 ≤ n ≤ p− 1
}

(4.1)

and Λp is a J-tuple index set defined by

Λp =
{
(rJ , rJ−1, . . . , r1) : 0 ≤ rJ ≤ J , 0 ≤ rJ−t ≤ J (rJ ,rJ−1,...,rJ−t+1),

1 ≤ t ≤ p, rJ−p = · · · = r1 = 0
}
,

in which J (rJ ,rJ−1,...,rJ−t+1) is a positive constant for each (rJ , rJ−1, . . . , rJ−t+1) into spaces
WJ−p,r′ , r

′ ∈ Λr
2, where

ωr′(x) =M
∑
n∈Z

mr′ [n]ωr(Mx− n),

WJ−p,r′ := span
{
ωr′,J−p,k : k ∈ Z

}
.

Hence, for any f ∈ L2(R), we have∑
k∈Z

∣∣⟨f, ωr,J−p+1,k⟩
∣∣2 = ∑

r′∈Λr
p

∑
k∈Z

∣∣⟨f, ωr′,J−p,k⟩
∣∣2.

In particular, at the J-th level of decomposition, by Lemma 2.2, each spaceW1,r , r ∈ ΛJ−1

is decomposed with a combined UEP mask m1,r = [mr′ : r
′ ∈ Λr

J ] satisfying the UEP
condition M(ξ)M∗(ξ) = IM ,, where Λr

J is a subset of ΛJ defined by

Λr
J =

{
r′ ∈ ΛJ : r′(n) = r(n), for 1 ≤ n ≤ J − 1

}
and ΛJ is a J-tuple index set defined by

ΛJ =
{
(rJ , rJ−1, . . . , r1) : 0 ≤ rJ ≤ J , 0 ≤ rJ−t ≤ J (rJ ,rJ−1,...,rJ−t+1), 1 ≤ t ≤ J

}
, (4.2)

in which J (rJ ,rJ−1,...,rJ−t+1) is a positive constant for each (rJ , rJ−1, . . . , rJ−t+1) into spaces
W0,r′ , r

′ ∈ Λr
J , where
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ωr′(x) =M
∑
n∈Z

mr′ [n]ωr(Mx− n),

W0,r′ := span
{
ωr′,0,k : k ∈ Z

}
.

Therefore, for any f ∈ L2(R), we have∑
k∈Z

∣∣⟨f, ωr,1,k⟩
∣∣2 = ∑

r′∈Λr
J

∑
k∈Z

∣∣⟨f, ωr′,0,k⟩
∣∣2.

Combining all the inner product equations in the above construction, we obtain∑
k∈Z

∣∣⟨f, φJ,k⟩
∣∣2 = ∑

r∈ΛJ

∑
k∈Z

∣∣⟨f, ωr,0,k⟩
∣∣2, for any f ∈ L2(R). (4.3)

In other words, we obtain another representation of VJ as

VJ := span
{
ωr,0,k : r ∈ ΛJ , k ∈ Z

}
.

Theorem 4.1. For a given M-band tight wavelet frame X(Ψ), the system

FN =
{
ωr,0,k : r ∈ ΛJ

}
∪
{
ψℓ,j,k : ℓ = 1, . . . , L, j ≥ J, k ∈ Z

}
is also a tight wavelet frame for L2(R), where ΛJ is a index set defined in (4.2).

Proof. Using (4.3) and the fact that X(Ψ) is a tight wavelet frame for L2(R), we have

∥∥f∥∥2

2
=

∑
k∈Z

∣∣⟨f, φJ,k⟩
∣∣2 + L∑

ℓ=1

∑
j≥J

∑
k∈Z

∣∣⟨f, ψℓ,j,k

⟩∣∣2

=
∑
r∈ΛJ

∑
k∈Z

∣∣⟨f, ωr,0,k⟩
∣∣2 + L∑

ℓ=1

∑
j≥J

∑
k∈Z

∣∣⟨f, ψℓ,j,k

⟩∣∣2 ,
for any f ∈ L2(R). This completes the proof of Theorem 4.1.

As in the stationary case constructed above, we can obtain a library of tightM -band
framelet packets of L2(R) by partitioning ΛJ into disjoint subsets of the form

Ij,r =
{
(rJ , . . . , rj+1, r

′
j, . . . , r

′
1) ∈ ΛJ : r = (rJ , . . . , rj+1, 0, . . . , 0) ∈ ΛJ−j

}
,

i.e.,

ΓJ =
{
Ij,r :

∪
Ij,r = ΛJ

}
. (4.4)

Theorem 4.2. For a given M -band tight wavelet frame X(Ψ), let ΓJ be a disjoint
partition ΛJ , where ΛJ and ΓJ are defined in (4.2) and (4.4), respectively. Then the
system
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FN ΓJ
=

{
ωr,j,k : Ij,r ∈ ΓJ , k ∈ Z

}
∪
{
ψℓ,j,k : ℓ = 1, . . . , L, j ≥ J, k ∈ Z

}
also generates a tight frame for L2(R).

Proof. Since ΓJ is a disjoint partition of ΛJ , for any f ∈ L2(R), we have∑
Ij,r∈ΓJ

∑
k∈Z

∣∣⟨f, ωr,j,k⟩
∣∣2 =

∑
Ij,r∈ΓJ

∑
r′∈Ij,r

∑
k∈Z

∣∣⟨f, ωr′,0,k⟩
∣∣2

=
∑
r∈ΛJ

∑
k∈Z

∣∣⟨f, ωr,0,k⟩
∣∣2.

By applying Theorem 4.1, Theorem 4.2 is proved.
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