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Abstract. The purpose of this paper is to present some new couple
fixed point theorems for multivalued mappings which satisfy generalized
weak contraction in ordered metric spaces. The results of this paper are
generalizations of the main results of [3, 5, 9]. As an application, we
show existence and uniqueness of solutions of a class of nonlinear integral
equations.
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1. Introduction

The existence of a fixed point and a couple fixed point for contraction
type mappings in partially ordered metric spaces has been considered
recently by Agarwal et al.[1], Bhaskar and Lakshmikantham [2], Nieto
and Lopez [6, 7], Lakshmikantham and Ćirić [4], Samet [9], Harjani,
Lopez and Sadarangani[3], Luong and Thuan[5] and Rus[8], and proved
some fixed point and couple fixed point theorems for mappings having
monotone property. For various new results see [11, 12, 13, 14, 15,
16, 17]. In this work we prove some new couple fixed point theorems
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for multivalued mappings which satisfy generalized weak contraction in
ordered metric spaces. Let (X,�) be a partially ordered metric space.
For x, y ∈ X, set:

[x, y] = {z ∈ X|x � z � y},

(−∞, x] = {z ∈ X|z � x},

[x,∞) = {z ∈ X|z � x}.

Let (X,�) be a partially ordered set and A : X ×X −→ X, we say that
A has the mixed monotone property if A is nondecreasing in the first
argument and nonincreasing in the second argument, i.e.

x1, x2, y ∈ X, x1 � x2 =⇒ A(x1, y) � A(x2, y),

and
y1, y2, x ∈ X, y1 � y2 =⇒ A(x, y1) � A(x, y2).

A pair (x, y) ∈ X × X is called a coupled fixed point of a bivariate
mapping A if

A(x, y) = x and A(y, x) = y.

Also a point x ∈ X is called a fixed point of A if A(x, x) = x.
Let (X, d) be a metric space and ϕ : X −→ R be a function. Define

the relation ”�” on X by

x � y ⇐⇒ d(x, y) ≤ ϕ(x)− ϕ(y).

Then ”�” is a partial order on X and (X,�) is called an ordered metric
space induced by ϕ (see [10]).

In [10] Zhang proved the following interesting result on the existence
coupled fixed point for multivalued mappings.

Theorem 1.1. [10] Let (X, d) be a complete metric space, ϕ : X −→ R
be a function bounded below, and � be the order in X induced by ϕ.
Let F : X ×X −→ 2X be a multivalued mapping and M = {(x, y)|x �
y and F (x, y) ∩ [x,+∞) 6= ∅ and F (y, x) ∩ (−∞, y] 6= ∅}. Suppose that:
(i) F is upper semi-continuous, that is, xn ∈ X, yn ∈ X and zn ∈
F (xn, yn), with xn −→ x0, yn −→ y0 and zn −→ z0 imply z0 ∈ F (x0, y0);
(ii) For each (x, y) ∈ M , there is (u, v) ∈ M such that u ∈ F (x, y) ∩
[x,+∞) and v ∈ F (y, x) ∩ (−∞, y];
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(iii) M 6= ∅. Then F has a couple fixed point (x∗, y∗), i.e. x∗ ∈ F (x∗, y∗)
and y∗ ∈ F (y∗, x∗), and there exist two sequences {xn} and {yn} with

xn−1 � xn ∈ F (xn−1, yn−1) , yn−1 � yn ∈ F (yn−1, xn−1)

such that xn −→ x∗ and yn −→ y∗.

Definition 1.2. A double sequence of real numbers is a function S :
N × N −→ R. We shall use the notation {S(n,m)} or {Sn,m} . We
say that a double sequence {Sn,m} converges to a ∈ R and we write
Sn,m −→ a, if the following condition is satisfied: For every ε > 0, there
exists N ∈ N such that

|Sn,m − a| < ε, for all n,m ≥ N.

Definition 1.3. [3] An altering distance function is a function θ :
[0,∞) −→ [0,∞) satisfy:
(i) θ is continuous and nondecreasing,
(ii) θ(t) = 0⇐⇒ t = 0.

Definition 1.4. [3] Let Ψ denote all functions ψ : [0,∞) −→ [0,∞)
satisfy:
lim
s−→p

ψ(s) > 0 for all p > 0 and lim
s−→0

ψ(s) = 0.

Notice that if θ is an altering distance function therefore θ ∈ Ψ. Here
we define a new class of control functions.

Definition 1.5. Let Φ denote all functions φ : [0,∞)×[0,∞) −→ [0,∞)
satisfy:
(i) φ is nondecreasing for each argument,
(ii) φ(t1 + t2, s1 + s2) ≤ φ(t1, s1) + φ(t2, s2),
(iii) φ(tn,m, sn,m) −→ 0⇐⇒ sn,m −→ 0 , tn,m −→ 0,
(iv) φ(t, s) = 0⇐⇒ t = s = 0.

Example 1.6. If a, b ∈ R+, n ∈ N then φ1(t, s) = at + bs, φ2 =
max(at, bs), φ3 = ln(at+bs+1), φ4 = n

√
ax+ by and φ5 = n

√
max(ax, by)

are in Φ .

Definition 1.7. Let (X,�) be a partially ordered set. We say that
F : X×X −→ 2X has condition C if {xn} be an increasing sequence and
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{yn} be a decreasing sequence in X and zn ∈ F (xn, yn) such that xn −→
x0, yn −→ y0 and zn −→ z0 implies z0 ∈ F (x0, y0), and H(x, y) :=
F (y, x) has this property too.

Remark 1.8. Notice that if F is upper semi-continuous then F has
condition C but the converse is needs not to be true.

2. Couple Fixed Point Theorem andMeir-Keeler
Condition

In this section we introduce the notion of φ-Meir-Keeler type functions
and prove a couple fixed point theorem. Let

MF = {(x, y)|F (x, y) ∩ [x,+∞) 6= ∅ and F (y, x) ∩ (−∞, y] 6= ∅}.

Definition 2.1. Let (X,�) be a partially ordered set, d a metric on
X and φ ∈ Φ. We say that a mapping F : X × X −→ 2X is φ-
Meir-Keeler function if for each ε > 0 there exists δ = δ(ε) > 0
such that x1 � x2, y1 � y2, (xi, yi) ∈ MF , pi ∈ F (xi, yi)

⋂
[xi,+∞),

qi ∈ F (yi, xi)
⋂

(−∞, yi] for i = 1, 2 and

ε ≤ φ(d(x1, x2), d(y1, y2)) < ε+ δ,

then we have
φ(d(p1, p2), d(q1, q2)) < ε.

Theorem 2.2. Let (X,�) be a partially ordered set and d a complete
metric on X. Let F : X × X −→ 2X be a multivalued mapping and
M 6= ∅. Suppose that:
(i) F has condition C and there exists φ ∈ Φ such that F be a φ-Meir-
Keeler function;
(ii) For each (x, y) ∈MF , there is (u, v) ∈M such that u ∈ F (x, y)⋂

[x,+∞) and v ∈ F (y, x)
⋂

(−∞, y]. Then F has a coupled fixed point
(x∗, y∗) and there exist two sequences {xn} and {yn} with

xn−1 � xn ∈ F (xn−1, yn−1) , yn−1 � yn ∈ F (yn−1, xn−1),

such that xn −→ x∗ and yn −→ y∗.
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Proof. Take (x0, y0) ∈ MF . From (ii) there exists (x1, y1) ∈ MF such
that x1 ∈ F (x0, y0), x0 � x1, y1 ∈ F (y0, x0) and y1 � y0. Again
from (ii) there exists (x2, y2) ∈ MF such that x2 ∈ F (x1, y1), x1 � x2,
y2 ∈ F (y1, x1) and y2 � y1. Continuing this procedure, we get two
sequences {xn} and {yn} satisfying (xn, yn) ∈MF ,

xn−1 � xn ∈ F (xn−1, yn−1), n ≥ 1,

and
yn−1 � yn ∈ F (yn−1, xn−1), n ≥ 1.

If (xn, yn) = (xn−1, yn−1) then xn ∈ F (xn−1, yn−1) = F (xn, yn) and yn ∈
F (yn−1, xn−1) = F (yn, xn) which imply (xn, yn) is a coupled fixed point.
Without restriction of the generality, we can suppose that (xn, yn) 6=
(xn−1, yn−1).

claim 1: φ(d(xn, xn+1), d(yn, yn+1)) −→ 0 as n −→∞.
Define εn = φ(d(xn, xn−1), d(yn, yn−1)) and δn = δ(εn). By definition of
xn, yn and εn < δn + εn we have

εn+1 = φ(d(xn+1, xn), d(yn+1, yn)) < εn = φ(d(xn, xn−1), d(yn, yn−1)).

So εn is a positive decreasing sequence of real numbers thus, there is an
r ≥ 0 such that εn −→ r. We shall show that r = 0. If r 6= 0, there
exists N0 such that n > N0 implies r ≤ εn < r + δ(r), therefore by the
definition of φ-Meir-Keeler, εn+1 < r which is a contradiction, so r = 0.

claim 2: {xn} and {yn} are Cauchy sequences.
Let ε > 0, it follows from claim1 that there exists k ∈ N such that

φ(d(xn, xn+1), d(yn, yn+1)) < δ(ε). (1)

Without restriction of the generality, we can suppose that δ(ε) ≤ ε.
Consider the set Λ ⊂ X ×X is defined by:

Λ :={(x, y)| y � yk, x � xk, (x, y) 6= (xk, yk) and φ(d(xk, x), d(yk, y)) <

ε+ δ(ε)}.

We prove that if u ∈ F (x, y)
⋂

[x,+∞), v ∈ F (y, x)
⋂

(−∞, y] then

(u, v) ∈ Λ whenever (x, y) ∈ Λ. (2)



70 R. ALLAHYARI

Let (x, y) ∈ Λ, by the property of subadditivity of φ and triangle in-
equality, we have:

φ(d(xk, u), d(yk, v)) ≤φ(d(xk, xk+1), d(yk, yk+1)) + φ(d(xk+1, u), d(yk+1, v))

<δ(ε) + φ(d(xk+1, u), d(yk+1, v)).

Now we distinguish two cases:
I) If φ(d(xk, x), d(yk, y)) ≤ ε then by the definition of φ-Meir-Keeler we
get

φ(d(xk, u), d(yk, v)) < δ(ε) + ε. (3)

II) If ε < φ(d(x, xk), d(y, yk)) ≤ ε+ δ(ε) then

φ(d(xk+1, u), d(yk+1, v) < ε,

hence

φ(d(xk, u), d(yk, v)) ≤ δ(ε) + φ(d(xk+1), u)), d(yk+1, v)) ≤ δ(ε) + ε. (4)

Therefor by (3), (4) we have

φ(d(xk, u), d(yk, v)) ≤ δ(ε) + ε. (5)

Now we show that u � x, v � y and (u, v) 6= (xk, yk). Since u ∈ [x,∞),
v ∈ (−∞, y] and (x, y) 6= (xk, yk) we get

xk � x � u , yk � y � v and (u, v) 6= (xk, yk). (6)

By (5) and (6) we deduce that (2) holds. Using (1) and (2) we have
(xk+1, yk+1) ∈ Λ. Thus, by induction (xn, yn) ∈ Λ for every n ≥ k.
Again using the property of subadditivity of φ and triangle inequality
we get

φ(d(xn, xm), d(yn, ym)) ≤ φ(d(xk, xm), d(yk, ym)) + φ(d(xk, xn), d(yk, yn))

< 2(ε+ δ(ε))

≤ 4ε,

for all n,m > k. Then, φ(d(xn, xm), d(yn, ym)) −→ 0 and by property
(iii) of Definition 1.7 we have d(xn, xm) −→ 0 and d(yn, ym) −→ 0, hence
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{xn} and {yn} are Cauchy sequences. Since (X, d) is a complete metric
space, there exists (x∗, y∗) such that

xn −→ x∗, yn −→ y∗ as n −→∞,

and with the condition C we have x∗ ∈ F (x∗, y∗) and y∗ ∈ F (y∗, x∗).
This shows that F has a coupled fixed point and there exist two se-
quences {xn} and {yn} with

xn−1 � xn ∈ F (xn−1, yn−1) , yn−1 � yn ∈ F (yn−1, xn−1)

such that xn −→ x∗ and yn −→ y∗. �

Definition 2.3. Let (X,�) be a partially ordered, d a metric on X and
φ ∈ Φ. We say that a mapping A : X × X −→ X is φ-Meir-Keeler
type function if for each ε > 0 there exists δ = δ(ε) > 0 such that
x, y, u, v ∈ X, v � y, x � u and ε ≤ φ(d(x, u), d(y, v)) < ε + δ imply
that φ(d(A(x, y), A(u, v)), d(A(y, x), A(v, u)) < ε.

Corollary 2.4. Let (X,�) be a partially ordered set, d a complete metric
on X and φ ∈ Φ. Let A : X×X −→ X be a φ-Meir-Keeler type function
that has the mixed monotone property. Suppose either:
(a) A is continuous, or
(b) X has the following properties:

(i) If (xn) is a nondecreasing sequence that is convergent to x then
xn � x for all n.

(ii) If (yn) is a nonincreasing sequence that is convergent to y then
yn � y for all n.
If there exist x0, y0 ∈ X such that x0 � A(x0, y0) and A(y0, x0) � y0,
then A has couple fixed point (x∗, y∗), and there exist two sequences {xn}
and {yn} with xn−1 � xn, yn−1 � yn such that xn −→ x∗ and yn −→ y∗.

Proof. Define F : X ×X −→ 2X such that F (x, y) = {A(x, y)}.
By the assumption, there exist x0, y0 ∈ X such that x0 � A(x0, y0) and
A(y0, x0) � y0. Hence, M 6= ∅. Now for (x, y) ∈ MF , since A has the
mixed monotone property we have

A(x, y) � A(A(x, y), A(y, x)) and A(y, x) � A(A(y, x), A(x, y)),
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Thus

A(A(x, y), A(y, x)) ∈ F (A(x, y), A(y, x)) ∩ [A(x, y),+∞), (7)

and

A(A(y, x), A(x, y)) ∈ F (A(y, x), A(x, y)) ∩ (−∞, A(y, x)]. (8)

Now from (7) and (8) we have (A(x, y), A(y, x)) ∈ MF , A(x, y) ∈
F (x, y) ∩ [x,+∞) and A(y, x) ∈ F (y, x) ∩ [−∞, y). It follows that F
satisfies condition (ii) of Theorem 2.2. Now we prove that F satisfies
condition (i) of Theorem 2.2. For this purpose, let condition (a) holds,
so F satisfies condition C. On the other hand, since A is a φ-Meir-Keeler
type function F satisfies condition (i) of Theorem 2.2.
Now suppose that (b) holds. If {xn} is a nondecreasing sequence, then
{yn} is a nonincreasing sequence and zn ∈ F (xn, yn) such that xn −→ x0,
yn −→ y0 and zn −→ z0. We have two cases:
Case 1: There exists a subsequence {n(k)} such that (xn(k), yn(k)) =
(x0, y0). Since zn(k) ∈ F (xn(k), yn(k)) = F (x0, y0) = {A(x0, y0)} and
zn −→ z0 therefore z0 ∈ F (x0, y0).
Case 2: there exists k > 0 such that for all n > k, (xn, yn) 6= (x0, y0).
Since zn = A(xn, yn), d(xn, x0) −→ 0 and d(yn, y0) −→ 0 then by prop-
erty (iii) of Definition 1.7 and the property that A is a φ-Meir-Keeler
type function, we have

φ(d(A(x0, y0), A(xn, yn)), d(A(y0, x0), A(yn, xn))) < φ(d(xn, x0),

d(yn, y0)) −→ 0,

which implies that

d(A(x0, y0), A(xn, yn)) −→ 0.

So z0 = A(x0, y0) and by a similar reasoning H(x, y) := F (y, x) has this
property too. Therefore, A has a couple fixed point (x∗, y∗) and there
exist two sequences {xn} and {yn} by xn−1 � xn and yn−1 ≥ yn such
that xn −→ x∗ and yn −→ y∗. �
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Let (x,�) be a partially ordered set. We endow the product space
X ×X with the following partial order:

(x, y), (u, v) ∈ X ×X, (u, v) � (x, y)⇐⇒ u � x, v � y.

Suppose that the product space X × X endowed with the above men-
tioned partial order has the following property:
(H): For (x, y), (u, v) ∈ X ×X there exists (z, t) ∈ X ×X that is com-
parable to (x, y) and (u, v).

Theorem 2.5. Adding condition (H) to the hypotheses of Corollary 2.4
we obtain uniqueness of the couple fixed point of A.

Proof. Suppose that (x, y) and (z, t) are couple fixed points of A, that
is x = A(x, y), y = A(y, x), z = A(z, t) and t = A(t, z). Let (u, v) be
an element of X ×X and comparable to (x, y) and (z, t). Assume that
(x, y) � (u, v). We construct sequences (un) and (vn) defined inductively
by u0 = u, v0 = v, un+1 = A(un, vn) and vn+1 = A(vn, un). Similar to
Theorem 4 in [3] we have (x, y) � (un, vn) for all n ∈ N. Now, since
un � x and vn � y, using the φ-Meir-Keeler condition we have

φ(d(x, un+1), d(y, vn+1)) =φ(d(A(x, y), A(un, vn)), d(A(y, x), A(vn, un)))

<φ(d(x, un), d(y, vn)).

Thus φ(d(x, un), d(y, vn)) is decreasing and with similar argument we
have φ(d(x, un), d(y, vn)) −→ 0. Therefore by property (iii) of Defini-
tion 1.7 we have d(x, un) −→ 0 and d(y, vn)) −→ 0 this gives us un −→ x
and vn −→ y.
Using a similar argument for (z, t) we can obtain un −→ z and vn −→ t.
Now uniqueness of the limit gives x = z and y = t. The proof of the
other cases is similar. �

Corollary 2.4 with a condition that x0, y0 are comparable gives a fixed
point for the mapping A.

Theorem 2.6. In addition to the hypotheses of Corollary 2.4, suppose
that x0, y0 ∈ X are comparable. Then x∗ = y∗.
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Proof. We assume that x0 � y0 (a similar argument applies for x0 �
y0). Using the mixed monotone property of A, we have xn � yn and by
definition of φ-Meir-Keeler

φ(d(xn, yn), d(xn, yn)) < φ(d(xn−1, yn−1), d(xn−1, yn−1)).

Therefore φ(d(xn, yn), d(xn, yn)) is decreasing and converges to some r
and similar to Theorem 2.2 we have r = 0. So by property (iii) of
Definition 1.7 and using the triangular inequality we have

d(x∗, y∗) ≤ d(x∗, xn) + d(xn, yn) + d(y∗, yn) −→ 0,

therefore x∗ = y∗. �

3. Couple Fixed Point Theorem and T(θ,φ,ψ) Con-
dition

In this section we give some couple fixed point result for mappings sat-
isfying generalized weak contraction in the setting of complete partially
ordered metric spaces.

Definition 3.1. Let (X,�) be a partially ordered set, d a metric on
X, φ ∈ Φ, ψ ∈ Ψ and θ is an altering function. We say that F :
X ×X −→ 2X has condition T(θ,φ,ψ), if x1 � x2, y1 � y2, (xi, yi) ∈ M ,
pi ∈ F (xi, yi)

⋂
[xi,+∞) and qi ∈ F (yi, xi)

⋂
(−∞, yi] for i = 1, 2 then

θ(φ(d(p1, q1), d(p2, q2)) ≤ θ(φ(d(x1, x2), d(y1, y2)) (9)

−ψ(φ(d(x1, x2), d(y1, y2)).

Theorem 3.2. Let (X,�) be a partially ordered set and d a complete
metric on X. Let F : X × X −→ 2X be a multivalued mapping with
MF 6= ∅. suppose that:
(i) F has conditions C and T(θ,φ,ψ) for some φ ∈ Φ, ψ ∈ Ψ and θ is an
altering function ,
(ii) For each (x, y) ∈MF , there is (u, v) ∈MF such that u ∈ F (x, y)

⋂
[x,+∞), v ∈ F (y, x)

⋂
(−∞, y].
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Then F has a coupled fixed point (x∗, y∗) and there exist two se-
quences {xn} and {yn} with

xn−1 � xn ∈ F (xn−1, yn−1) and yn−1 � yn ∈ F (yn−1, xn−1),

such that xn −→ x∗ and yn −→ y∗.

Proof. Similar to the proof of Theorem 2.2 we get two sequences {xn}
and {yn} satisfying (xn, yn) ∈MF ,

xn−1 � xn ∈ F (xn−1, yn−1), n ≥ 1,

and

yn−1 � yn ∈ F (yn−1, xn−1), n ≥ 1,

and without restriction of the generality, we can suppose that (xn, yn) 6=
(xn−1, yn−1).

claim 1: φ(d(xn, xn+1), d(yn, yn+1)) −→ 0 as n −→∞.
Define εn = φ(d(xn, xn−1), d(yn, yn−1)). By definition of xn, yn and from
(i) we have

θ(εn) ≤ θ(εn−1)− ψ(εn−1) < θ(εn−1).

Since θ is nondeceareasing, so εn is a positive decreasing sequence of
real numbers thus, there is an r ≥ 0 such that εn −→ r. We shall show
that r = 0. Suppose, to the contrary, that r 6= 0. Taking the limit as
n −→ ∞(equivalently, εn −→ r) of both sides of (9) and have in mind
that we suppose lims−→p φ(s) > 0 for all p > 0 and θ is continuous, then
we have

θ(r) = lim
n−→∞

θ(εn) ≤ lim
n−→∞

[θ(εn−1)− ψ(εn−1)] < θ(r),

which is a contradiction, hence r = 0.
claim 2: φ(d(xn, xm), d(yn, ym)) −→ 0.
Suppose to the contrary, there exists an ε > 0 for which we can find
subsequences {xn(k)}, {xm(k)} of {xn} and {yn(k)}, {ym(k)} of {yn} with
n(k) > m(k) ≥ k such that

φ(d(xn(k), xm(k)), d(yn(k), ym(k))) ≥ ε. (10)
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Further, corresponding to m(k), we can choose n(k), in such a way that
it is the smallest integer with n(k) > m(k) ≥ k and satisfy (10). Then

φ(d(xn(k)−1, xm(k)), d(yn(k)−1, ym(k))) < ε. (11)

Using (10), (11), and the property of subadditivity of φ and triangle
inequality, we have:

ε ≤ rk := φ(d(xn(k), xm(k)), d(yn(k), ym(k)))

≤ φ(d(xn(k)−1, xm(k)), d(yn(k)−1, ym(k)))

+ φ(d(xn(k)−1, xn(k)), d(yn(k)−1, yn(k)))

≤ ε+ φ(d(xn(k)−1, xn(k)), d(yn(k)−1, yn(k))).

Letting k −→∞ and using claim 1

lim
k−→∞

rk = lim
k−→∞

φ(d(xn(k), xm(k)), d(yn(k), ym(k))) = ε. (12)

Again, the property of subadditivity of φ and triangle inequality

φ(d(xn(k), xm(k)), d(yn(k), ym(k)))

≤ φ(d(xn(k), xn(k)−1), d(yn(k), yn(k)−1))

+ φ(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))

+ φ(d(xm(k)−1, xm(k)), d(ym(k)−1, ym(k))) (13)

≤ εn(k) + εm(k)

+ φ(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))

and

φ(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))

≤ φ(d(xn(k), xn(k)−1), d(yn(k), yn(k)−1))

+ φ(d(xn(k), xm(k)), d(yn(k), ym(k))) (14)

+ φ(d(xm(k)−1, xm(k)), d(ym(k)−1, ym(k)))

≤ εn(k) + εm(k)

+ φ(d(xn(k), xm(k)), d(yn(k), ym(k))).

Thus, by (13), (14), φ(d(xn(k), xm(k)), d(yn(k), ym(k))) −→ ε and εn −→ 0
we get

φ(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)) −→ ε. (15)
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Since n(k) > m(k) hence xn(k) � xm(k) and yn(k) � ym(k). Using the
property of θ and condition T(θ,φ,ψ), we have

θ(φ(d(xn(k), xm(k)), d(yn(k), ym(k)))) ≤
θ(φ(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)))

−ψ(φ(d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1))).

Letting k −→∞, by (12) and (15) we get

θ(ε) ≤ θ(ε)− ψ(ε) < θ(ε),

which is a contradiction, so φ(d(xn, xm), d(yn, ym)) −→ 0.
Claim 2 and property (iii) in Definition 1.7 show that {xn} and {yn} are
Cauchy sequences. Since (X, d) is a complete metric space, there exists
(x∗, y∗) such that

xn −→ x∗, yn −→ y∗ as n −→∞.

By using condition (C) we have x∗ ∈ F (x∗, y∗) and y∗ ∈ F (y∗, x∗). This
implies F has coupled fixed point and there exist two sequences {xn}
and {yn} with

xn−1 � xn ∈ F (xn−1, yn−1), yn−1 � yn ∈ F (yn−1, xn−1)

such that xn −→ x∗ and yn −→ y∗. �

Definition 3.3. Let (X,�) be a partially ordered set, d a metric on X,
φ ∈ Φ, ψ ∈ Ψ and θ an altering function. We say that A : X×X −→ X
has condition T(θ,φ,ψ) if x � u, y � v then

θ(φ(d(A(x, y), A(u, v)), d(A(y, x), A(v, u)))) ≤θ(φ(d(x, u), d(y, v)))

− ψ(φ(d(x, u), d(y, v))).

Corollary 3.4. Let (X,�) be a partially ordered set, d a complete metric
on X, φ ∈ Φ, ψ ∈ Ψ and θ is an altering function. Let A : X×X −→ X
has condition T(θ,φ,ψ) and the mixed monotone property. Suppose either:
(a) A is continuous, or
(b)X̄ has the following properties:

(i) if (xn) is a nondecreasing sequence that is convergent to x then
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xn � x for all n;
(ii) if (yn) is a nonincreasing sequence that is convergent to y then

yn � y for all n.
If there exist x0, y0 ∈ X such that x0 � A(x0, y0) and A(y0, x0) � y0,
then A has couple fixed point and there exist two sequences {xn} and
{yn} with xn−1 � xn, yn−1 � yn such that xn −→ x∗ and yn −→ y∗.

Proof. The proof is similar to the proof of Corollary 2.4. �

As a corollary of Theorem 3.2 we have the main result of [5].

Corollary 3.5. [5] Let (X,�) be a partially ordered set and suppose
there is a metric d on X such that (X, d) is a complete metric space. Let
F : X ×X −→ X be a mapping having the mixed monotone property on
X such that there exist two elements x0, y0 ∈ X with

x0 ≤ A(x0, y0) and A(y0, x0) ≤ y0.

Suppose that there exist θ is altering distance function and ψ ∈ Ψ such
that

θ(d(A(x, y), A(u, v))) ≤ 1

2
θ(d(x, u) + d(y, v))− ψ(

d(x, u) + d(y, v)

2
)

for all x, y, u, v ∈ X with x � u and y � v. Suppose either:
(a) A is continuous, or
(b)X̄ has the following properties:

(i) if (xn) is a nondecreasing sequence that is convergent to x then
xn � x for all n,

(ii) if (yn) is a nonincreasing sequence that is convergent to y then
yn � y for all n.
then there exist x∗, y∗ ∈ X such that

x∗ = A(x∗, y∗) and A(y∗, x∗) = y∗.

That is, F has a coupled fixed point in X.

As a corollary of Theorem 3.2 we have the main result of [3].
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Corollary 3.6. (Theorems 2 and 3 in [3]) Let (X,�) be a partially
ordered set and suppose there is a metric d on X such that (X, d) is
a complete metric space. Let F : X × X −→ X be a mapping having
the mixed monotone property on X such that there exist two elements
x0, y0 ∈ X with

x0 ≤ A(x0, y0) and A(y0, x0) ≤ y0.
Suppose that there exist θ is altering distance function and ψ ∈ Ψ such
that

θ(d(A(x, y), A(u, v))) ≤ 1

2
θ(max(d(x, u), d(y, v)))−

ψ(max(d(x, u), d(y, v)))

for all x, y, u, v ∈ X with x � u and � v. Suppose either:
(a) A is continuous, or
(b) X has the following properties:

(i) if (xn) is a nondecreasing sequence that is convergent to x then

xn � x for all n,
(ii) if (yn) is a nonincreasing sequence that is convergent to y then

yn � y for all n.

then there exist x∗, y∗ ∈ X such that

x∗ = A(x∗, y∗) and A(y∗, x∗) = y∗.

That is, F has a coupled fixed point in X.

Theorem 3.7. Adding condition (H) to the assumptions of Corollary
3.4 we obtain uniqueness of the couple fixed point of A.

Proof. The proof is similar to the proof of Theorem 2.5. �

Theorem 3.8. In addition to the assumptions of Corollary 3.4 suppose
that x0, y0 ∈ X are comparable. Then x∗ = y∗.

Proof. The proof is similar to the proof of Theorem 2.6. �
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4. Existence of Solution for a Class of Nonlinear
Integral Equation

In this section, we study the existence of a unique solution to a class of
nonlinear integral equations, as an application of our results.

Definition 4.1. Let Θ denote all functions ϑ : [0,∞) −→ [0,∞) satisfy:
(i) ϑ is nondecreasing;
(ii) There exists ψ ∈ Ψ such that ϑ(x) = x− ψ(x).

Consider the following integral equation:

x(t) = G(t,

∫ 1

0
k1(t, s)

(
f(s, x(s)) + g(s, x(s))

)
ds,∫ 1

0
k2(t, s)

(
f(s, x(s)) + g(s, x(s))

)
ds) (16)

for all t ∈ [0, 1]. We will analyze Eq.(16) under the following assump-
tions:
(i) G : [0, 1]×R×R −→ R is nondecreasing in the second argument and
nonincreasing in the third argument such that

|G(x, y, z)−G(x, y′, z′)| ≤M1|y − y′|+M2|z − z′|, (17)

where 0 ≤M1,M2 ≤ 1;
(ii) ki : [0, 1] × [0, 1] −→ R (i = 1, 2) are continuous, k1(t, s) ≥ 0 and
k2(t, s) ≤ 0;
(iii) f, g : [0, 1]× R −→ R are continuous functions;
(iv) There exist λ, µ > 0 and ϑ ∈ Θ such that for all x, y ∈ R and x ≥ y

0 ≤ f(t, x)− f(t, y) ≤ λ ϑ(x− y), (18)

and

− µ ϑ(x− y) ≤ g(t, x)− g(t, y) ≤ 0; (19)

(v) There exist α, β ∈ C[0, 1] such that α(t) ≤ β(t),

α(t) ≤ G(t,

∫ 1

0
k1(t, s)

(
f(s, α(s)) + g(s, β(s))

)
ds,∫ 1

0
k2(t, s)

(
f(s, β(s)) + g(s, α(s))

)
ds),
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and

G(

∫ 1

0
k1(t, s)

(
f(s, β(s)) + g(s, α(s))

)
ds,∫ 1

0
k2(t, s)

(
f(s, α(s)) + g(s, β(s))

)
ds) ≤ β(t);

(vi) 2 max(λ, µ)‖k1 − k2‖∞ ≤ 1 where

‖k1 − k2‖∞ = sup{k1(t, s)− k2(t, s) : t, s ∈ [0, 1]}.

Previously, we considered the space X = C[0, 1] of continuous function
defined on [0, 1] with the standard metric given by

d(x, y) = sup
t∈[0,1]

|x(t)− y(t)|, for x, y ∈ C[0, 1].

This space can also be equipped with a partial order given by
x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t), for any t ∈ [0, 1].

Clearly, in X ×X we can consider the order given by
(x, y), (u, v) ∈ X ×X, (x, y) ≤ (u, v)⇐⇒ x ≤ u and y ≥ v.

Now since for any x, y ∈ X we have that max(x, y),min(x, y) ∈ X,
condition (H) is satisfied.
Moreover, in [7] it is proved that (C[0, 1],�) satisfies the assumption
(16).
Now, we formulate our result.

Theorem 4.2. Under assumptions (i)− (vi), Eq.(16) has a unique so-
lution in C[0, 1].

Proof. Define F : X ×X −→ X

F (x, y)(t) = G(t,

∫ 1

0
k1(t, s)

(
f(s, x(s)) + g(s, y(s))

)
ds,∫ 1

0
k2(t, s)

(
f(s, y(s)) + g(s, x(s))

)
ds)

for t ∈ [0, 1]. By virtue of our assumptions, F is well defined (this
means that for (x, y) ∈ X then F (x, y) ∈ X). By (18), (19), G is
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nondecreasing in the second argument and nonincreasing in the third
argument. Therefore, F has the mixed monotone property.

Now, for x ≥ u , y ≤ v, since F has mixed monotone property, we
have

d = d(F (x, y), F (u, v))

= sup
t∈[0,1]

| F (x, y)(t)− F (u, v)(t) |

= sup
t∈[0,1]

∣∣∣G(t,

∫ 1

0
k1(t, s)

(
f(s, x(s)) + g(s, y(s))

)
ds,∫ 1

0
k2(t, s)

(
f(s, y(s)) + g(s, x(s))

)
ds)

− G(t,

∫ 1

0
k1(t, s)

(
f(s, u(s)) + g(s, v(s))

)
ds,∫ 1

0
k2(t, s)

(
f(s, v(s)) + g(s, u(s))

)
ds)
∣∣∣.

So by (17), (18) and (19) we get

d ≤ sup
t∈[0,1]

[
M1

∫ 1

0
k1(t, s)

[(
f(s, x(s))− f(s, u(s))

)
−
(
g(s, v(s))− g(s, y(s))

)]
ds (20)

−M2

∫ 1

0
k2(t, s)

[(
f(s, v(s))− f(s, y(s))

)
−
(
g(s, x(s))− g(s, u(s))

)]
ds

]
.

By our assumptions (notice that x ≥ u and y ≤ v)

f(s, x(s))− f(s, u(s)) ≤ λ ϑ(x(s)− u(s)),

g(s, v(s))− g(s, y(s)) ≥ −µ ϑ(v(s)− y(s)),

f(s, v(s))− f(s, y(s)) ≤ λ ϑ(v(s)− y(s)),

g(s, x(s))− g(s, u(s)) ≥ −µ ϑ(x(s)− u(s)).
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Taking into account these last inequalities, k2 ≤ 0 and (20) we get

d(F (x, y), F (u, v)) ≤ sup
t∈[0,1]

[
M1

∫ 1

0
k1(t, s)

[
λ ϑ(x(s)− u(s))

+ µ ϑ(v(s)− y(s))
]
ds

+ M2

∫ 1

0
−k2(t, s)

[
λ ϑ(v(s)− y(s)) + µ ϑ(x(s)− u(s))

]
ds

]
.

Since 0 ≤M1,M2 ≤ 1, so we have

d(F (x, y), F (u, v)) ≤ max(λ, µ) sup
t∈[0,1]

[∫ 1

0
(k1(t, s)− k2(t, s))

ϑ(x(s)− u(s)) +

∫ 1

0
(k1(t, s)− k2(t, s))ϑ(y(s)− v(s))

]
.

(21)

Define

(I)=

∫ 1

0
(k1(t, s)− k2(t, s)) ϑ(x(s)− u(s)),

(II)=

∫ 1

0
(k1(t, s)− k2(t, s)) ϑ(y(s)− v(s)).

Using the Cauchy-Schwartz inequality in (I) we obtain

(I) ≤
(∫ 1

0
(k1(t, s)− k2(t, s))2ds

) 1
2
(∫ 1

0
ϑ(x(s)− u(s))2ds

) 1
2

≤ ‖ k1 − k2 ‖∞ .ϑ(‖u− x‖)
= ‖ k1 − k2 ‖∞ .ϑ(d(x, u)). (22)

Similarly, we can obtain the following estimate for (II):

(II) = ‖ k1 − k2 ‖∞ .ϑ(d(y, v)). (23)
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From (21)-(23) we have

d(F (x, y), F (u, v)) ≤ max(λ, µ) ‖ k1 − k2 ‖∞
[
ϑ(d(x, u))

+ ϑ(d(y, v))

]
≤ 2 max(λ, µ) ‖ k1 − k2 ‖∞ max

[
ϑ(d(x, u))), ϑ(d(y, v))

]
.

The last inequality and assumption (vi) give us

d(F (x, y), F (u, v)) ≤ max
[
ϑ(d(x, u))), ϑ(d(y, v))

]
≤ ϑ

(
max

[
d(x, u), d(y, v)

])
.

Hence

d(F (x, y), F (u, v)) ≤ ϑ

(
max

[
d(x, u), d(y, v)

])
.

Similarly,

d(F (y, x), F (v, u)) ≤ ϑ

(
max

[
d(x, u)), d(y, v))

])
.

Therefore, we have

max
[
d(F (y, x), F (v, u)), d(F (x, y), F (u, v))

]
≤ ϑ

(
max

[
d(x, u)),

d(y, v))
])
.

Put θ = x, φ(x, y) = max(x, y), obviously, φ ∈ Φ, ψ ∈ Ψ and θ is an
altering distance function. This proves that the operator F satisfies the
contractive condition appearing in Corollary 3.4. Finally, let α, β be the
functions appearing in assumption (v). Then, by (v), we get

α ≤ F (α, β) and F (β, α) ≤ β.
Theorem 3.7 gives us that F has a unique coupled fixed point (x, y) ∈
X × X. Since α ≤ β, Theorem 3.8 says us that x = y. This implies
x = F (x, x) and x is the unique solution of Eq. (16). This completes
the proof. �
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