Journal of Mathematical Extension

Vol. 9, No. 4, (2015), 81-97

ISSN: 1735-8299

URL: http://www.ijmex.com

Characterization of Generalized Derivations Associate with Hochschild 2-Cocycles on Triangular Banach Algebras

M. Kanani Arpatapeh*

Payame Noor University

A. Jabbari

Mashhad Branch, Islamic Azad University

Abstract. Let \mathcal{A} and \mathcal{B} be unital Banach algebras and \mathcal{M} be a left \mathcal{A} -module and right B-module. We consider generalized derivations associate with Hochschild 2-cocycles on triangular Banach algebra T (related to \mathcal{A} , \mathcal{B} and \mathcal{M}). We characterize this new version of generalized derivations on triangular Banach algebras and we obtain some results for $l^1-direct$ summands of Banach algebras.

AMS Subject Classification: 47B47; 46H25

Keywords and Phrases: Banach algebra, cocycle, generalized derivation, triangular Banach algebra

1. Introduction

Let \mathcal{A} be a Banach algebra, and let X be a Banach \mathcal{A} -bimodule. A derivation is a linear map $D: \mathcal{A} \longrightarrow X$ such that

$$D(ab) = a \cdot D(b) + D(a) \cdot b$$
 $(a, b \in A).$

For $x \in X$, set $ad_x : a \mapsto a \cdot x - x \cdot a$, $\mathcal{A} \longrightarrow X$. Then ad_x is the inner derivation induced by x.

Received: April 2015; Accepted: June 2015

^{*}Corresponding author

The linear space of bounded derivations from \mathcal{A} into X denoted by $Z^1(\mathcal{A},X)$ and the linear subspace of inner derivations denoted by $N^1(\mathcal{A},X)$. We consider the quotient space $H^1(\mathcal{A},X)=Z^1(\mathcal{A},X)/N^1(\mathcal{A},X)$, called the first Hochschild cohomology group of \mathcal{A} with coefficients in X.

Let \mathcal{A} be a Banach algebra, and let X be a Banach \mathcal{A} -bimodule. By $B^n(\mathcal{A}, X)$, we mean that the space of bounded n-linear maps form \mathcal{A}^n into X. A 2-linear map $\gamma \in B^2(\mathcal{A}, X)$ is called Hochschild 2-cocycle if it satisfies in the following equation

$$a \cdot \gamma(b,c) - \gamma(ab,c) + \gamma(a,bc) - \gamma(a,b) \cdot c = 0,$$

for every $a,b,c \in \mathcal{A}$. The space of Hochschild 2-cocycles is a linear subspace of $B^2(\mathcal{A},X)$, which denoted by $Z^2(\mathcal{A},X)$. Here in after we used the word 2-cocycle instead Hochschild 2-cocycle. Let $\varphi \in \Delta \mathcal{A}$, where $\Delta(\mathcal{A})$ is the carrier space of \mathcal{A} , then A 2-linear map $\gamma \in B^2(\mathcal{A},X)$ is called *point 2-cocycle* at φ if it satisfies in the following equation

$$\varphi(a)\gamma(b,c) - \gamma(ab,c) + \gamma(a,bc) - \gamma(a,b)\varphi(c) = 0,$$

for every $a, b, c \in \mathcal{A}$. For given $T \in B(\mathcal{A}, X)$, we let

$$(\delta^1 T)(a,b) = a \cdot T(b) - T(ab) + T(a) \cdot b,$$

for every $a, b \in \mathcal{A}$ and $\delta^1 : B(\mathcal{A}, X) \longrightarrow B^2(\mathcal{A}, X)$. Then the maps $\{\delta^1 T : T \in B(\mathcal{A}, X)\}$ is a linear subspace of $Z^2(\mathcal{A}, X)$. These maps are called 2-coboundaries. The collection of all 2-coboundaries is denoted by $N^2(\mathcal{A}, X)$.

An additive map $D: \mathcal{A} \longrightarrow X$ called generalized 2-cocycle derivation if there exists a 2-cocycle γ such that

$$D(xy) = x \cdot D(y) + D(x) \cdot y + \gamma(x, y) \tag{1}$$

for every $x,y\in\mathcal{A}$. Similarly, an additive map $D:\mathcal{A}\longrightarrow X$ called generalized 2-cocycle Jordan derivation if there exists a 2-cocycle γ such that

$$D(x^2) = x \cdot D(x) + D(x) \cdot y + \gamma(x, x) \tag{2}$$

for every $x \in \mathcal{A}$. This definitions introduced by Nakajima in [5] and he gave some examples for this new definition. In [3] authors considered

this new notion for some algebras such as von-Neumann and they showed that generalized Jordan derivation of this type from von-Neumann algebras into themselves is a generalized derivation (under some conditions). Similar result obtained by authors in [4] for triangular algebras. An additive map $D: \mathcal{A} \longrightarrow X$ called generalized 2-coboundry derivation if there exists a 2-coboundry δ^1 such that

$$D(xy) = x \cdot D(y) + D(x) \cdot y + (\delta^1 F)(x, y), \tag{3}$$

for every $x, y \in \mathcal{A}$ and $F \in B(\mathcal{A}, X)$. Let \mathcal{A} and \mathcal{B} be unital Banach algebras with units $e_{\mathcal{A}}$ and $e_{\mathcal{B}}$, respectively. Suppose that \mathcal{M} is a unital Banach \mathcal{A}, \mathcal{B} -bimodule. We define the triangular Banach algebra

$$\mathcal{T} = \left[egin{array}{cc} \mathcal{A} & \mathcal{M} \ \mathcal{B} \end{array}
ight],$$

with the sum and product being giving by the usual 2×2 matrix operations and internal module actions. The norm on \mathcal{T} is

$$\| \begin{bmatrix} a & m \\ b \end{bmatrix} \| = \|a\|_{\mathcal{A}} + \|m\|_{\mathcal{M}} + \|b\|_{\mathcal{B}}.$$

The Banach algebra \mathcal{T} as a Banach space is isomorphic to the ℓ^1 -direct sum of \mathcal{A}, \mathcal{B} and \mathcal{M} . Forrest and Marcoux introduced and studied derivation of triangular Banach algebras in [1].

Let \mathcal{T} be a triangular Banach algebras defined as above, and let $\gamma \in B^2(\mathcal{T}, \mathcal{T})$. Let $\gamma_1 : \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{A}, \gamma_2 : \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{M}$ and $\gamma_3 : \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{B}$ denote the coordinate functions associated to γ . That is

$$\gamma(T_1, T_2) = \begin{bmatrix} \gamma_1(T_1, T_2) & \gamma_2(T_1, T_2) \\ \gamma_3(T_1, T_2) \end{bmatrix},$$

for $T_1, T_2 \in \mathcal{T}$. Let $\gamma : \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{T}$ be a 2-cocycle. The coordinate function γ_1 is said to correspond to a 2-cocycle (2-coboundary) on $\mathcal{A} \times \mathcal{A}$ if there exists a 2-cocycle (2-coboundary) $\tau_{\mathcal{A}}$ on $\mathcal{A} \times \mathcal{A}$ such that $\gamma_1(T_1, T_2) = \tau_{\mathcal{A}}(a_1, a_2)$, where $T_i = \begin{bmatrix} a_i & m_i \\ b_i \end{bmatrix}$, for i = 1, 2.

Similarly, γ_3 is said to correspond to a 2-cocycle (2-coboundary) on $\mathcal{B} \times \mathcal{B}$ if there exists a 2-cocycle (2-coboundary) $\tau_{\mathcal{B}}$ on $\mathcal{B} \times \mathcal{B}$ such that $\gamma_3(T_1, T_2) = \tau_{\mathcal{B}}(b_1, b_2)$.

Definition 1.1. Let $\gamma \in B^2(\mathcal{T}, \mathcal{T})$, $\gamma_1 : \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{A}$, $\gamma_2 : \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{M}$ and $\gamma_3 : \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{B}$ denote the coordinate functions associated to γ . That is

$$\gamma(T_1, T_2) = \begin{bmatrix} \gamma_1(T_1, T_2) & \gamma_2(T_1, T_2) \\ & \gamma_3(T_1, T_2) \end{bmatrix},$$

for $T_1, T_2 \in \mathcal{T}$. Let $\gamma \in B^2(\mathcal{T}, \mathcal{T})$ be a 2-cocycle (2-coboundries). We say that γ_1 corresponds to a 2-cocycle (2-coboundries) on $\mathcal{A} \times \mathcal{A}$ if there exists a 2-cocycle (2-coboundries) $\tau_{\mathcal{A}}$ on $\mathcal{A} \times \mathcal{A}$ such that $\gamma_1(T_1, T_2) = \tau_{\mathcal{A}}(a_1, a_2)$, where $T_i = \begin{bmatrix} a_i & m_i \\ b_i \end{bmatrix}$, for i = 1, 2.

Similarly, we say that γ_3 corresponds to a 2-cocycle (2-coboundries) on $\mathcal{B} \times \mathcal{B}$ if there exists a 2-cocycle (2-coboundries) $\tau_{\mathcal{B}}$ on $\mathcal{B} \times \mathcal{B}$ such that $\gamma_3(T_1, T_2) = \tau_{\mathcal{B}}(b_1, b_2)$. Second order cohomology of triangular Banach algebras studied by Forrest and Marcoux in [2].

Lemma 1.2. Let $\gamma \in B^2(\mathcal{T}, \mathcal{T})$ be a 2-cocycle. Then there are continuous corresponding 2-cocycles $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$ on $\mathcal{A} \times \mathcal{A}$ and $\mathcal{B} \times \mathcal{B}$, respectively. Furthermore

- 1. $\tau_{\mathcal{A}}(a,0) = \tau_{\mathcal{B}}(0,b) = \tau_{\mathcal{A}}(e_{\mathcal{A}},0) = \tau_{\mathcal{B}}(0,e_{\mathcal{B}}) = \tau_{\mathcal{A}}(0,0) = \tau_{\mathcal{B}}(0,0) = 0.$
- 2. $\gamma_2(e_{11}, e_{11}) = 0, \gamma_2(e_{11}, 0) = 0.$
- 3. $\gamma_2(e_{22}, e_{22}) = 0$.
- 4. $\tau_{\mathcal{A}}(a, e_{\mathcal{A}}) = 0$ and $\tau_{\mathcal{A}}(e_{\mathcal{A}}, e_{\mathcal{A}}) = 0$.
- 5. $\tau_{\mathcal{B}}(b, e_{\mathcal{B}}) = 0$ and $\tau_{\mathcal{B}}(e_{\mathcal{B}}, e_{\mathcal{B}}) = 0$.
- 6. $\gamma_2(b_{22}, e_{22}) = 0$ and $\gamma_2(e_{11}, a_{11}) = 0$.

where
$$e_{11} = \begin{bmatrix} e_{\mathcal{A}} & 0 \\ & 0 \end{bmatrix}$$
, $e_{22} = \begin{bmatrix} 0 & 0 \\ & e_{\mathcal{B}} \end{bmatrix}$, $b_{22} = \begin{bmatrix} 0 & 0 \\ & b \end{bmatrix}$, $a_{11} = \begin{bmatrix} a & 0 \\ & 0 \end{bmatrix}$ and for $a \in \mathcal{A}, b \in \mathcal{B}$.

Proof. Define $\tau_{\mathcal{A}}: \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ and $\tau_{\mathcal{B}}: \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{B}$ as follows

$$\tau_{\mathcal{A}}(a_1, a_2) = e_{\mathcal{A}} \gamma \left(\left[\begin{array}{cc} a_1 & 0 \\ & 0 \end{array} \right], \left[\begin{array}{cc} a_2 & 0 \\ & 0 \end{array} \right] \right) e_{\mathcal{A}},$$

and

$$\tau_{\mathcal{B}}(b_1, b_2) = e_{\mathcal{B}} \gamma \left(\begin{bmatrix} 0 & 0 \\ & b_1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ & b_2 \end{bmatrix} \right) e_{\mathcal{B}}.$$

It is easy to check that $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$ are 2-cocycle. Continuity of $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$ is clear. Since $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$ are 2-linear so (1) is clear. For the rest consider the following

$$\gamma(\left[\begin{array}{cc}e_{\mathcal{A}} & 0\\ & 0\end{array}\right],\left[\begin{array}{cc}0 & 0\\ & e_{\mathcal{B}}\end{array}\right])=\left[\begin{array}{cc}\tau_{\mathcal{A}}(e_{\mathcal{A}},0) & \gamma_{2}(e_{11},e_{22})\\ & \tau_{\mathcal{B}}(0,e_{\mathcal{B}})\end{array}\right],$$

and

$$e_{11}\gamma(e_{11}, e_{22}) - \gamma(e_{11}, e_{22}) + \gamma(e_{11}, 0) - \gamma(e_{11}, e_{11})e_{22} = 0.$$

Then,

$$\left[\begin{array}{cc} \tau_{\mathcal{A}}(e_{\mathcal{A}},0) & \gamma_{2}(e_{11},e_{22}) \\ 0 \end{array}\right] - \left[\begin{array}{cc} \tau_{\mathcal{A}}(e_{\mathcal{A}},0) & \gamma_{2}(e_{11},e_{22}) \\ \tau_{\mathcal{B}}(0,e_{\mathcal{B}}) \end{array}\right]$$

$$+ \begin{bmatrix} \tau_{\mathcal{A}}(e_{\mathcal{A}}, 0) & \gamma_{2}(e_{11}, 0) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & \gamma_{2}(e_{11}, e_{11}) \\ 0 \end{bmatrix} = 0.$$

This follows that $\gamma_2(e_{11}, e_{11}) + \gamma_2(e_{11}, 0) = 0$. From

$$e_{11}\gamma(e_{11},e_{11}) - \gamma(e_{11},e_{11}) + \gamma(e_{11},e_{11}) - \gamma(e_{11},e_{11})e_{11} = 0,$$

we conclude that $\gamma_2(e_{11}, e_{11}) = 0$. This implies that $\gamma_2(e_{11}, 0) = 0$. Similarly, one can show that $\gamma_2(e_{22}, e_{22}) = 0$. From

$$a_{11}\gamma(e_{11},e_{11}) - \gamma(a_{11},e_{11}) + \gamma(a_{11},e_{11}) - \gamma(a_{11},e_{11})e_{11} = 0,$$

we conclude that $\tau_A(a, e_A) = 0$. Since a was arbitrary so $\tau_A(e_A, e_A) = 0$. By the similar methods, we obtain the other cases. \square

Let \mathcal{T} be a triangular Banach algebra and let \mathcal{X} be a unital Banach \mathcal{T} -bimodule, then we use these notations in this paper: $\mathcal{X}_{\mathcal{A}\mathcal{A}} = e_{\mathcal{A}} \cdot \mathcal{X} \cdot e_{\mathcal{A}}$, $\mathcal{X}_{\mathcal{B}\mathcal{B}} = e_{\mathcal{B}} \cdot \mathcal{X} \cdot e_{\mathcal{B}}$, $\mathcal{X}_{\mathcal{A}\mathcal{B}} = e_{\mathcal{A}} \cdot \mathcal{X} \cdot e_{\mathcal{B}}$, and $\mathcal{X}_{\mathcal{B}\mathcal{A}} = e_{\mathcal{B}} \cdot \mathcal{X} \cdot e_{\mathcal{A}}$. If \mathcal{X} replaced by \mathcal{T} , we have $\mathcal{X}_{\mathcal{A}\mathcal{A}} = \mathcal{A}$, $\mathcal{X}_{\mathcal{B}\mathcal{B}} = \mathcal{B}$, $\mathcal{X}_{\mathcal{A}\mathcal{B}} = \mathcal{M}$, and $\mathcal{X}_{\mathcal{B}\mathcal{A}} = 0$.

Lemma 1.3. Let \mathcal{X} be a \mathbb{T} -bimodule, $\delta_{\mathcal{A}} : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{X}_{\mathcal{A}\mathcal{A}}$, $\delta_{\mathcal{B}} : \mathcal{B} \times \mathcal{B} \longrightarrow \mathcal{X}_{\mathcal{B}\mathcal{B}}$ be 2-cocycles, and $\mathcal{X}_{\mathcal{A}\mathcal{B}} = 0$. Then there exists a 2-cocycle mapping from $\mathbb{T} \times \mathbb{T}$ into \mathcal{X} .

Proof. For every
$$\begin{bmatrix} a_1 & m_1 \\ & b_1 \end{bmatrix}$$
, $\begin{bmatrix} a_2 & m_2 \\ & b_2 \end{bmatrix} \in \mathbb{T}$, define $D: \mathbb{T} \times \mathbb{T} \longrightarrow \mathcal{X}$

by

$$D\left(\left[\begin{array}{cc}a_1 & m_1\\ & b_1\end{array}\right], \left[\begin{array}{cc}a_2 & m_2\\ & b_2\end{array}\right]\right) = \delta_{\mathcal{A}}(a_1, a_2) + \delta_{\mathcal{B}}(b_1, b_2).$$

We claim that D is a 2-cocycle. Because for every

$$T_i = \begin{bmatrix} a_i & m_i \\ b_i \end{bmatrix}, (i = 1, 2, 3), \text{ we have}$$

$$\begin{split} T_1 \cdot D(T_2, T_3) - D(T_1 T_2, T_3) + D(T_1, T_2 T_3) - D(T_1, T_2) \cdot T_3 \\ &= T_1 \cdot (\delta_{\mathcal{A}}(a_2, a_3) + \delta_{\mathcal{B}}(b_2, b_3)) - \delta_{\mathcal{A}}(a_1 a_2, a_3) - \delta_{\mathcal{B}}(b_1 b_2, b_3) \\ &+ \delta_{\mathcal{A}}(a_1, a_2 a_3) + \delta_{\mathcal{B}}(b_1, b_2 b_3) - (\delta_{\mathcal{A}}(a_1, a_2) + \delta_{\mathcal{B}}(b_1, b_2)) \cdot T_3 \\ &= T_1 \cdot \tau(e_{\mathcal{A}}) \delta_{\mathcal{A}}(a_2, a_3) - \delta_{\mathcal{A}}(a_1 a_2, a_3) + \delta_{\mathcal{A}}(a_1, a_2 a_3) - \delta_{\mathcal{A}}(a_1, a_2) \cdot e_{\mathcal{A}} \cdot T_3 \\ &+ T_1 \cdot \tau(e_{\mathcal{B}}) \delta_{\mathcal{B}}(b_2, b_3) - \delta_{\mathcal{B}}(b_1 b_2, b_3) + \delta_{\mathcal{B}}(b_1, b_2 b_3) - \delta_{\mathcal{B}}(b_1, b_2) \cdot e_{\mathcal{B}} \cdot T_3 \\ &= a_1 \cdot \delta_{\mathcal{A}}(a_2, a_3) - \delta_{\mathcal{A}}(a_1 a_2, a_3) + \delta_{\mathcal{A}}(a_1, a_2 a_3) - \delta_{\mathcal{A}}(a_1, a_2) \cdot a_3 \\ &+ b_1 \cdot \delta_{\mathcal{B}}(b_2, b_3) - \delta_{\mathcal{B}}(b_1 b_2, b_3) + \delta_{\mathcal{B}}(b_1, b_2 b_3) - \delta_{\mathcal{B}}(b_1, b_2) \cdot b_3 \\ &= 0. \end{split}$$

This proves our claim. \Box

Lemma 1.4. [2, Lemma 3.1] Let $\delta_{\mathcal{A}}$ and $\delta_{\mathcal{B}}$ be 2-coboundaries on $\mathcal{A} \times \mathcal{A}$ and $\mathcal{B} \times \mathcal{B}$, respectively. Then there exists a 2-coboundaries δ on $\mathbb{T} \times \mathbb{T}$ such that δ_1 corresponds to $\delta_{\mathcal{A}}$ and δ_2 corresponds to $\delta_{\mathcal{B}}$, where δ_1 and δ_2 are coordinate functions associated to δ .

2. Characterization of Generalized 2-Cocycle Derivations

In this section we prove main results of paper. We characterize generalized 2-cocycle derivations on triangular Banach algebras and by taking $\mathcal{M} = 0$ we consider generalized 2-cocycle derivations on $\mathcal{A} \oplus_1 \mathcal{B}$, where \mathcal{A} and \mathcal{B} are Banach algebras.

Theorem 2.1. Let \mathbb{T} be a triangular Banach algebra and \mathcal{A}, \mathcal{B} be unital Banach algebras with units $e_{\mathcal{A}}$ and $e_{\mathcal{B}}$, respectively, and M be a unitary Banach \mathcal{A}, \mathcal{B} -bimodule. Let $D: \mathbb{T} \longrightarrow \mathbb{T}$ be a generalized 2-cocycle derivation associate with γ , then there exist element $m_D \in M$, corresponding 2-cocycles $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$ on $\mathcal{A} \times \mathcal{A}$ and $\mathcal{B} \times \mathcal{B}$, respectively, and mappings $D_{\mathcal{A}}: \mathcal{A} \longrightarrow \mathcal{A}$, $D_{\mathcal{B}}: \mathcal{B} \longrightarrow \mathcal{B}$ and $\tau_{\mathcal{M}}: \mathcal{M} \longrightarrow \mathcal{M}$ such that

1.
$$D\left(\begin{bmatrix} e_{\mathcal{A}} & 0 \\ & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & m_D \\ & 0 \end{bmatrix}$$
.

2.
$$D\left(\begin{bmatrix} a & 0 \\ & 0 \end{bmatrix}\right) = \begin{bmatrix} D_{\mathcal{A}}(a) & am_D + \gamma_2(a_{11}, e_{11}) \\ 0 \end{bmatrix}$$
.

3.
$$D\left(\begin{bmatrix}0&0\\&e_{\mathcal{B}}\end{bmatrix}\right) = \begin{bmatrix}0&-m_D-\gamma_2(e_{11},e_{22})\\0&\end{bmatrix}$$
.

4.
$$D\left(\begin{bmatrix}0&0\\&b\end{bmatrix}\right) = \begin{bmatrix}0&-m_Db - \gamma_2(e_{11},b_{22})\\D_{\mathcal{B}}(b)\end{bmatrix}$$

5.
$$D\left(\begin{bmatrix}0&m\\&0\end{bmatrix}\right) = \begin{bmatrix}0&\tau_{\mathcal{M}}(m)\\&0\end{bmatrix}$$
.

$$6. \ \gamma_1(\left[\begin{array}{cc} a & 0 \\ & 0 \end{array}\right], \left[\begin{array}{cc} 0 & m \\ & 0 \end{array}\right]) = 0, \ \gamma_3(\left[\begin{array}{cc} a & 0 \\ & 0 \end{array}\right], \left[\begin{array}{cc} 0 & m \\ & 0 \end{array}\right]) = 0 \ and$$

$$\tau_{\mathcal{M}}(a \cdot m) = a \cdot \tau_{\mathcal{M}}(m) + D_{\mathcal{A}}(a) \cdot m + \gamma_{2}(\begin{bmatrix} a & 0 \\ & 0 \end{bmatrix}, \begin{bmatrix} 0 & m \\ & 0 \end{bmatrix}).$$

7.
$$\gamma_1(\begin{bmatrix} 0 & m \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ b \end{bmatrix}) = 0, \ \gamma_3(\begin{bmatrix} 0 & m \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ b \end{bmatrix}) = 0 \ and$$

$$\tau_{\mathcal{M}}(m \cdot b) = \tau_{\mathcal{M}}(m) \cdot b + m \cdot D_{\mathcal{B}}(b) + \gamma_2(\begin{bmatrix} 0 & m \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ b \end{bmatrix}).$$

Furthermore, $D_{\mathcal{A}}: \mathcal{A} \longrightarrow \mathcal{A}$ and $D_{\mathcal{B}}: \mathcal{B} \longrightarrow \mathcal{B}$ are generalized 2-cocycle derivations associate with 2-cocycles $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$, respectively.

Proof. Let γ be the 2-cocycle related to D. Let γ_1, γ_2 and γ_3 be the coordinate functions associated to γ . By Lemma 1.2, there exists corresponding 2-cocycles τ_A and τ_B , respectively on $\mathcal{A} \times \mathcal{A}$ and $\mathcal{B} \times \mathcal{B}$ (continuity of these maps do not need).

(1) Put
$$e_{11} = \begin{bmatrix} e_{\mathcal{A}} & 0 \\ & 0 \end{bmatrix}$$
 and let $D(e_{11}) = \begin{bmatrix} p & q \\ & r \end{bmatrix}$. Then by Lemma 1.2

$$D(e_{11}) = D(e_{11}e_{11}) = e_{11}D(e_{11}) + D(e_{11})e_{11} + \gamma(e_{11}, e_{11})$$

$$= \begin{bmatrix} e_{\mathcal{A}} & 0 \\ & 0 \end{bmatrix} \begin{bmatrix} p & q \\ & r \end{bmatrix} + \begin{bmatrix} p & q \\ & r \end{bmatrix} \begin{bmatrix} e_{\mathcal{A}} & 0 \\ & 0 \end{bmatrix}$$

$$+ \begin{bmatrix} \gamma_{1}(e_{11}, e_{11}) & 0 \\ & \gamma_{3}(e_{11}, e_{11}) \end{bmatrix}$$

$$= \begin{bmatrix} 2p & q \\ & 0 \end{bmatrix} + \begin{bmatrix} \tau_{\mathcal{A}}(e_{\mathcal{A}}, e_{\mathcal{A}}) & 0 \\ & \tau_{\mathcal{B}}(0, 0) \end{bmatrix}$$

$$= \begin{bmatrix} 2p & q \\ & 0 \end{bmatrix}.$$

Above relations follow that

$$D(e_{11}) = \left[\begin{array}{cc} 0 & q \\ & 0 \end{array} \right].$$

Set $q = m_D$, then

$$D(e_{11}) = \left[\begin{array}{cc} 0 & m_D \\ & 0 \end{array} \right].$$

(2) Put
$$a_{11} = \begin{bmatrix} a & 0 \\ & 0 \end{bmatrix}$$
 and $e_{11} = \begin{bmatrix} e_{\mathcal{A}} & 0 \\ & 0 \end{bmatrix}$. Let $D(a_{11}) = \begin{bmatrix} p & q \\ & r \end{bmatrix}$, then

$$D(a_{11}) = D(a_{11}e_{11}) = a_{11}D(e_{11}) + D(a_{11})e_{11} + \gamma(a_{11}, e_{11})$$

$$= \begin{bmatrix} a & 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & m_D \\ 0 \end{bmatrix} + \begin{bmatrix} p & q \\ r \end{bmatrix} \begin{bmatrix} e_A & 0 \\ 0 \end{bmatrix}$$

$$+ \begin{bmatrix} \gamma_1(a_{11}, e_{11}) & \gamma_2(a_{11}, e_{11}) \\ \gamma_3(a_{11}, e_{11}) \end{bmatrix}$$

$$= \begin{bmatrix} p & am_D \\ 0 \end{bmatrix} + \begin{bmatrix} \tau_A(a, e_A) & \gamma_2(a_{11}, e_{11}) \\ \tau_B(0, 0) \end{bmatrix}$$

$$= \begin{bmatrix} p & am_D + \gamma_2(a_{11}, e_{11}) \\ 0 \end{bmatrix}.$$

Therefore

$$D(a_{11}) = \begin{bmatrix} D_{\mathcal{A}}(a) & am_D + \gamma_2(a_{11}, e_{11}) \\ 0 \end{bmatrix},$$

where $D_{\mathcal{A}}(a) = p$.

(3) Set
$$e_{22} = \begin{bmatrix} 0 & 0 \\ & e_{\mathcal{B}} \end{bmatrix}$$
 and let $D(e_{22}) = \begin{bmatrix} p & q' \\ & r \end{bmatrix}$. Then

$$D(e_{22}) = D(e_{22}e_{22}) = e_{22}D(e_{22}) + D(e_{22})e_{22} + \gamma(e_{22}, e_{22})$$

$$= \begin{bmatrix} 0 & 0 \\ & e_{\mathcal{B}} \end{bmatrix} \begin{bmatrix} p & q' \\ & r \end{bmatrix} + \begin{bmatrix} p & q' \\ & r \end{bmatrix} \begin{bmatrix} 0 & 0 \\ & e_{\mathcal{B}} \end{bmatrix}$$

$$+ \begin{bmatrix} \gamma_{1}(e_{22}, e_{22}) & \gamma_{2}(e_{22}, e_{22}) \\ & \gamma_{3}(e_{22}, e_{22}) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & q' \\ & 2r \end{bmatrix} + \begin{bmatrix} \tau_{\mathcal{A}}(0, 0) & \gamma_{2}(e_{22}, e_{22}) \\ & \tau_{\mathcal{B}}(e_{\mathcal{B}}, e_{\mathcal{B}}) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & q' \\ & 2r \end{bmatrix}.$$

Above relations follow that

$$D(e_{22}) = \left[\begin{array}{cc} 0 & q' \\ & 0 \end{array} \right].$$

Then

$$0 = D(0) = D(e_{11}e_{22}) = e_{11}D(e_{22}) + D(e_{11})e_{22} + \gamma(e_{11}, e_{22})$$

$$= \begin{bmatrix} 0 & q' \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & m_D \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & \gamma_2(e_{11}, e_{22}) \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & m_D + q' + \gamma_2(e_{11}, e_{22}) \\ 0 \end{bmatrix}, \qquad (1)$$

and

$$0 = D(0) = D(e_{22}e_{11}) = e_{22}D(e_{11}) + D(e_{22})e_{11} + \gamma(e_{22}, e_{11})$$
$$= \begin{bmatrix} 0 & \gamma_2(e_{22}, e_{11}) \\ 0 & \end{bmatrix}.$$

This follows that $\gamma_2(e_{22}, e_{11}) = 0$. Then we have $q' = -m_D - \gamma_2(e_{11}, e_{22})$.

(4) Set
$$e_{22} = \begin{bmatrix} 0 & 0 \\ e_{\mathcal{B}} \end{bmatrix}$$
, $b_{22} = \begin{bmatrix} 0 & 0 \\ b \end{bmatrix}$ and let $D(b_{22}) = \begin{bmatrix} p & q \\ r \end{bmatrix}$. Then by Lemma 1.2 we have

$$D(b_{22}) = D(b_{22}e_{22}) = b_{22}D(e_{22}) + D(b_{22})e_{22} + \gamma(b_{22}, e_{22})$$

$$= \begin{bmatrix} 0 & 0 \\ b_{22} \end{bmatrix} \begin{bmatrix} 0 & -m_D - \gamma_2(e_{11}, e_{22}) \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} p & q \\ r \end{bmatrix} \begin{bmatrix} 0 & 0 \\ e_{\mathcal{B}} \end{bmatrix}$$

$$+ \begin{bmatrix} \gamma_1(b_{22}, e_{22}) & \gamma_2(b_{22}, e_{22}) \\ \gamma_3(b_{22}, e_{22}) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & q \\ r \end{bmatrix} + \begin{bmatrix} \tau_{\mathcal{A}}(0, 0) & \gamma_2(b_{22}, e_{22}) \\ \tau_{\mathcal{B}}(b, e_{\mathcal{B}}) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & q \\ r \end{bmatrix}.$$

By $0 = D(0) = D(e_{11}b_{22})$ we conclude that $q = -m_D b - \gamma_2(e_{11}, b_{22})$. If we set $D_{\mathcal{B}}(b) = r$ we obtain the desire.

(5) Set
$$e_{11} = \begin{bmatrix} e_{\mathcal{A}} & 0 \\ & 0 \end{bmatrix}$$
, $e_{22} = \begin{bmatrix} 0 & 0 \\ & e_B \end{bmatrix}$, $m_{12} = \begin{bmatrix} 0 & m \\ & 0 \end{bmatrix}$ and let

$$D(m_{12}) = \begin{bmatrix} p & q \\ & r \end{bmatrix}$$
. Then by Lemma 1.2 we have

$$D(m_{12}) = D(m_{12}e_{22}) = m_{12}D(e_{22}) + D(m_{12})e_{22} + \gamma(m_{12}, e_{22})$$

$$= \begin{bmatrix} 0 & m \\ & 0 \end{bmatrix} \begin{bmatrix} 0 & -m_D - \gamma_2(e_{11}, e_{22}) \\ & 0 \end{bmatrix} + \begin{bmatrix} p & q \\ & r \end{bmatrix} \begin{bmatrix} 0 & 0 \\ & e_{\mathcal{B}} \end{bmatrix}$$

$$+ \begin{bmatrix} \gamma_1(m_{12}, e_{22}) & \gamma_2(m_{12}, e_{22}) \\ & \gamma_3(m_{12}, e_{22}) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & q \\ & r \end{bmatrix} + \begin{bmatrix} \tau_{\mathcal{A}}(0, 0) & \gamma_2(m_{12}, e_{22}) \\ & \tau_{\mathcal{B}}(0, e_{\mathcal{B}}) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & q \\ & r \end{bmatrix}.$$

This shows that $\gamma_2(m_{12}, e_{22}) = 0$. On the other hand

$$D(m_{12}) = D(e_{11}m_{12}) = e_{11}D(m_{12}) + D(e_{11})m_{12} + \gamma(e_{11}, m_{12})$$

$$= \begin{bmatrix} e_{\mathcal{A}} & 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & q \\ r \end{bmatrix} + \begin{bmatrix} 0 & m_D \\ 0 \end{bmatrix} \begin{bmatrix} 0 & m \\ 0 \end{bmatrix}$$

$$+ \begin{bmatrix} \gamma_1(e_{11}, m_{12}) & \gamma_2(e_{11}, m_{12}) \\ \gamma_3(e_{11}, m_{12}) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & q \\ 0 \end{bmatrix} + \begin{bmatrix} \tau_{\mathcal{A}}(e_{\mathcal{A}}, 0) & \gamma_2(e_{11}, m_{12}) \\ \tau_{\mathcal{B}}(0, 0) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & q + \gamma_2(e_{11}, m_{12}) \\ 0 \end{bmatrix}.$$

This implies that $\gamma_2(e_{11}, m_{12}) = 0$. Thus,

$$D(m_{12}) = \left[\begin{array}{cc} 0 & q \\ & 0 \end{array} \right].$$

Now; set $q = \tau_M(m)$. Therefore the proof is complete.

(6) Let
$$a_{11} = \begin{bmatrix} a & 0 \\ & 0 \end{bmatrix}$$
 and $m_{12} = \begin{bmatrix} 0 & m \\ & 0 \end{bmatrix}$. Then by (2) and (5) we

have

$$\begin{bmatrix} 0 & \tau_{\mathcal{M}}(a \cdot m) \\ 0 & 0 \end{bmatrix} = D(a_{11}m_{12}) = a_{11}D(m_{12}) + D(a_{11})m_{12} + \gamma(a_{11}, m_{12})$$

$$= \begin{bmatrix} 0 & a \cdot \tau_{\mathcal{M}}(m) \\ 0 & \end{bmatrix} + \begin{bmatrix} 0 & D_{\mathcal{A}}(a) \cdot m \\ 0 & \end{bmatrix}$$

$$+ \begin{bmatrix} \gamma_{1}(a_{11}, m_{12}) & \gamma_{2}(a_{11}, m_{12}) \\ \gamma_{3}(a_{11}, m_{12}) & \end{bmatrix}$$

$$= \begin{bmatrix} \gamma_{1}(a_{11}, m_{12}) & a \cdot \tau_{\mathcal{M}}(m) + D_{\mathcal{A}}(a) \cdot m + \gamma_{2}(a_{11}, m_{12}) \\ \gamma_{3}(a_{11}, m_{12}) & \end{bmatrix}.$$

Thus, $\gamma_1(a_{11}, m_{12}) = 0$, $\gamma_3(a_{11}, m_{12}) = 0$ and $\tau_{\mathcal{M}}(a \cdot m) = a \cdot \tau_{\mathcal{M}}(m) + D_{\mathcal{A}}(a) \cdot m + \gamma_2(a_{11}, m_{12})$. By the similar method we can prove the case (7).

(7) Finally we show that $D_{\mathcal{A}}$ is a generalized 2-cocycle derivation associative with 2-cocycle $\tau_{\mathcal{A}}$. Put $a'_{11} = \begin{bmatrix} a' & 0 \\ 0 \end{bmatrix}$ and $(aa')_{11} = \begin{bmatrix} aa' & 0 \\ 0 \end{bmatrix}$, then

$$D(\begin{bmatrix} a & 0 \\ & 0 \end{bmatrix} \begin{bmatrix} a' & 0 \\ & 0 \end{bmatrix}) = D(a_{11}a'_{11}) = a_{11}D(a'_{11}) + D(a_{11})a'_{11} + \gamma(a_{11}, a'_{11})$$

$$= \begin{bmatrix} a & 0 \\ & 0 \end{bmatrix} \begin{bmatrix} D_{\mathcal{A}}(a') & a'm_D + \gamma_2(a'_{11}, e_{11}) \\ & 0 \end{bmatrix}$$

$$+ \begin{bmatrix} D_{\mathcal{A}}(a) & am_D + \gamma_2(a_{11}, e_{11}) \\ & 0 \end{bmatrix} \begin{bmatrix} a' & 0 \\ & 0 \end{bmatrix}$$

$$+ \begin{bmatrix} \tau_A(a, a') & \gamma_2(a_{11}, a'_{11}) \\ \tau_B(0, 0) \end{bmatrix}$$

$$= \begin{bmatrix} aD_{\mathcal{A}}(a') + a'D_{\mathcal{A}}(a) + \tau_{\mathcal{A}}(a, a') & aa'm_D + a\gamma_2(a'_{11}, e_{11}) + \gamma_2(a_{11}, a'_{11}) \\ & 0 \end{bmatrix}$$

On the other hand we have

$$\begin{split} D(\left[\begin{array}{cc} a & 0 \\ & 0 \end{array}\right] \left[\begin{array}{cc} a' & 0 \\ & 0 \end{array}\right]) & = & D(\left[\begin{array}{cc} aa' & 0 \\ & 0 \end{array}\right]) \\ & = & \left[\begin{array}{cc} D_{\mathcal{A}}(aa') & aa'm_D + \gamma_2((aa')_{11}, e_{11}) \\ & 0 \end{array}\right]. \end{split}$$

Above relations follow that

$$D_{\mathcal{A}}(aa') = aD_{\mathcal{A}}(a') + a'D_{\mathcal{A}}(a) + \tau_{\mathcal{A}}(a, a'),$$

and

$$a\gamma_2(a'_{11}, e_{11}) + \gamma_2(a_{11}, a'_{11}) = \gamma_2(a_{11}a'_{11}, e_{11}).$$

Thus $D_{\mathcal{A}}$ is generalized 2-cocycle derivation. The same way of $D_{\mathcal{A}}$ proves that $D_{\mathcal{B}}$ is a generalized 2-cocycle derivation. \square

Note 2.2. In the Theorem 2.1, if $D: \mathbb{T} \longrightarrow \mathbb{T}$ is continuous and $\gamma \in Z^2(\mathbb{T}, \mathbb{T})$ then all obtained generalized derivations and 2-cocycles will be continuous. From now on, we suppose that all maps (generalized derivations, module mappings and 2-cocycles) are continuous.

Proposition 2.3. Let $D_{\mathcal{A}}: \mathcal{A} \longrightarrow A$ and $D_{\mathcal{B}}: \mathcal{B} \longrightarrow \mathcal{B}$ be generalized 2-coclyes derivation associate with 2-cocycles $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$, respectively, and let $\tau_{\mathcal{M}}: \mathcal{M} \longrightarrow \mathcal{M}$ be a linear map that satisfies in conditions (6) and (7) of Theorem 2.1 such that

$$\gamma_2(T_1, T_2) = \gamma_2 \left(\begin{bmatrix} a_1 & 0 \\ & 0 \end{bmatrix}, \begin{bmatrix} 0 & m_2 \\ & 0 \end{bmatrix} \right) + \gamma_2 \left(\begin{bmatrix} 0 & m_1 \\ & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ & b_2 \end{bmatrix} \right), \tag{2}$$

and

$$T'\gamma_{2}(T_{1}T_{2})-\gamma_{2}(T'T_{1},T_{2})+\gamma_{2}(T',T_{1}T_{2})-\gamma_{2}(T',T_{1})T_{2}=\tau_{\mathcal{A}}(a',a_{1})\cdot m_{2}-m'\cdot\tau_{\mathcal{B}}(b_{1},b_{2}),$$

$$for\ all\ T_{1}=\begin{bmatrix}a_{1}&m_{1}\\b_{1}\end{bmatrix},T_{2}=\begin{bmatrix}a_{2}&m_{2}\\b_{2}\end{bmatrix},T'=\begin{bmatrix}a'&m'\\b'\end{bmatrix}\in\mathbb{T}.$$

$$Then\ the\ map$$

$$D\Big(\left[\begin{array}{cc}a & m\\ & b\end{array}\right]\Big)=\left[\begin{array}{cc}D_{\mathcal{A}}(a) & \tau_{\mathcal{M}}(m)\\ & D_{\mathcal{B}}(b)\end{array}\right],$$

is a generalized 2-cocycle derivation with associate 2-cocycle $\gamma = \begin{bmatrix} \tau_{\mathcal{A}} & \gamma_2 \\ & \tau_{\mathcal{B}} \end{bmatrix}$.

Proof. Clearly by (2.3) γ is a 2-cocycle on $\mathbb{T} \times \mathbb{T}$. Then for every $T_1 =$

$$\begin{bmatrix} a_1 & m_1 \\ b_1 \end{bmatrix}, T_2 = \begin{bmatrix} a_2 & m_2 \\ b_2 \end{bmatrix} \in \mathbb{T}, \text{ we have}$$

$$T_1 D(T_2) + D(T_1) T_2 + \gamma(T_1, T_2)$$

$$= \begin{bmatrix} a_1 & m_1 \\ b_1 \end{bmatrix} \begin{bmatrix} D_{\mathcal{A}}(a_2) & \tau_{\mathcal{M}}(m_2) \\ D_{\mathcal{B}}(b_2) \end{bmatrix} + \begin{bmatrix} D_{\mathcal{A}}(a_1) & \tau_{\mathcal{M}}(m_1) \\ D_{\mathcal{B}}(b_1) \end{bmatrix} \begin{bmatrix} a_2 & m_2 \\ b_2 \end{bmatrix}$$

$$+ \begin{bmatrix} \tau_{\mathcal{A}}(a_1, a_2) & \gamma_2(T_1, T_2) \\ \tau_{\mathcal{B}}(b_1, b_2) \end{bmatrix}$$

$$= \begin{bmatrix} a_1 D_{\mathcal{A}}(a_2) + D_{\mathcal{A}}(a_1) a_2 + \tau_{\mathcal{A}}(a_1, a_2) & a_1 \cdot \tau_{\mathcal{M}}(m_2) + m_1 \cdot D_{\mathcal{B}}(b_2) + D_{\mathcal{A}}(a_1) \cdot m_2 \\ + \tau_{\mathcal{M}}(m_1) \cdot b_2 + \gamma_2(T_1, T_2) \\ b_1 D_{\mathcal{B}}(b_2) + D_{\mathcal{B}}(b_1) b_2 + \tau_{\mathcal{B}}(b_1, b_2) \end{bmatrix}.$$

As well as, together with cases (6) and (7) of Theorem 2.1 and (2.2) we have

$$\begin{split} D(T_1T_2) &= D\Big(\begin{bmatrix} a_1a_2 & a_1 \cdot m_2 + m_1 \cdot b_2 \\ b_1b_2 \end{bmatrix} \Big) \\ &= \begin{bmatrix} D_{\mathcal{A}}(a_1a_2) & \tau_{\mathcal{M}}(a_1 \cdot m_2 + m_1 \cdot b_2) \\ D_{\mathcal{B}}(b_1b_2) \end{bmatrix} \\ &= \begin{bmatrix} a_1D_{\mathcal{A}}(a_2) + D_{\mathcal{A}}(a_1)a_2 + \tau_{\mathcal{A}}(a_1,a_2) & a_1 \cdot \tau_{\mathcal{M}}(m_2) + m_1 \cdot D_{\mathcal{B}}(b_2) + D_{\mathcal{A}}(a_1) \cdot m_2 \\ & + \tau_{\mathcal{M}}(m_1) \cdot b_2 + \gamma_2(T_1, T_2) \\ & b_1D_{\mathcal{B}}(b_2) + D_{\mathcal{B}}(b_1)b_2 + \tau_{\mathcal{B}}(b_1,b_2) \end{bmatrix} \end{split}$$

Thus D is a generalized derivation associate with 2-cocycle γ . \square

If $\mathcal{M} = 0$, then triangular Banach algebra reformed to $\mathcal{A} \oplus_1 \mathcal{B}$ with the following sum and product

$$(a,b) + (a',b') = (a+a,b+b')$$
, and $(a,b)(a',b') = (aa,bb')$,

for every $(a,b), (a',b') \in \mathcal{A} \oplus_1 \mathcal{B}$. It becomes a Banach algebra with defined norm as $\|(a,b)\| = \|a\|_{\mathcal{A}} + \|b\|_{\mathcal{B}}$. We set $\mathfrak{A} = \mathcal{A} \oplus_1 \mathcal{B}$. Let $\gamma \in Z^2(\mathfrak{A},\mathfrak{A}), \gamma_1 : \mathfrak{A} \times \mathfrak{A} \longrightarrow \mathcal{A}$ and $\gamma_2 : \mathfrak{A} \times \mathfrak{A} \longrightarrow \mathcal{B}$ be the coordinate functions associated to γ that is

$$\gamma((a_1,b_1),(a_2,b_2)) = (\gamma_1((a_1,b_2),(a_2,b_2)),\gamma_2((a_1,b_2),(a_2,b_2))),$$

for all $(a_1, b_1), (a_2, b_2) \in \mathfrak{A}$. If γ_1 corresponds to a 2-cocycle on $\mathcal{A} \times \mathcal{A}$ then there exists a 2-cocycle $\tau_{\mathcal{A}}$ on $\mathcal{A} \times \mathcal{A}$ such that $\gamma_1((a_1, b_1), (a_2, b_2)) =$

 $\tau_{\mathcal{A}}(a_1, a_2)$. Similarly, if γ_2 corresponds to a 2-cocycle on $\mathcal{B} \times \mathcal{B}$ then there exists a 2-cocycle $\tau_{\mathcal{B}}$ on $\mathcal{B} \times \mathcal{B}$ such that $\gamma_1((a_1, b_1), (a_2, b_2)) = \tau_{\mathcal{B}}(b_1, b_2)$. We reduce the Lemma 1.2. into this Banach algebra as follows.

Lemma 2.4. Let $\gamma \in B^2(\mathfrak{A}, \mathfrak{A})$. Then γ is a 2-cocycle if and only if there are 2-cocycles $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$ on $\mathcal{A} \times \mathcal{A}$ and $\mathcal{B} \times \mathcal{B}$, respectively, such that $\gamma = (\tau_A, \tau_{\mathcal{B}})$.

Proof. The case where γ is a 2-cocycle existence of $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$ are clear by the same reasoning in Lemma 1.2. For converse, let $\tau_{\mathcal{A}} \in Z^2(\mathcal{A}, \mathcal{A})$ and $\tau_{\mathcal{B}} \in Z^2(\mathcal{B}, \mathcal{B})$. We shall show that $\gamma = (\tau_A, \tau_{\mathcal{B}})$ belongs to $Z^2(\mathfrak{A}, \mathfrak{A})$. For every $(a_1, b_1), (a_2, b_2), (a_3, b_3) \in \mathfrak{A}$,

```
 \begin{array}{ll} (a_1,b_1)\gamma((a_2,b_2),(a_3,b_3)) - \gamma((a_1,b_1)(a_2,b_2),(a_3,b_3)) \\ &+ \gamma((a_1,b_1),(a_2,b_2)(a_3,b_3)) \\ &- \gamma((a_1,b_1),(a_2,b_2))(a_3,b_3) \\ &= (a_1,b_1)\gamma((a_2,b_2),(a_3,b_3)) - \gamma((a_1a_2,b_1b_2),(a_3,b_3)) \\ &+ \gamma((a_1,b_1),(a_2a_3,b_2b_3)) \\ &- \gamma((a_1,b_1),(a_2,b_2))(a_3,b_3) \\ &= (a_1,b_1)(\gamma_1((a_2,b_2),(a_3,b_3)),\gamma_2((a_2,b_2),(a_3,b_3))) \\ &- (\gamma_1((a_1a_2,b_2b_2),(a_3,b_3)),\gamma_2((a_1a_2,b_2b_2),(a_3,b_3))) \\ &+ (\gamma_1((a_1,b_1),(a_2a_3,b_2b_3)),\gamma_2((a_1,b_1),(a_2a_3,b_2b_3))) \\ &- (\gamma_1((a_1,b_1),(a_2,b_2)),\gamma((a_1,b_1),(a_2,b_2)))(a_3,b_3) \\ &= (a_1,b_1)(\tau_{\mathcal{A}}((a_2,a_3)),\tau_{\mathcal{B}}((b_2,b_3))) - (\tau_{\mathcal{A}}((a_1a_2,a_3)),\tau_{\mathcal{B}}((b_1b_2,b_3))) \\ &+ (\tau_{\mathcal{A}}((a_1,a_2a_3)),\tau_{\mathcal{B}}((b_1,b_2b_3))) - (\tau_{\mathcal{A}}((a_1,a_2)),\tau_{\mathcal{B}}((b_1b_2,b_3))) \\ &+ (\tau_{\mathcal{A}}((a_1,a_2a_3)) - \tau_{\mathcal{A}}((a_1a_2,a_3)),b_1\tau_{\mathcal{B}}((b_2,b_3)) - \tau_{\mathcal{B}}((b_1b_2,b_3))) \\ &+ (\tau_{\mathcal{A}}((a_1,a_2a_3)) - \tau_{\mathcal{A}}((a_1,a_2))a_3,\tau_{\mathcal{B}}((b_1,b_2b_3)) - \tau_{\mathcal{B}}((b_1,b_2))b_3) \\ &= 0. \end{array}
```

Thus γ is a 2-cocycle. \square

Proposition 2.5. Let $\mathfrak{A} = \mathcal{A} \oplus_{\mathfrak{I}} \mathcal{B}$, where \mathcal{A} and \mathcal{B} are Banach algebras. If $D: \mathfrak{A} \longrightarrow \mathfrak{A}$ is a generalized derivation associate with 2-cocycle γ , then there are generalized derivations $D_{\mathcal{A}}$ and $D_{\mathcal{B}}$ associate with 2-cocycles

 $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$, respectively, such that $\gamma = (\tau_{\mathcal{A}}, \tau_{\mathcal{B}})$.

Proof. Define $D_{\mathcal{A}}: \mathcal{A} \longrightarrow \mathcal{A}$ by $D_{\mathcal{A}}(a) = e_{\mathcal{A}}D((a,0))e_{\mathcal{A}}$ for all $a \in \mathcal{A}$. By Lemma 2.4, there are 2-cocycles $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$ such that $\gamma((a_1,b_1),(a_2,b_2)) = (\tau_{\mathcal{A}}(a_1,a_2),\tau_{\mathcal{B}}(b_1,b_2))$ for all $(a_1,b_1),(a_2,b_2) \in \mathfrak{A}$. Then

$$\begin{split} D_{\mathcal{A}}(a_{1}a_{2}) &= e_{\mathcal{A}}D((a_{1}a_{2},0))e_{\mathcal{A}} = e_{\mathcal{A}}D((a_{1},0)(a_{2},0))e_{\mathcal{A}} \\ &= e_{\mathcal{A}}(a_{1},0)D((a_{2},0))e_{\mathcal{A}} + e_{\mathcal{A}}D((a_{1},0))(a_{2},0)e_{\mathcal{A}} \\ &+ e_{\mathcal{A}}\gamma((a_{1},0),(a_{2},0))e_{\mathcal{A}} \\ &= e_{\mathcal{A}}(a_{1},0)D((a_{2},0))e_{\mathcal{A}} + e_{\mathcal{A}}D((a_{1},0))(a_{2},0)e_{\mathcal{A}} \\ &+ e_{\mathcal{A}}(\tau_{\mathcal{A}}(a_{1},a_{2}),0)e_{\mathcal{A}} \\ &= a_{1}D_{\mathcal{A}}(a_{2}) + D_{\mathcal{A}}(a_{1})a_{2} + \tau_{\mathcal{A}}(a_{1},a_{2}), \end{split}$$

for every $a_1, a_2 \in \mathcal{A}$. Similarly, if we define $D_{\mathcal{B}} : \mathcal{B} \longrightarrow \mathcal{B}$ by $D_{\mathcal{B}}(b) = e_{\mathcal{B}}D((0,b))e_{\mathcal{B}}$ for all $b \in \mathcal{B}$, then by the same reasoning for proof of $D_{\mathcal{A}}$, $D_{\mathcal{B}}$ become a generalized derivation associate with 2-cocycle $\tau_{\mathcal{B}}$. \square

Proposition 2.6. Let $\mathfrak{A} = \mathcal{A} \oplus_1 \mathcal{B}$, where \mathcal{A} and \mathcal{B} are Banach algebras. If $D_{\mathcal{A}}$ and $D_{\mathcal{B}}$ are generalized derivation associate with 2-cocycles $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$, respectively, then $D: \mathfrak{A} \longrightarrow \mathfrak{A}$ defined by $D = (D_{\mathcal{A}}, D_{\mathcal{B}})$ is a generalized derivation associate with 2-cocycle $\gamma = (\tau_{\mathcal{A}}, \tau_{\mathcal{B}})$.

Proof. By Lemma 2.4, $\gamma = (\tau_A, \tau_B)$ is a 2-cocycle. Then

$$D((a_1, b_1)(a_2, b_2)) = D((a_1a_2, b_1b_2)) = (D_{\mathcal{A}}(a_1a_2), D_{\mathcal{B}}(b_1b_2))$$

$$= (a_1D_{\mathcal{A}}(a_2) + D_{\mathcal{A}}(a_1)a_2 + \tau_{\mathcal{A}}(a_1, a_2), b_1D_{\mathcal{B}}(ba_2)$$

$$+ D_{\mathcal{B}}(b_1)b_2 + \tau_{\mathcal{B}}(b_1, b_2)),$$

and

$$(a_1, b_1)D((a_2, b_2)) + D((a_1, b_1))(a_2, b_2) + \gamma((a_1, b_1), (a_2, b_2))$$

$$= (a_1D_{\mathcal{A}}(a_2), b_1D_{\mathcal{B}}(ba_2)) + (D_{\mathcal{A}}(a_1)a_2, D_{\mathcal{B}}(b_1)b_2)$$

$$+ (\tau_{\mathcal{A}}(a_1, a_2), \tau_{\mathcal{B}}(b_1, b_2)),$$

for all $(a_1, b_1), (a_2, b_2) \in \mathfrak{A}$. Thus, D is a generalized derivation associate with 2-cocycle γ . \square

References

- [1] B. E. Forrest and L. W. Marcoux, Derivations of triangular Banach algebras, *Indiana Univ. Math. J.*, 45 (1996), 441-462.
- [2] B. E. Forrest and L. W. Marcoux, Second order cohomology of triangular Banach algebras, *Houston J. Math.*, 30 (4) (2004), 1157-1176.
- [3] J. Li and J. Zhou, Generalized Jordan derivation associate with Hochschild 2-cocycles on some algebras, *Czechoslovak Mathematical Journal*, 60 (135) (2010), 909-932.
- [4] A. Majieed and J. Zhou, Generalized Jordan derivation associate with Hochschild 2-cocycles of triangular algebras, *Czechoslovak Mathematical Journal*, 60 (135) (2010), 211-219.
- [5] A. Nakajima, Note on generalized Jordan derivation associate with Hochschild 2-cocycles of rings, *Turk. J. Math.*, 30 (2006), 403-411.

Mehdi Kanani Arpatapeh

Department of Mathematics Instructor of Mathematics Payame Noor University P. O. BOX 19395-3697 Tehran, Iran

E-mail: m.kanani@pnu.ac.ir

Ali Jabbari

Department of Mathematics Young Researchers and Elite Club Ph.D. Student of Mathematics Ardabil Branch, Islamic Azad University Ardabil, Iran E-mail: jabbari_al@yahoo.com