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Abstract. In this paper, it is attempted to approximate the real and
complex roots of nonlinear equations. For this reason, by considering the
convergence conditions of Adomian decomposition method (ADM) for
solving functional equations, a new appropriate method is presented. It
will be shown that the proposed method can be computed suitable ap-
proximate real and complex roots of a given function more efficient
than Maple software. Furthermore, with providing some examples the
aforementioned cases are dealt with numerically.
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1. Introduction

Finding the location of roots of equations and finding the solutions of a
system of equations frequently appear in scientifics works. As all of these
questions are not solvable by analytic methods, the study of numerical
methods has provided an attractive field for researchers of mathematical
sciences and caused the appearance of difierent numerical methods

Received: April 2015; Accepted: August 2015
*Corresponding author



2 B. KAFASH AND M. M. HOSSEINI

like ADM [5, 6, 10, 12, 13, 15], iterative method and other techniques
[1, 4, 8, 9, 11, 17]. Theoretical treatment of the convergence of the
decomposition series to the ADM has been considered in [2,7, 14, 16, 18,
20]. The numerical solution of nonlinear equations with real coefficients
based on ADM has been considered in [5, 6, 10]. Also, the authors in [12,
13, 15] have applied convergence conditions of ADM to solve nonlinear
equations and system of nonlinear equations.

Purpose of this paper is to introduce a modification of ADM based
on convergence conditions of the ADM [14] and the Banach’s fixed
point theorem to compute the complex solution of nonlinear equations
f(x) = 0. The proposed method doesnot need to get initial solution and
the method produce different initial solutions for converging to different
roots. Here, it is focused to compute complex solutions whereas the
standard ADM and its modifications [5, 6, 10, 12, 15] can only obtain
real solutions of the nonlinear equations. The proposed method is nu-
merically performed through Maple programming, it will be shown that
the proposed method can be computed suitable approximate real and
complex roots of a given function more efficient than Maple software.
This paper is organized into following sections of which this introduction
is the first. ADM and its convergence conditions are described in Section
(2). Section (3) derives the method and peresent an efficent algorithm.
Also, some numerical examples to illustrate the efficiency and reliability
of the perposed algorithm is presented in Section (4). Finally, the paper
is concluded with conclusion.

2. ADM and its Convergence Conditions
Consider the following functional equation,

y—Ny=y, (1)

where N is a nonlinear operator from a Hilbert space H in to H, ¢ is a
given function in H and we are looking for y € H satisfying (1).
Adomian process assumes y = » .~ y; and substitutes it in (1), to obtain

y;(t) recursively by,
{ Yo =9, (2)

Yir1 = Ny;.
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Theorem 2.1. (See [14]) Let N be an operator from a Hilbert space H
in to H and y be the ezact solution of (1). Y 2.y, which is obtained
by (2), converges to y when:

J0<a<t, Nyl <alwl, vkeNU{0}

Definition 2.2. For every i € N|J{0} we define:

i |
ai=4 Twl o Nwll#0
0. Myl =0

Corollary 2.3. In Theorem (2.1), 2,y converges to exact solution
y, when 0 < oy <1 , i=1,2,3,....

3. Numerical Method to Solve Nonlinear Equa-
tions

In this section, the computation of the roots of a given nonlinear equa-
tion is considered by modification of ADM. The proposed method can
appropriately obtain the real and complex solutions whereas the exist-
ing ADMs can only obtain real solutions. Now consider the nonlinear
equation of the form,

0= f(z)=F(z)+c, (3)

where F' is a nonlinear function and c is a constant. The ADM decom-
poses the solution x by an infinite series of components,

+oo
T = Z Ty, (4)
n=0

and the nonlinear term F(x) by an infinite series,

+oo
F(z)=)_ An, (5)
n=0
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where the components of A, are the so-called Adomian polynomials
[20]. Note that, the authors in [15] have peresented a Maple procedure
to construct Adomian polynomials of nonlinear term F'(x). As it was
seen in [14], Y°7° x; converges to the exact solution z, when,

J0<a<l, |xpy| <alzg, Vk‘ENU{O}. (6)
By adding B« on both sides of (3), we have,
B = F(x) + pr +c, (7)

where, § is an unknown real or complex constant and it will be deter-
mined such that the convergence conditions (6) will be approximately
held. Now, (7) implies that,

F(x)+px ¢
p=H TP L 8
and by standard ADM [14], we have,
To = % )
{ T = F((Eoz;rﬁxo ) (9)
Replacing F'(z) with three terms of Taylor series of F(x), at = 0,
becomes,
xro = % )

(10)

F(0) a0 P (0128 F/(0) 480 B2R(O)+BeF (004 F'(0) | ¢
7 = 7 5

For an arbitrary number «, 0 < a < 1, and by attention to (6), we set:

&

T

Ir1 = oxg. (11)
Substituting (10) into (11) yields,

—cF'(0) + /c2 F2(0) — 22F"(0) [F(0) — ¢ (o — 1)]
2[F(0) = c(a—1)] ’

b=

or

(a) (12)

_ —CF'(0) — /2 F(0) — 2c2F"(0) [F(0) — ¢ (a — 1)]
br = 2[F(0) — c(a —1)] B
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where 81 and (2 can be complex number. Now, we are able to compute
an initial approximation for the nonlinear equation (3) as below.
For given number m € N [J{0}, set:

( x():ﬁv
l‘l—A(],
Ty = Ay,

Im = Am—l 5

when A; be Adomian polynomials, Z;Og A; = W, and [ is chosen
by (12.a) or (12.b). So, & = xg + 1 + ... + Ty, is an initial solution of
(3). In similar way and by attention to Restarted ADM [6], the initial
approximation z will be improved. For this reason, we rewrite (3) as
below,

x:@—i-a:—:i—i-i’. (13)

g
Here, (is an unknown real or complex constant and it will be determined
such that the convergence conditions (6) will be approximately held.

As it is seen in (9) and (10), we have,

To =1,
x1=Ay) = 7“%?;510 -z = % )
2y = :vlf’(mg)Jrﬁzl _ f(i)ﬁ);’ 7 4 %7 (14)

y 225" (zg)
_ zaf(wo)+ 15— +Px2
xr3 = & .

For an arbitrary number o , 0 < o < 1, and by attention to (6), we set,
T3 = QTo. (15)

Substituting (14) into (15) yields an quadratic equation as,

2(a—1) f(2)F*+2 (a—2) f(@)f (2) B—1(2) (2f'(2)° + F(@)1"(2)) =0,
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this equation has two roots as follows,

ﬁlzf()(2—a+\/a2§(’i_)$2f()f”(x)(a—1)7 (a) (16)

or

_ @) @=0) — @+ 2 @ @) (@ 1)
B = o SNCNG

Thus, we are able to improve the initial approximation z, of the non-
linear equation (3) by using an efficent algorithm which is peresented in
the next section.

3.1. The Proposed Design Algorithm

The above result is summarized in the following algorithm. The main
idea of this algorithm is compute the complex solution of nonlinear equa-
tions.

Proposed Algorithm:

Input: Nonlinear equation 0 = f(z) = F(z)+c, a0 <a<1),e>0,
m € N|J{0}and n € N.

Output : appropriate approximation Z.

Step 1:

Choose (3 by (12.a) or (12.b).

Step 2:

Consider Adomian polynomials A;, Z TA = Fz 2;5 2 and set g = %,
= Ay, ..., =A,_1andx = x0+x1+...+xm(as an initial solution)

Step 3:

If | f(Z)| < e then go to step 7.

Step 4:

Choose 3 by (16.a) or (16.b).

Step 5:

Consider Adomian’s polynomials B;, +°° B; = W and set g =

T, 11 =Bg—T, 190 =DB1, ..., x, = Bp_1 and$ xo+ T+ ... + 2y (a8

an improved solution)

Step 6:

If | f(Z) | < e then go to step 7 else go to step 4.
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Step 7: Set & = Z(as an appropriate solution) and stop.

Remark 3.1. By using different obtained real or complex constants 3
which are appeared in steps 1 and 4, it is possible that the obtained
approximation solutions converge to different real or complex solutions
of equation (3).

4. Test Problems

In this section, five examples are solved by the proposed method. The
obtained results show that the method can appropriately obtain the real
and complex solutions of the nonlinear equation (3) more efficient than
Maple software. Here, we let n =2, ¢ = 1078 and a = 0.1.

Example 4.1. Consider the nonlinear equation,
1.22% +4.32346.945751311 22 4+5.745751311 £42.645751311 = 0, (17)

which has four solutions,

z1 = —1.291666667+0.7323864973 I, (a) (18)
z9 = —1.291666667 —0.7323864973 I, (b) (18)
23 = —0.5+0.8660254038 I, (c) (18)
and

z4 = —0.5 —0.8660254038 I. (d) (18)

According to (3), we have,
f(z) =122 + 4.32% + 6.945751311 22 + 5.745751311 = + 2.645751311,

F(z) =1.22% 4+ 4.323 4+ 6.945751311 2 + 5.745751311 z,

and
c = 2.645751311.
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To use algorithm (3.1), with (12.a), yields,

B = —3.192084061 + 3.1983103271,
zo = —0.4136162563 — 0.41442302851,
z1 = —0.2104116605 — 0.02000969971,
x2 = —0.1176618792 — 0.055594634131.

So, the initial approximation is,
2
7= Z x; = —0.7416897960 — 0.49002736231.
=0

Here, algorithm (3.1), step 4, with (16.a) is considered to improve the
above initial approximation Z and the results are shown in Table 1.

Table 1: To improve the initial approximation solution (algorithm
(3.1), step 4, with (16.a))

No. Tt. Improved approximation | f(@) |
xo =-0.7416897960 - 0.4900273623 I
r1 =-0.6323000426 - 0.07584196153 I
1 x9 =-0.3275481791 - 0.4849568431 1 3.13
and

7= S22 x; =1.701538018 - 1.050826167 I

2 T =2 x; =1421545904 - 0.9056422876 1 | 7.86 ¢!
3 T=>72 x; =1287675516 - 0.7908821270 I | 1.56 ¢~
4 T=>72  x; =1.291239765 - 0.7358033724 I | 8.91 ¢ 3
5 T =7 x; =1.291674796 - 0.7324270519 1 | 1.04 ¢ 4
6 T =2 x; —1.291666747 - 0.7323869020 I | 1.04 ¢~
7 F=>7  x; = —1.291666667 — 0.7323865025] | 1.30 e=®

In fact, Table 1, yields,

F="tog+ ey 4+ oo+ 22 + 20+ -+ Tz + Ty
15 terms

= —1.291666667 — 0.73238650251,
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which is quite near to the exact solution (18.b). Again, consider the
initial approximation,

z = —0.7416897960 — 0.49002736231,

which was obtained by algorithm (3.1), step 1, (12.a). To use algorithm
(3.1), step 4, (16.b), yields,

= _ 1 1 1 2 2
& =1wg+ 1oy + oo+ 22y + 22+ -+ Oy + Oy
13 terms

= —0.5000000137 — 0.86602539351,

which is quite near to the exact solution (18.d). Furthermore, to use
algorithm (3.1), step 1, with (12.b), yields,

B = —3.192084061 — 3.1983103271,

and the initial approximation is,
2
T =) a;=—0.7416897960 + 0.49002736231.

Now, by using algorithm (3.1), step 4, with (16.a), we have,

= _ 1 1 1 2 2
i=1wg+ 1o+ o+ 22 + 2o+ o+ Ty + T
15 terms

= —1.291666667 4 0.73238650251,

and by using algorithm (3.1), step 4, with (16.b), we have,

=, 1 1 1 2 2 6 6
rT="x0+ 21+ To+T1+ X2+ -+ "1+ T2
13 terms

= —0.5000000137 + 0.86602539351,

which are quite near to the exact solutions (18.a) and (18.c), respec-
tively. So, all solutions of the equation (17) were appropriately obtained
by using the proposed algorithm (3.1). Note that the ADM and its mod-
ifications [5, 6, 10, 12, 15] cannot solve this example.



10 B. KAFASH AND M. M. HOSSEINI

Example 4.2. Consider the nonlinear equation,

32% 429525 + 1072 +2212% 4 177.52° + 102 —42 =0,  (19)
which has two real solutions,
z1 = 0.3722813233, (a) (20)

2y = —5.372281323, (b) (20)

and four complex solutions,

73 = —1.5+2.179449472 I, (c) (20)
24 = —1.5—2.179449472 1, (d) (20)
25 = —0.9166666667+ 0.3996526269 I, (e) (20)

26 = —0.9166666667— 0.3996526269 I. (f) (20)

By attention to (3), we have,
f(z) =325 +29.52°5 + 1072 + 22123 + 177.52% + 10z — 42,

F(z) =32% 429525 +1072% + 22123 + 177.52% 4+ 10z,

and
c= —42.

To use algorithm (3.1), step 1, with (12.a), yields,
B = —96.73777713,

xo = 0.4341633770,
1 = —0.1877593704,
9 = 0.4520572430,

and since |zg| < |z1] and |z1| > |22/, so the initial approximation is,

&I

1
— Z x; = 0.2464040066.
=0
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Now, algorithm (3.1), step 4, with (16.a) and (16.b) is considered to
improve the above initial approximation Z, and the obtained results are
as below,

=~ _ 1 1 1 2 2 5 5
rT="xo+ 1+ x2+ "1+ "2+ -+ X1+ X2
11 terms

= 0.3722813234 + 0.29¢ 1,

and

~ 1 1 1 2 2 8 8
r="xo+ 1+ x2+ "1+ "2+ + "1+ "2
17 terms

= —0.9166666655 + 0.39965262081,

which are quite near to the real exact solution (20.a) and the complex
exact solution (20.c). In continue, to apply algorithm (3.1), step 1, with
(12.b) yields,

B = 85.62666602,

furthermore the initial approximation is,
2
Z=) z =—09118518596.
Again, algorithm (3.1), step 4, with (16.a) and (16.b) is used to improve
the above initial approximation Z, and the obtained results are as below,

~ 1 1 1 2 2 5 5
rT="xo+ 1+ x2+ "1+ "2+ -+ X1+ X2
11 terms

= —0.9166666672 — 0.39965262281,

and

~ 1 1 1 2 2 7 7
rT= "o+ X1+ x2+"21+"2204+---+ "1+ T2
15 terms

= —0.9166666674 + 0.39965262701,

which are quite near to the complex exact solutions (20.d) and (20.c),
respectively. Hence, one real and two complex solutions of the equation
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(19) were appropriately obtained by using the proposed method( Note
that , | f(Z)| < 1076 is held for all above approximation solutions, &).

It must be noted that the ADM and its modifications [5, 6, 10, 12, 15]
are not able to find complex solutions of this example.

Example 4.3. Consider the nonlinear equation,
2-I)z+251—45+* =0. (21)
Here, according to algorithm (3.1) we have,
fr)=2-DNa+251—45+¢"

F(z)=(2-Daz+e™,

and
c=251—4.5. (22)

The algorithm (3.1) is applied to solve (21) and the results are shown in
Table 2.

Table 2: Different roots of example 4.3

algo riﬁ‘;l::;(i%.l) m Approximate solution,Z | f(Z) ]

(12.2)&(16.2) | 0 2.179819048+0.1271110185 1 | 6.0 e ?

(12.a)&(16.b) | 0 -0.3916190983+2.778327692 1 91e?

—10

(12.b)&(16.0) | © 0.8039553334-0.8149692140 I 5.0e_9
2 -0.8171635125+1.239908970 T | 3.6e

(12.b)&(16.b) | 1 3.000432324-0.07487328602 1 | 5.7 e

Table 2 shows that we can obtain different appropriate approximate
roots by choosing different parameter, m. In fact, algorithm (3.1), first,
provide appropriate initial solutions based on constant ¢ (22), then ap-
prove these initial solutions. Whereas using Maple software, directly,

yields:
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> solve(2*x-Ixx+(-4.5+2.5%I)+exp(I*x"2),x);

> fsolve(2*x-I*x+(-4.5+2.5%I)+exp(I*x"2),x);
0.8039553333-0.81496921401

i.e., “solve” function does not present solution and “fsolve” function

presents only one solution.

Example 4.4. Consider the nonlinear equation,

(1—20) 2%+ (44-31)x—((241)z—1) sinh(z) — (x+2I — I sinh(z)) e!*—2 = 0.
(23)
Here, according to algorithm (3.1) we have,

f(z) = (1-2D2*+(4+31)z—((2+1)z—1) sinh(z) — (z+2I —I sinh(z)) e’ -2,

F(z) = (1-2D)a?+(4+31)z—((2+1)z—1) sinh(z) — (z+2]—1 sinh(z)) e,

and
c=2.

The algorithm (3.1)is applied to solve (23) and the results are shown in
Table 3.

Table 3: Different roots of example 4.4

algorif thl (3.1) m Approximate solution, | f(Z)]
0 1.302129885-0.72010177271 6.7 ™"

(12.0)&(16.) | 1 0.6427282968-2.5835399021 2.0e9
2 0.41736781594-0.17501063791 1.8¢~?

(122)&(16b) | 2 T3.772756439-2.351 1317541 0.le"
0

(12.b)&(16.2) 0.417367815640.17501063811 | 3.5 ¢

Note that for above problem, choosing (12.b)&(16.b) yield = 0.4173678156+

0.17501063811, too (The same as (12.b)&(16.a)). Also, using Maple soft-
ware, directly, yields,
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> solve (1*x~2+3*I*x-1*I*x*sinh (x) -2*I*x~2+4*x-2*x*sinh (x)-2+sinh (x)
—exp (I*x)*x-2*I*exp (I*x)+I*exp (I*x)*sinh(x),x);

> fsolve (1*x"2+3*I*x-1*I*x*sinh(x)-2*I*x~2+4*x-2*x*sinh(x)-2+sinh(x)

—exp (I*x)*x-2*I*exp (I*x)+I*exp (I*x)*sinh(x),x);
0.4173678160+0.17501063771

i.e., "solve” function does not present solution and ”fsolve” function
presents only one solution.

Example 4.5. Consider the nonlinear equation,

323 — 15.1460267922 + 17.23368794x +
I (1 —sinh(z)) (z? — 5.048675598 x + 5.744562647) = 0. (24)

Here, according to algorithm (3.1) we have,

f(x) = 32 — 15.1460267922 + 17.23368794x +

I (1 —sinh(z)) (z? — 5.048675598 = + 5.744562647),
F(z) = 32° — 15.146026792% + 17.23368794z +

I (1 —sinh(x)) (#* — 5.048675598) =

and
¢ = 5.744562647 1.

The algorithm (3.1) is applied to solve (24) and the results are shown in
Table 4.

Table 4: Different roots of example 4.5

£ in -
algorithm(3.1)
(12.2)&(16.a) | 0 0.09950948073-0.30160849861 | 1.2 ¢~9
(12.b)&(16.a) 3.316624789 1.3e”7
(12.b)&(16.b) | 0 1.732050809 1.0 e 8

Approximate solution,z | f(Z)]

[\

Here, two real and one complex solution are obtained by proposed algo-
rithm (3.1). Whereas using Maple software, directly, yields,
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> solve(3*x~3-15.14602679%x"2+17.23368794*x+I*x"2-(5.048675598*I) *x+
5.744562647*I-I*sinh(x)*x~2+(5.048675598*I)*sinh (x)*x-(5.744562647*1)
*sinh(x), x)
0.9950948071e-1-.30160849861
> fsolve(3*x~3-15.14602679%x"2+17.23368794*x+I*x"~2-(5.048675598*I) *x+
5.744562647*I-I*sinh(x) *x~2+(5.048675598*I) *sinh (x) *x-(5.744562647*1)
*sinh(x), x)
0.9950948071e-1-.30160849861

i.e., “solve” and “fsolve” functions present only one complex solution.

5. Conclusion

In this paper, to solve nonlinear equation in the form F(x) + ¢ = 0,
the appropriate algorithm (3.1) is presented. The algorithm, based on
constant ¢, can be produce different parameters 5 which by using these
parameters we are able to obtain different suitable approximate solu-
tions. Although two different 5 may be conclude the same approximate
solution but algorithm (3.1), usually, can obtain more than one (if exist)
approximate root. Whereas, Maple software without getting appropriate
initial solution, usually, can not present more than one (see examples

(4.1)-(4.5)).
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