Journal of Mathematical Extension Vol. 10, No. 2, (2016), 25-33 ISSN: 1735-8299 URL: http://www.ijmex.com

t-Best Approximation in Fuzzy **Q**uotient Space

A. Razmand

Yazd University

H. Mazaheri*

Yazd University

Abstract. The main aim of this paper is to define and investigate the fuzzy quotient spaces and t-best approximation in fuzzy quotient space and prove some theorems on quotient spaces. Finally, we present an application.

AMS Subject Classification: 46A32; 46M05; 41A17 Keywords and Phrases: Fuzzy normed space, fuzzy quotient space, t-best approximation, t-chebyshev, t-convex

1. Introduction

The theory of fuzzy sets was introduced by L. Zadeh [8] in 1965. Since then, many mathematicians have studied fuzzy normed spaces from several angles ([2], [5], [6]) and, in [7], P. Veeramani introduced the concept of t-best approximations in fuzzy metric spaces. In this paper we consider the set of t-best approximations on fuzzy quotient spaces and prove several theorems pertaining to this set.

Definition 1.1. [7] A binary operation $* : [0,1] \times [0,1] \longrightarrow [0,1]$ is a continuous t-norm if * satisfies:

Received: June 2015; Accepted: November 2015 *Corresponding author

(1) * is commutative and associative;

- (2) * is continuous;
- (3) a * 1 = a for all $a \in [0, 1]$;

(4) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, and $a; b; c; d \in [0, 1]$.

Definition 1.2. [7] The 3-tuple (X, N, *) is said to be a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and N is a fuzzy set on $X \times X \times (0, \infty)$ satisfying the following conditions for all $x, y \in X$ and t, s > 0

(1) N(x, y, t) > 0, (2) N(x, y, t) = 1 if and only if x = y, (3) N(x, y, t) = N(y, x, t), (4) $N(x, y, s + t) \ge N(x, z, s) * N(z, y, t)$, (5) $N(x, y, \cdot) : (0, \infty) \longrightarrow [0, 1]$ is continuous.

Definition 1.3. [7] The 3-tuple (X, N, *) is said to be a fuzzy normed space if X is a vector space, * is a continuous t-norm and N is a fuzzy set on $X \times (0, \infty)$ satisfying the following conditions for every $x, y \in X$ and t, s > 0,

$$\begin{split} (1)N(x,t) &> 0, \\ (2)N(x,t) &= 1 \Leftrightarrow x = 0, \\ (3)N(\alpha x,t) &= N(x,t/|\alpha|), \text{ for all } \alpha \neq 0, \\ (4)N(x,t) * N(y,s) &\leq N(x+y,t+s), \\ (5)N(x,.) : (0,\infty) \longrightarrow [0,1] \text{ is continuous }, \\ (6) \lim_{t \longrightarrow 0} N(x,t) &= 1. \end{split}$$

Definition 1.4. [7] Let (X, N, *) be a fuzzy normed space. The open ball B(x,r,t) and the closed ball B[x,r,t] with the center $x \in X$ and radius 0 < r < 1, t > 0 are defined as follows:

 $B(x, r, t) = \{ y \in X : N(x - y, t) > 1 - r \},\$ $B[x, r, t] = \{ y \in X : N(x - y, t) \ge 1 - r \}.$

Definition 1.5. Let A be a nonempty subset of a fuzzy normed space (X, N, *) for $x \in X, t > 0$, let

$$d(A, x, t) = \bigvee_{y \in X} \{ N(y - x, t) \}.$$

An element $y_0 \in A$ is said to be a t-best approximation of x from A if

$$N(y_0 - x, t) = d(A, x, t).$$

We shall denote the set of all elements of t-best approximation of x from A by $P_A^t(x)$, i.e.,

$$P_A^t(x) = \{ y \in A : d(A, x, t) = N(y - x, t) \}.$$

If each $x \in X$ has at least (respectively exactly) one t-best approximation in A, then A is called a t-proximinal (respectively t-Chebyshev) set.

Definition 1.6. Let (X, N, *) be a fuzzy normed space. A subset X is called F-bounded, if there exist t > 0 and 0 < r < 1 such that N(x, t) > 1 - r for all $x \in X$.

Lemma 1.7.

Let (X, N, *) be a fuzzy normed space. Then (1) N(x, t) is nondecreasing with respect to t for each $x \in X$, (2) N(x - y, t) = N(y - x, t).

2. Main Results

In this section, we define the fuzzy quotient spaces, and we prove some theorems on these spaces.

Definition 2.1. Let (X, N, *) be a fuzzy norm space, M be a linear manifold in X and let $Q : X \longrightarrow X / M$ be the natural map, Qx = x + M. We define

$$N(x+M,t) = \bigvee_{y \in X} \{ N(x+y,t) : y \in M \}.$$

Definition 2.2. The 3-tuple $(X \not M, N, *)$ is said to be fuzzy normed quotient space if (X, N, *) is a fuzzy norm space and N is fuzzy norm on fuzzy set $X \not M$, that $X \not M = \{x + M : x \in X\}$ and M is a linear manifold in X satisfying the following conditions for every $x, y \in X$ and $\lambda > 0$

(1)
$$N((x+M) + (y+M), t) = N((x+y) + M, t)$$

(2) $N(\lambda(x+M), t) = N(\lambda x + M, t).$

Definition 2.3. Let $(X \not/ M, N, *)$ be a fuzzy normed quotient space. The open ball B(x+M,r,t) and the closed ball B[x+M,r,t] with the center $x + M \in X / M$ and radius 0 < r < 1, t > 0 are defined as follows:

$$B(x+M,r,t) = \{y+M \in X \not M : N((x+M) - (y+M),t) > 1-r\},\$$

 $B\left[x+M,r,t\right]=\{y+M\in X\diagup M: N((x+M)-(y+M),t)\geqslant 1-r\}.$

Theorem 2.4. [4] The following assertions hold for t > 0

 $(1) \ d(x + M, x + M, t) = d(M, W, t), \forall x \in C,$ $(2) \ d(\lambda M, \lambda W, t) = d(M, W, t \nearrow | \lambda |), \forall \lambda \in C,$ $(3) \ P_{W+x}^t(M + x) = P_W^t(M) + x, \forall x \in X,$ $(4) \ P_{\lambda W}^{|\lambda|t}(\lambda M) = \lambda P_W^t(M), \forall \lambda \in C$

Definition 2.5. The fuzzy normed space (X, N, *) is said to be a fuzzy Banach space whenever X is complete with respect to the fuzzy metric induced by fuzzy norm.

Theorem 2.6. If M is a closed manifold of fuzzy normed space X and N(x+M,t) is defined as above then:

- (a) N is a fuzzy norm on $X \swarrow M$.
- (b) $N(Qx,t) \ge N(x,t)$.
- (c) If (X, N, *) is a fuzzy Banach space, then so is $(X \not M, N, *)$.

Proof. It is clear that $N(x + M, t) \ge 0$.

Let N(x + M, t) = 1. By definition there is a sequence $\{x_n\}$ in M such that $N(x + x_n, t) \longrightarrow 1$. So $x + x_n \longrightarrow 0$ or equivalently $x_n \longrightarrow (-x)$ and since M is closed, $x \in X$ and x + M = M, the zero element of $X \swarrow M$.

$$\begin{array}{lll} N((x+M)+(y+M),t) &=& N((x+y)+M,t) \\ &\geqslant& N((x+m)+(y+m),t) \\ &\geqslant& N(x+m,t_1)*N(y+m,t_2), \end{array}$$

for $m, n \in M, x, y \in X$ and $t_1 + t_2 = t$. Now if we take sup on both sides, we have,

$$N((x+M) + (y+M), t) \ge N(x+M, t_1) * N(y+M, t_2).$$

Also we have,

$$\begin{split} N(\alpha(x+M),t) &= N(\alpha x+M,t) \\ &= \bigvee_{y\in M} \{N(\alpha x+\alpha y,t)\} \\ &= \bigvee_{y\in M} \{N(x+y,t/|\alpha|)\} \\ &= N(x+M,t/|\alpha|). \end{split}$$

Therefore (X, N, *) is a fuzzy normed space. To prove (b) we have,

$$\begin{split} N(Qx,t) &= N(x+M,t) \\ &= \bigvee_{y \in M} \{N(x+y,t)\} \\ &\geqslant N(x,t). \end{split}$$

Let $\{x_n + M\}$ be a Cauchy sequence in $X \nearrow M$. Then there exists $\epsilon_n > 0$ such that $\epsilon_n \longrightarrow 0$ and,

$$N((x_n+M) - (x_{n+1}+M), t) \ge 1 - \epsilon_n$$

Let $y_1 = 0$. We choose $y_2 \in M$ such that,

$$N(x_1 - (x_2 - y_2), t) \ge N((x_1 - x_2) + M, t) * (1 - \epsilon_n).$$

but $N((x_1 - x_2) + M, t) \ge (1 - \epsilon_n)$. Therefore,

$$N(x_1 - (x_2 - y_2), t) \ge (1 - \epsilon_1)(1 - \epsilon_1).$$

Now suppose y_{n-1} has been chosen, $y_n \in M$ can be chosen such that

 $N((x_{n-1} + y_{n-1}) - (x_n + y_n), t) \ge N((x_{n-1} - x_n) + M, t) * (1 - \epsilon_{n-1}),$ and therefore,

$$N((x_{n-1} + y_{n-1}) - (x_n + y_n), t) \ge (1 - \epsilon_{n-1}) * (1 - \epsilon_{n-1}).$$

Thus, $\{x_n + y_n\}$ is a Cauchy sequence in X. Since X is complete,

there is an x_0 in X such that $x_n + y_n \longrightarrow x_0$ in X. On the other hand

$$x_n + M = Q(x_n + y_n) \longrightarrow Q(x_0) = x_0 + M.$$

Therefore every Cauchy sequence $\{x_n + M\}$ is convergent in $X \not/ M$ and so $X \not/ M$ is complete and $(X \not/ M, N, *)$ is a fuzzy Banach space. \Box

Lemma 2.7. [4] Let (X, N, *) be a fuzzy normed space, M a t-proximinal subspace of X and S be an arbitrary subset of X. The following assertions are equivalent:

(1) S is a F-bounded subset of X.

(2) $S \not M$ is a F-bounded subset of $X \not M$.

Theorem 2.8. Let M be a closed subspace of a fuzzy normed space X. Let $Q: X \longrightarrow X \nearrow M$ if $x \in X$ and $\epsilon \in [0, N(Qx, t))$, then there is an x_0 in X such that, $x_0+M=x+M$ and $N(x_0,t) > N(Qx,t) * \epsilon$.

Proof. There always exists a $y \in M$ such that,

$$N(x+y,t) > N(x+M,t) * \epsilon = N(Qx,t) * \epsilon.$$

Now it is enough to put $x_0 = x + y$. \Box

Theorem 2.9. Let M be a t-Chebyshev subspace of (X, N, *) and $W \supseteq M$ a subspace of X.If W / M is t-Chebyshev with X/M, then W is Chebyshev with X.

Proof. Suppose $W \neq M$ is t-Chebyshev. Then some F-bounded subset K of X has distinct t-best approximations such as x_1 and x_2 in W/M. Thus we have,

$$x_1, x_2 \in P_W^t(K).$$

It is clear that,

$$x_1 + M, x_2 + M \in P^t_{W \not M}(K \not M).$$

Since $W \not M$ is t-Chebyshev, $x_1 + M = x_2 + M$ and $x_1 - x_2 \in M$. Now since

$$x_1, x_2 \in P_W^t(M),$$

there exists $w - x_1$ and $w - x_2$ in W and $W \supseteq M$; therefore $w - x_1$ and $w - x_2$ are in M. So there exists

$$0 \in P_W^t(M),$$

and also

$$x_1, x_2 \in P_W^t(w - x_2).$$

Since M is t-Chebyshev, $x_1 = x_2$. \Box

Corollary 2.10. [4] Let M be a t-proximinal subspace of (X, N, *) and $W \supseteq M$ a subspace of X. If W is t-proximinal then W / M is a t-proximinal subspace of X / M.

Theorem 2.11. [4] Let M be a t-proximinal subspace of $(X, N, *), W \supseteq M$ a t-proximinal subspace of X. Then for each F-bounded set K in X,

$$Q(P_W^t(K)) = P_{W \swarrow M}^t(K \swarrow M).$$

Theorem 2.12. Let M and W be subspaces of a fuzzy normed space (X, N, *) such that $M \subset W$ and let $x \in X / W$ and $w_1 \in W$. $f w_1$ is a *t*-best approximation to x from W, then $w_1 + M$ is a *t*-best approximation to x + M from the quotient space W/M.

Proof. Assume that $w_1 + M$ is not a t-best approximation to x + W from $W \not/ M$. Then there exists a $w_2 + M \in W \not/ M$ such that

$$N(w_2 + M - (w_1 + M), t) < N(x + M - (w_2 + M), t).$$

That is,

$$N(w_2 - w_1 + M, t) < N(x - w_2 + M, t).$$

That is,

$$N(x - w_2, M, t) > N(w_2 - w_1, M, t).$$

This implies that there exists a $m \in M$ such that

$$N(x - w_2 - m, t) > d(w_2 - w_1, M, t) > N(w_2 - w_1 + m, t).$$

That is,

$$N((m+w_2) - w_1, t) < N(x - (m+w_2), t).$$

Thus w_1 is not a t-best approximation to x from W, a contradiction. \Box

Definition 2.13. Let $(X \not/ M, N, *)$ be a fuzzy quotient normed space. A subset $W \not/ M$ of $X \not/ M$ is said to be t-convex if $\lambda(x + M) + (1 - \lambda)(y + M) \in W \not/ M$ whenever $x + M, y + M \in W \not/ M$ and $0 < \lambda < 1$.

Theorem 2.14. Let M be a t-proximinal subspace of $(X \not M, N, *)$ and $W \supseteq M$ a subspace of $X \not M$. Let $K \not M$ be F-bounded in $X \not M$. If $W \not M$ is t-convex of $X \not M$, then $P_{W \not M}^t(K \not M)$ is t-convex.

Proof. Suppose that $W \not/ M$ is t-convex and is a subset of $X \not/ M$. We show that $P_{W \not/ M}^t(K \not/ M)$ is t-convex. Since $W \not/ M$ is t-convex, there exists $\lambda(x+M) + (1-\lambda)(y+M) \in W \not/ M$, for all $x+M, y+M \in W \not/ M$ and $0 < \lambda < 1$. Now for t > 0 we have,

$$\bigwedge_{k+M\in \frac{K}{M}} N(\lambda(x+M) + (1-\lambda)(y+M) - (k+M), t) \leq d(K \nearrow M, W \nearrow M, t).$$

On the other hand, for a given t > 0, take the natural number n such that $t > \frac{1}{n}$. We have,

$$\begin{split} & \bigwedge_{k+M \in \frac{K}{M}} N(\lambda(x+M) + (1-\lambda)(y+M) - (k+M), t) \\ & = \bigwedge_{k+M \in \frac{K}{M}} N(\lambda(x-y) + y + M - (k+M), t) \\ & = \bigwedge_{k+M \in \frac{K}{M}} N((x-y) + M, \frac{1}{\lambda n}) * N(y+M - (k+M), t - \frac{1}{n}) \\ & = N((x-y) + M, \frac{1}{\lambda n}) * \bigwedge_{k+M \in \frac{K}{M}} N(y+M - (k+M), t - \frac{1}{n}) \\ & \ge \lim_{n \longrightarrow \infty} (\bigwedge_{k+M \in \frac{K}{M}} N(y+M - (k+M), t - \frac{1}{n})) \\ & = d(K \swarrow M, W \swarrow M, t). \end{split}$$

So $P^t_{W \neq M}(K \neq M)$ is convex. \Box

32

References

- T. Bag and S. K. Samanta, Finite dimentional fuzzy normed linear spaces, J. Fuzzy Math., 11 (3) (2003), 678-705.
- [2] S. C. Cheng and J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces. Bull. Calcutta Math. Soc., 86 (5) (1994), 429-436.
- [3] M. Ertefaat, H. Mazaheri, and S. M. S. Moddares, t-Best approximation in fuzzy normed linear spaces, *Journal of Soft Computing and Applications*, (2014), 1-6.
- [4] M. Goudarz and S. M. Vaezpour, Best simultaneous approximation in fuzzy normed spaces. Iran. J. Fuzzy Syst., 7 (3) (2010), 87-96.
- [5] R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces. J. Appl. Math. Comput., 17 (1-2) (2005), 475-484.
- [6] S. M. Vaezpour and F. Karimi, t-Best approximation in fuzzy normed spaces. Iran. J. Fuzzy Syst., 5 (2008), 93-99.
- [7] P. Veeramani, Best approximation in fuzzy metric space. J. Fuzzy Math., 9 (1) (2001), 75-80.
- [8] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.

Abbas Razmand

Faculty of Mathematics Instructor of Mathematics Yazd University Yazd, Iran E-mail: abbas.razmand1249@yahoo.com

Hamid Mazaheri

Faculty of Mathematics Associate Professor of Mathematics Yazd University Yazd, Iran E-mail: hmazaheri@yazd.ac.ir