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1. Introduction

Let C be the set of all finite complex numbers. Also let f be an entire
function defined in the open complex plane C. The maximum term µf (r)

and the maximum modulus Mf (r) of f =
∞∑

n=0
anz

n on |z| = r are defined

as µf (r) = max (|an| rn) and Mf (r) = max
|z|=r

|f (z)| respectively. We use
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the standard notations and definitions in the theory of entire functions
which are available in [10]. In the sequel we use the following notation:

log[k] x = log
(
log[k−1] x

)
, k = 1, 2, 3, ...and log[0] x = x.

If f is non-constant then Mf (r) is strictly increasing and continuous
and its inverse M−1

f (r) : (|f (0)| ,∞) → (0,∞) exists and is such that
lim

s→∞
M−1

f (s) = ∞. Bernal [1] introduced the definition of relative order

of f with respect to g, denoted by ρg (f) as follows:

ρg (f) = inf {µ > 0 : Mf (r) < Mg (rµ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1
g Mf (r)
log r

.

Similarly, one can define the relative lower order of f with respect to g
denoted by λg (f) as follows:

λg (f) = lim inf
r→∞

logM−1
g Mf (r)
log r

.

If we consider g (z) = exp z, the above definition coincides with the
classical definition [9] of order ( lower order) of an entire function f

which is as follows:

Definition 1.1. The order ρf and the lower order λf of an entire func-
tion f are defined as

ρf = lim sup
r→∞

log[2]Mf (r)
log r

and λf = lim inf
r→∞

log[2]Mf (r)
log r

.

Using the inequalities µf (r) 6 Mf (r) 6 R
R−rµf (R) for 0 6 r < R [8]

one may give an alternative definition of entire function in the following
manner:

ρf = lim sup
r→∞

log[2] µf (r)
log r

and λf = lim inf
r→∞

log[2] µf (r)
log r

.
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Now let L ≡ L (r) be a positive continuous function increasing slowly
i.e., L (ar) ∼ L (r) as r → ∞ for every positive constant a. Singh and
Barker [5] defined it in the following way:

Definition 1.2. [5] A positive continuous function L (r) is called a
slowly changing function if for ε (> 0) ,

1
kε

6
L (kr)
L (r)

6 kε for r > r (ε)

and uniformly for k (> 1) .
If further, L (r) is differentiable, the above condition is equivalent to

lim
r→∞

rL′ (r)
L (r)

= 0.

Somasundaram and Thamizharasi [6] introduced the notions of L-order
for entire function where L ≡ L (r) is a positive continuous function
increasing slowly i.e., L (ar) ∼ L (r) as r →∞ for every positive constant
‘a’. The more generalised concept for L-order for entire function is L∗-
order and its definition is as follows:

Definition 1.3. [6] The L∗-order ρL∗
f and the L∗-lower order λL∗

f of an
entire function f are defined as

ρL∗
f = lim sup

r→∞

log[2]Mf (r)
log
[
reL(r)

] and λL∗
f = lim inf

r→∞

log[2]Mf (r)
log
[
reL(r)

] .
In view of the inequalities µf (r) 6 Mf (r) 6 R

R−rµf (R) for 0 6 r < R [8]
one may verify that

ρL∗
f = lim sup

r→∞

log[2] µf (r)
log
[
reL(r)

] and λL∗
f = lim inf

r→∞

log[2] µf (r)
log
[
reL(r)

] .
In the line of Somasundaram and Thamizharasi [6] and Bernal [1], Datta
and Biswas [2] gave the definition of relative L∗-order of an entire func-
tion in the following way:
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Definition 1.4. [2] The relative L∗-order of an entire function f with
respect to another entire function g , denoted by ρL∗

g (f) in the following
way

ρL∗
g (f) = inf

{
µ > 0 : Mf (r) < Mg

{
reL(r)

}µ
for all r > r0 (µ) > 0

}
= lim sup

r→∞

logM−1
g Mf (r)

log
[
reL(r)

] .

Similarly, one can define the relative L∗-lower order of f with respect to
g denoted by λL∗

g (f) as follows:

λL∗
g (f) = lim inf

r→∞

logM−1
g Mf (r)

log
[
reL(r)

] .

In the case of relative L∗-order (relative L∗-lower order), it therefore
seems reasonable to define suitably an alternative definition of relative
L∗-order (relative L∗-lower order) of entire function in terms of its max-
imum terms. Datta, Biswas and Ali [4] also introduced such definition
in the following way:

Definition 1.5. [4] The relative order ρL∗
g (f) and the relative lower or-

der λg (f) of an entire function f with respect to another entire function
g are defined as

ρL∗
g (f) = lim sup

r→∞

logµ−1
g µf (r)

log
[
reL(r)

] and λL∗
g (f) = lim inf

r→∞

logµ−1
g µf (r)

log
[
reL(r)

] .
In this paper we wish to establish some results relating to the growth
rates of composite entire functions in terms of their maximum terms on
the basis of relative L∗-order (relative L∗-lower order).

2. Main Results

In the following we present some lemmas which will be needed in the
sequel.



SOME RESULTS ON THE GROWTH ANALYSIS ... 63

Lemma 2.1. [7] Let f and g be any two entire functions. Then for every
α > 1 and 0 < r < R,

µf◦g (r) 6
α

α− 1
µf

(
αR

R− r
µg (R)

)
.

Lemma 2.2. [7] If f and g are any two entire functions with g (0) = 0.
Then for all sufficiently large values of r,

µf◦g(r) >
1
2
µf

(
1
8
µg

(r
4

)
− |g (0)|

)
.

Lemma 2.3. [3] If f be an entire and α > 1, 0 < β < α, then for all
sufficiently large r,

µf (αr) > βµf (r).

Theorem 2.4. Let f , g and h be any three entire functions and g (0) =
0. If there exist α and β, satisfying 0 < α < 1, β > 0 and α (β + 1) > 1,
such that

(i) lim sup
r→∞

logµ−1
h (µg(r))(

log reL(r)
)α = A, a real number > 0,

(ii) lim inf
r→∞

logµ−1
h (µf (r))(

logM−1
h (r)

)β+1
= B, a real number > 0.

Then
ρL∗

h (f ◦ g) = ∞.

Proof. From (i) , we have for a sequence of values of r tending to infinity

logµ−1
h (µg(r)) > (A− ε)

(
log reL(r)

)α
(1)

and from (ii) , we obtain for all sufficiently large values of r that

logµ−1
h (µf (r)) > (B − ε)

(
logµ−1

h (r)
)β+1

.
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Since µg (r) is continuous, increasing and unbounded function of r, we
get from above for all sufficiently large values of r that

logµ−1
h (µf (µg (r))) > (B − ε)

(
logµ−1

h (µg (r))
)β+1

. (2)

Also µ−1
h (r) is an increasing function of r, it follows from Lemma 2.2,

Lemma 2.3, ( 1) and (2) for a sequence of values of r tending to infinity
that

logµ−1
h µf◦g(r) > logµ−1

h

{
µf

(
1
24
µg

(r
2

))}
i.e., logµ−1

h µf◦g(r) > logµ−1
h

{
µf

(
µg

( r

100

))}
i.e., logµ−1

h µf◦g(r) > (B − ε)
(
logµ−1

h

(
µg

( r

100

)))β+1

i.e., logµ−1
h µf◦g(r) > (B − ε)

[
(A− ε)

(
log
( r

100

)
eL( r

100)
)α]β+1

i.e., logµ−1
h µf◦g(r) > (B − ε) (A− ε)β+1

(
log
( r

100

)
eL( r

100)
)α(β+1)

i.e.,
logµ−1

h µf◦g(r)
log
[
reL(r)

] >
(B − ε) (A− ε)β+1

[
log
(

r
100

)
eL( r

100)
]α(β+1)

log
[
reL(r)

]

i.e., lim sup
r→∞

logµ−1
h µf◦g(r)

log
[
reL(r)

]
> lim inf

r→∞

(B − ε) (A− ε)β+1 [log reL(r) +O(1)
]α(β+1)

log
[
reL(r)

] .

Since ε (> 0) is arbitrary and α (β + 1) > 1, it follows from above that

ρL∗
h (f ◦ g) = ∞,

which proves the theorem. �

In the line of Theorem 2.4, one may state the following two theorems
without their proofs :
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Theorem 2.5. Let f , g and h be any three entire functions and g (0) =
0. If there exist α and β, satisfying 0 < α < 1, β > 0 and α (β + 1) > 1,
such that

(i) lim inf
r→∞

logµ−1
h (µg(r))(

log reL(r)
)α = A, a real number > 0,

(ii) lim sup
r→∞

logµ−1
h (µf (r))(

logµ−1
h (r)

)β+1
= B, a real number > 0.

Then
ρL∗

h (f ◦ g) = ∞.

Theorem 2.6. Let f , g and h be any three entire functions and g (0) =
0. If there exist α and β, satisfying 0 < α < 1, β > 0 and α (β + 1) > 1,
such that

(i) lim inf
r→∞

logµ−1
h (µg(r))(

log reL(r)
)α = A, a real number > 0,

(ii) lim inf
r→∞

logµ−1
h (µf (r))(

logµ−1
h (r)

)β+1
= B, a real number > 0.

Then
λL∗

h (f ◦ g) = ∞.

Theorem 2.7. Let f , g and h be any three entire functions and g (0) =
0. If there exist α and β, satisfying α > 1, 0 < β < 1 and αβ > 1, such
that

(i) lim sup
r→∞

logµ−1
h (µg(r))(

log[2] r
)α = A, a real number > 0,

(ii) lim inf
r→∞

log
[

log µ−1
h (µf (r))

log µ−1
h (r)

]
[
logµ−1

h (r)
]β = B, a real number > 0.
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Then
ρL∗

h (f ◦ g) = ∞.

Proof. From (i) , we have for a sequence of values of r tending to infinity
we get that

logµ−1
h (µg(r)) > (A− ε)

(
log[2] r

)α
(3)

and from (ii) , we obtain for all sufficiently large values of r that

log

[
logµ−1

h (µf (r))
logµ−1

h (r)

]
> (B − ε)

[
logµ−1

h (r)
]β

i.e.,
logµ−1

h (µf (r))
logµ−1

h (r)
> exp

[
(B − ε)

[
logµ−1

h (r)
]β]

.

Since µg (r) is continuous, increasing and unbounded function of r, we
get from above for all sufficiently large values of r that

logµ−1
h (µf (µg (r)))

logµ−1
h (µg (r))

> exp
[
(B − ε)

[
logµ−1

h (µg (r))
]β]

. (4)

Also µ−1
h (r) is increasing function of r, it follows from Lemma 2.2,

Lemma 2.3, (3) and (4) for a sequence of values of r tending to infinity
that

logµ−1
h µf◦g(r)

log
[
reL(r)

] >
logµ−1

h

{
µf

(
1
24µg

(
r
4

))}
log
[
reL(r)

] ,

i.e.,
logµ−1

h µf◦g(r)
log
[
reL(r)

] >
logµ−1

h

{
µf

(
µg

(
r

100

))}
log
[
reL(r)

] ,

i.e.,
logµ−1

h µf◦g(r)
log
[
reL(r)

]
>

logµ−1
h

{
µf

(
µg

(
r

100

))}
logµ−1

h

(
µg

(
r

100

)) ·
logµ−1

h

(
µg

(
r

100

))
log
[
reL(r)

] ,
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i.e.,
logµ−1

h µf◦g(r)
log


reL(r)



 exp

(B − ε)


logµ−1

h


µg

 r

100

β
·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 ,

i.e.,
logµ−1

h µf◦g(r)
log


reL(r)



 exp

(B − ε) (A− ε)β


log[2]

 r

100

αβ

·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 ,

i.e.,
logµ−1

h µf◦g(r)
log


reL(r)



 exp

(B − ε) (A− ε)β


log[2]

 r

100

αβ−1
log[2]

 r

100


·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 ,

i.e.,
logµ−1

h µf◦g(r)
log


reL(r)





log

 r

100

(B−ε)(A−ε)β(log[2]( r
100))

αβ−1

·
(A− ε)


log[2]

�
r

100

α

log

reL(r)



i.e., lim sup
r→∞

logµ−1
h µf◦g(r)

log

reL(r)

 ,

 lim inf
r→∞


log

 r

100

(B−ε)(A−ε)β(log[2]( r
100))

αβ−1

·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 .

Since ε (> 0) is arbitrary and α > 1, αβ > 1, the theorem follows from
above. 

In the line of Theorem 2.7, one may also state the following two theorems
without their proofs :

Theorem 2.8. Let f , g and h be any three entire functions and g (0) =
0. If there exist α and β, satisfying α > 1, 0 < β < 1 and αβ > 1, such
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i.e.,
logµ−1

h µf◦g(r)
log


reL(r)



 exp

(B − ε)


logµ−1

h


µg

 r

100

β
·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 ,

i.e.,
logµ−1

h µf◦g(r)
log


reL(r)



 exp

(B − ε) (A− ε)β


log[2]

 r

100

αβ

·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 ,

i.e.,
logµ−1

h µf◦g(r)
log


reL(r)



 exp

(B − ε) (A− ε)β


log[2]

 r

100

αβ−1
log[2]

 r

100


·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 ,

i.e.,
logµ−1

h µf◦g(r)
log


reL(r)





log

 r

100

(B−ε)(A−ε)β(log[2]( r
100))

αβ−1

·
(A− ε)


log[2]

�
r

100

α

log

reL(r)



i.e., lim sup
r→∞

logµ−1
h µf◦g(r)

log

reL(r)

 ,

 lim inf
r→∞


log

 r

100

(B−ε)(A−ε)β(log[2]( r
100))

αβ−1

·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 .

Since ε (> 0) is arbitrary and α > 1, αβ > 1, the theorem follows from
above. 

In the line of Theorem 2.7, one may also state the following two theorems
without their proofs :

Theorem 2.8. Let f , g and h be any three entire functions and g (0) =
0. If there exist α and β, satisfying α > 1, 0 < β < 1 and αβ > 1, such
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i.e.,
logµ−1

h µf◦g(r)
log


reL(r)



 exp

(B − ε)


logµ−1

h


µg

 r

100

β
·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 ,

i.e.,
logµ−1

h µf◦g(r)
log


reL(r)



 exp

(B − ε) (A− ε)β


log[2]

 r

100

αβ

·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 ,

i.e.,
logµ−1

h µf◦g(r)
log


reL(r)



 exp

(B − ε) (A− ε)β


log[2]

 r

100

αβ−1
log[2]

 r

100


·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 ,

i.e.,
logµ−1

h µf◦g(r)
log


reL(r)





log

 r

100

(B−ε)(A−ε)β(log[2]( r
100))

αβ−1

·
(A− ε)


log[2]

�
r

100

α

log

reL(r)



i.e., lim sup
r→∞

logµ−1
h µf◦g(r)

log

reL(r)

 ,

 lim inf
r→∞


log

 r

100

(B−ε)(A−ε)β(log[2]( r
100))

αβ−1

·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 .

Since ε (> 0) is arbitrary and α > 1, αβ > 1, the theorem follows from
above. 

In the line of Theorem 2.7, one may also state the following two theorems
without their proofs :

Theorem 2.8. Let f , g and h be any three entire functions and g (0) =
0. If there exist α and β, satisfying α > 1, 0 < β < 1 and αβ > 1, such
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i.e.,
logµ−1

h µf◦g(r)
log


reL(r)



 exp

(B − ε)


logµ−1

h


µg

 r

100

β
·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 ,

i.e.,
logµ−1

h µf◦g(r)
log


reL(r)



 exp

(B − ε) (A− ε)β


log[2]

 r

100

αβ

·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 ,

i.e.,
logµ−1

h µf◦g(r)
log


reL(r)



 exp

(B − ε) (A− ε)β


log[2]

 r

100

αβ−1
log[2]

 r

100


·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 ,

i.e.,
logµ−1

h µf◦g(r)
log


reL(r)





log

 r

100

(B−ε)(A−ε)β(log[2]( r
100))

αβ−1

·
(A− ε)


log[2]

�
r

100

α

log

reL(r)



i.e., lim sup
r→∞

logµ−1
h µf◦g(r)

log

reL(r)

 ,

 lim inf
r→∞


log

 r

100

(B−ε)(A−ε)β(log[2]( r
100))

αβ−1

·
(A− ε)


log[2]

�
r

100

α

log

reL(r)

 .

Since ε (> 0) is arbitrary and α > 1, αβ > 1, the theorem follows from
above. 

In the line of Theorem 2.7, one may also state the following two theorems
without their proofs :

Theorem 2.8. Let f , g and h be any three entire functions and g (0) =
0. If there exist α and β, satisfying α > 1, 0 < β < 1 and αβ > 1, such
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that

(i) lim inf
r→∞

logµ−1
h (µg(r))(

log[2] r
)α = A, a real number > 0,

(ii) lim sup
r→∞

log
[

log µ−1
h (µf (r))

log µ−1
h (r)

]
[
logµ−1

h (r)
]β = B, a real number > 0.

Then
ρL∗

h (f ◦ g) = ∞.

Theorem 2.9. Let f , g and h be any three entire functions and g (0) =
0. If there exist α and β, satisfying α > 1, 0 < β < 1 and αβ > 1, such
that

(i) lim inf
r→∞

logµ−1
h (µg(r))(

log[2] r
)α = A, a real number > 0,

(ii) lim inf
r→∞

log
[

log µ−1
h (µf (r))

log µ−1
h (r)

]
[
logµ−1

h (r)
]β = B, a real number > 0.

Then
λL∗

h (f ◦ g) = ∞.

Theorem 2.10. Let f , g and h be any three entire functions such that
0 < λL∗

h (g) 6 ρL∗
h (g) <∞, g (0) = 0 and

lim sup
r→∞

logµ−1
h (µf (r))

logµ−1
h (r)

= A, a real number <∞.

Then

λL∗
h (f ◦ g) 6 A · λL∗

h (g) and ρL∗
h (f ◦ g) 6 A · ρL∗

h (g) .
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Proof. Since µ−1
h (r) is an increasing function of r, it follows from

Lemma 2.2 for all sufficiently large values of r that

logµ−1
h µf◦g(r)

log
[
reL(r)

] 6
logµ−1

h {µf (µg (26r))}
log
[
reL(r)

] ,

i.e.,
logµ−1

h µf◦g(r)
log
[
reL(r)

]
6

logµ−1
h {µf (µg (26r))}

logµ−1
h (µg (26r))

·
logµ−1

h (µg (26r))
log
[
reL(r)

] , (5)

i.e., lim inf
r→∞

logµ−1
h µf◦g(r)

log
[
reL(r)

]
6 lim inf

r→∞

[
logµ−1

h {µf (µg (26r))}
logµ−1

h (µg (26r))
·
logµ−1

h (µg (26r))
log
[
reL(r)

] ]
,

i.e., lim inf
r→∞

logµ−1
h µf◦g(r)

log
[
reL(r)

]
6 lim sup

r→∞

logµ−1
h {µf (µg (26r))}

logµ−1
h (µg (26r))

· lim inf
r→∞

logµ−1
h (µg (26r))

log
[
reL(r)

] ,

i.e., λL∗
h (f ◦ g) 6 A · λL∗

h (g) . (6)

Also from (5) , we obtain for all sufficiently large values of r that

lim sup
r→∞

logµ−1
h µf◦g(r)

log
[
reL(r)

]
6 lim sup

r→∞

[
logµ−1

h {µf (µg (26r))}
logµ−1

h (µg (26r))
·
logµ−1

h (µg (26r))
log
[
reL(r)

] ]

i.e., lim sup
r→∞

logµ−1
h µf◦g(r)

log
[
reL(r)

]
6 lim sup

r→∞

logµ−1
h {µf (µg (26r))}

logµ−1
h (µg (26r))

· lim sup
r→∞

logµ−1
h (µg (26r))

log
[
reL(r)

]
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i.e., ρL∗
h (fog) 6 A · ρL∗

h (g) . (7)

Therefore the theorem follows from (6) and (7). �

Theorem 2.11. Let f , g and h be any three entire functions such that
0 < λL∗

h (g) <∞, g (0) = 0 and

lim sup
r→∞

logµ−1
h (µf (r))

logµ−1
h (r)

= A, a real number <∞.

Then
ρL∗

h (f ◦ g) > B · λL∗
h (g) .

Proof. Since µ−1
h (r) is an increasing function of r, it follows from

Lemma 2.2 for all sufficiently large values of r that

logµ−1
h µf◦g(r)

log
[
reL(r)

] >
logµ−1

h

{
µf

(
µg

(
r

100

))}
log
[
reL(r)

] ,

i.e.,
logµ−1

h µf◦g(r)
log
[
reL(r)

]
>

logµ−1
h

{
µf

(
µg

(
r

100

))}
logµ−1

h

(
µMg

(
r

100

)) ·
logµ−1

h

(
µMg

(
r

100

))
log
[
reL(r)

] ,

i.e., lim sup
r→∞

logµ−1
h µf◦g(r)

log
[
reL(r)

]
> lim sup

r→∞

[
logµ−1

h

{
µf

(
µg

(
r

100

))}
logµ−1

h

(
µMg

(
r

100

)) ·
logµ−1

h

(
µMg

(
r

100

))
log
[
reL(r)

] ]
,

i.e., lim sup
r→∞

logµ−1
h µf◦g(r)

log
[
reL(r)

]
> lim sup

r→∞

logµ−1
h

{
µf

(
µg

(
r

100

))}
logµ−1

h

(
µMg

(
r

100

)) · lim inf
r→∞

logµ−1
h

(
µMg

(
r

100

))
log
[
reL(r)

] ,

i.e., ρL∗
h (f ◦ g) > B · λL∗

h (g) .



SOME RESULTS ON THE GROWTH ANALYSIS ... 71

Thus the proof is complete. �

Theorem 2.12. Let f , g and h be any three entire functions such that
0 < λL∗

h (g) 6 ρL∗
h (g) <∞, g (0) = 0 and

lim inf
r→∞

logµ−1
h (µf (r))

logµ−1
h (r)

= B, a real number <∞.

Then
λL∗

h (f ◦ g) 6 B · ρL∗
h (g) .

Theorem 2.13. Let f , g and h be any three entire functions such that
0 < ρL∗

h (g) <∞, g (0) = 0 and

lim sup
r→∞

logµ−1
h (µf (r))

logµ−1
h (r)

= A, a real number <∞

for a particular value of δ > 0. Then

ρL∗
h (f ◦ g) > A · ρL∗

h (g) .

The proof of Theorem 2.12 and Theorem 2.13 are omitted because those
can be carried out in the line of Theorem 2.10 and Theorem 2.11 respec-
tively.
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