Hypercyclicity On Some Function Spaces

B. Yousefi

Payame-Noor University

"Dedicated to Mola Ali"

Abstract. In this paper we characterize the hypercyclicity of the composition operator acting on some function spaces of analytic functions.

AMS Subject Classification: Primary 47B37; Secondary 47A25. Keywords and Phrases: Hilbert spaces of analytic functions, Reproducing kernels, Hypercyclic vector Composition operator, Denjoy-Wolff Theorem, Hypercyclicity Criterion, Hilbert spaces of formal power series.

1. Introduction

Let H be a Hilbert space of analytic functions on the open unit disk U such that for each $z \in U$, the evaluation function $e_{\lambda}: H \to C$ defined by $e_{\lambda}(f) = f(\lambda)$ is bounded on H. By the Riesz Representation Theorem there is a vector $k_z \in H$ such that $f(z) = \langle f, k_z \rangle$ for every $z \in U$. Furthermore, we suppose that ϕ is a holomorphic self map of U. The adjoint of a composition operator has not been yet well characterized on any spaces of holomorphic functions. Nevertheless its

action on reproducing kernels is determined. In fact $C_{\phi}^*(k_z) = k_{\phi(z)}$ for every $z \in U$.

Remember that a bounded linear operator T on a Banach space X is said to be hypercyclic if there exists a vector $x \in X$ for which the orbit

$$Orb(T, x) = \{T^n x : n \in \mathbb{N}\}\$$

is dense in X and in this case we refer to x as a hypercyclic vector for T. Relating on these subjects we refer to ([1–6]).

Let U be the open unit disk of the plane, then we denote by H(U) the space of all complex-valued functions holomorphic on U.

By A(U) we will denote the disc algebra on the open unit disc U, which contains the functions that are analytic on U and are continuous on \bar{U} .

2. Main Results

In the main theorems of this paper we investigate the hypercyclicity of the composition operators on the Hilbert space H and some other

function spaces.

Proposition 1. If ϕ is an analytic self-map of U that fixes a point of U, then C_{ϕ} is not hyprcyclic on H.

Proof. Suppose $\alpha \in U$ is a fixed point for ϕ . Then $\langle f, e_{\alpha} \rangle = f(\alpha)$ for all f in H. Fix $f \in H$, to be regarded as a hypercyclic vector candidate.

If g belongs to the closure of $Orb(C_{\phi}, f)$, then for some subsequence $n_k \to +\infty$ we have $C_{\phi_{n_k}} f \to g$. Thus we have

$$g(\alpha) = \langle g, e_{\alpha} \rangle$$

$$= \lim_{k} \langle C_{\phi_{n_{k}}} f, e_{\alpha} \rangle$$

$$= \lim_{k} \langle f, C_{\phi_{n_{k}}}^{*} e_{\alpha} \rangle$$

$$= \lim_{k} \langle f, e_{\phi_{n_{k}}(\alpha)} \rangle$$

$$= \lim_{k} f(\phi_{n_{k}}(\alpha))$$

$$= f(\alpha).$$

This implies that no orbit can be dense in H and so C_{ϕ} is not hypercyclic on H. This completes the proof. \square

Proposition 2. If $H \subset A(U)$ and ϕ is an analytic self-map of U that fixes a point of \bar{U} , then C_{ϕ} is not hypercyclic on H.

Proof. By the same proof applies to the above proposition, we can

106

complete the proof. \square

Theorem 3. Let H^2 be continuously contained in H and suppose that the set of polynomials is dense in H. If ϕ is an analytic self-map of U and C_{ϕ} is hypercyclic on H, then λC_{ϕ} is hypercyclic on H whenever $|\lambda| = 1$.

Proof. Let $T=C_{\phi}$ and X be the set of polynomials vanishing in the boundary fixed point w. Since convergence in the Hardy space H^2 implies convergence in H, with both spaces containing the polynomials as a dense subset, so X is a dense subset of H. Note that for every $f \in X$, we have $T^n(f) = f \circ \phi_n$ tending to zero, as $n \to \infty$. Now fix the open subsets U' and V' and the open neighborhood W of zero in H. Since T is hypercyclic and the sequence $\{T^n\}$ converges point wise to zero on the dense subset X, so there exists some positive integer n such that $T^n(U') \cap W \neq \emptyset$ and $T^n(W) \cap V' \neq \emptyset$. But for each positive integer n, $\lambda^n W = W$. This implies that

$$(\lambda T)^n(U') \cap W \neq \emptyset$$

and

$$(\lambda T)^n(W) \cap V' \neq \emptyset.$$

Now clearly λT is hypercyclic.

Remark 4. The above results are also true for a Banach space X

instead of the Hilbert space H with the same assumptions.

Note that H(U) can be made into a F-space by a complete metric for which a sequence $\{f_n\}$ in H(U) converges to $f \in H(U)$ if and only if $f_n \to f$ uniformly on every compact subsets of U.

Lemma 5. Let X be the set of polynomials vanishing in the boundary fixed point w, then X is a dense subset of H(U).

Proof. Suppose Λ is a continuous linear functional on H(U) that vanishes on X. By the Hahn-Banach Theorem it is enough to show that $\Lambda \equiv 0$ on H(U). For each 0 < r < 1 and each $f \in H(U)$ let

$$|| f ||_r = \sup\{|f(z)| : |z| \le r\}.$$

Then $\| \cdot \|_r$ is a norm on H(U) and the open balls for each of these norms forms a basis for the topology of H(U) and so there exists some 0 < r < 1 such that the set

$$\{f \in H(U) : || f ||_r \leqslant 1\}$$

is contained in $\Lambda^{-1}(U)$. Thus Λ is a bounded linear functional relative to the norm $\| \cdot \|_r$. So by the Hahn-Banach theorem it extends to a bounded linear functional on $C(U_r)$, where

$$U_r = \{ z \in C : |z| \leqslant r \}.$$

The Riesz Representation Theorem provides a finite Borel measure μ on U_{r} such that

$$\Lambda(f) = \int_{U_r} f d\mu$$

for every $f \in H(U)$. For each positive integer n consider the polynomials $z^{n+1} - wz^n$ which are zero in w. But our hypothesis, states that Λ vanishes on X, so

$$\int_{U_r} z^{n+1} d\mu = w \int_{U_r} z^n d\mu$$

whence

$$|\int_{U_r}z^{n+1}d\mu|=|\int_{U_r}z^nd\mu|.$$

On the other hand

$$\int_{U_r} z^n d\mu \to 0$$

as $n \to \infty$. This implies that

$$\int_{U_r} z^n d\mu$$

=0 for each positive integers, and therefore

$$\int_{U_r} f d\mu = 0$$

for every polynomial f, and so for every $f \in H(U)$. \square

Proposition 6. Suppose that ϕ has no fixed point in U, then λC_{ϕ} is hypercyclic on H(U) for every complex number λ with $|\lambda| = 1$.

Proof. Let $T = C_{\phi}$ and X be the set stated in the preceding lemma. Note that for every $f \in X$, $T^{n}(f) = f \circ \phi_{n}$ tending to zero, as $n \to \infty$. Now by the same method used in the proof of Theorem 3, we can see that λT is hypercyclic. \square

Let $\{\beta(n)\}$ be a sequence of positive numbers with $\beta(0) = 1$ and $1 \leq p < \infty$. We consider the space of sequences $f = \{\hat{f}(n)\}_{n=0}^{\infty}$ such that

$$||f||^p = ||f||^p_{\beta} = \sum_{n=0}^{\infty} |\hat{f}(n)|^p \beta(n)^p < \infty.$$

The notation

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$$

shall be used whether or not the series converges for any value of z. Let $H^p(\beta)$ denotes the space of such formal power series. These are reflexive Banach spaces with the norm $||.||_{\beta}$ and the dual of $H^p(\beta)$ is $H^q(\beta^{p/q})$ where $\frac{1}{p} + \frac{1}{q} = 1$ and $\beta^{p/q} = \{\beta(n)^{p/q}\}_n$. The following propositions follows immediately from the above results.

Proposition 7. Let $(\beta(n+1)/\beta(n)) \to 1$ as $n \to \infty$. If ϕ is an analytic self-map of U that fixes a point of U, then C_{ϕ} is not hyprcyclic on $H^p(\beta)$.

Proposition 8. Let $\sum_{n=0}^{\infty} \frac{1}{\beta(n)^q} < \infty$ where $\frac{1}{p} + \frac{1}{q} = 1$. If ϕ is an analytic self-map of U that fixes a point of \bar{U} , then C_{ϕ} is not hypercyclic on $H^p(\beta)$.

Proposition 9. Let $(\beta(n+1)/\beta(n)) \to 1$ and $\sum_{n=0}^{\infty} \frac{1}{\beta(n)^2} = +\infty$. If φ

is a conformal automorphism of the unit disk with no fixed point in the interior, then C_{ϕ} is hypercyclic on $H^{p}(\beta)$.

Proof. Let $\alpha \in \partial U$ be the unique fixed point of φ that comes in the Denjoy-Wolff Theorem and denote the other fixed point by β . Then this too must lie on the unit circle ∂U . Let Y_{α} denotes the set of polynomials that vanish at α . Since $\phi_n \to \alpha$ uniformly on compact subsets of U, we get

$$C_{\phi_n}p = po\phi_n \to 0$$

for all p in Y_{α} . Thus $C_{\phi_n} \to 0$ on Y_{α} which is dense in $H^p(\beta)$. Put $S = C_{\phi}^{-1} = C_{\phi^{-1}}$ and let Y_{β} be the set of all continuous functions on the closed unit disk that are analytic in U and vanish at β . Then S maps the dense set Y_{β} into itself and $S^n \to 0$ on Y_{β} . The hypothesis of the Hypercyclicity Criterion are therefore satisfied and so C_{ϕ} is hypercyclic on $H^p(\beta)$. \square

References

- P. S. Bourdon and J. H. Shapiro, Cyclic composition operator on H², Proc. Symp. Pure Math., 51 (2) (1990), 43-53.
- [2] P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operator, Mem. Amer. Math. Soc., 596 (1997).
- [3] G. Godefroy and J. H. Shapiro, Operators with dense invariant cyclic vector manifolds, *J. Func. Anal.*, 98 (1991), 229-269.
- [4] J. H. Shapiro, Composition operators and classical function theory, Springer-Verlag New York, (1993).

- [5] B. Yousefi and H. Rezaei, Hypercyclic property of weighted composition operators, *Proc. Amer. Math. Soc.*, 135 (10) (2007), 3263-3271.
- [6] B. Yousefi and H. Rezaei, On the supercyclicity and hypercyclicity of the operator algebra, *Acta Math. Sinica*, 24 (7) (2008), 1221-1232.

Bahmann Yousefi

Payame-Noor University, Iran Shiraz, Moallem Square, South Iman Street Shiraz Payame-Noor University P.O.Box:71345-1774 Shiraz, IRAN

Email: byousefi@shirazu.ac.ir