Journal of Mathematical Extension
Vol. 2, NO. 1, 2 (2007-2008), 113-122

Using Least Square Method to Find the
Approximate Solution of an Overdetermined
System of Linear Equations

M. H. Farahi
Ferdowsi University of Mashhad

H. Fahimian and A.R. Nazemi
Ferdowsi University of Mashhad

Abstract. In this paper an algorithm is introduced to find the
approximate solution of an inconsistent linear system. The used
norm in this approach is smooth and strictly convex . The al-
gorithm is iterative and produce a sequence that tends to best
solution for the inconsistent system. Two numerical examples are
given to illustrate the procedure.
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1. Introduction
Consider the overdetermined system of linear equations:
Az = b,

where A = [aijlmxn is a real matrix, b € R™, m,n > 1. The basic
problem to be examined here can be posed as follows:
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find z € R", to Minimize ||r(z)||, where

r(z) =b— Az, (1)

Now we can change the optimization problem (1) to the following
problem:

Minimize ||b— z||, z € K, (2)
where K is a subspace of R™, and b € R™ — K.

2. Preliminaries and Backgrounds

The inner product in R™, denoted by < . >, is defined as:

m

< U, v >= Zuivg, U= (Uly...,Um), U= _(01,...,0m).

i=1
Let E,,xm be the orthogonal projection of R™on the subspace K =
ker(AT) where AT is the transposition matrix of A. So for any u € R™,
the vector Fu € K is the best approximation of » in Euclidian norm in
subspace K, and if u € K, them Eu = u. So it is clear that K- = I'm(A),
and if s = Eb, then the system Ax = b is inconsistent, thus s # 0.( It is
easy to show that Eu = 0 if and only if u € K+ ).

Thus the problem (2) can be rewritten as:

Minimize ||b— z||, (1)
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subject to
ze Kt (2)

where the defined norm is smooth and strictly convex.
We would like mention that ||.|| is smooth if and only if from any
point in v € R™, with unite norm, only one hyperplane can pass, that

support the sphere
B ={z eR", ||| <1},

and ||.|| is strictly convex if and only if there is not any segment in the

set

S={zeR™ |z| =1}

Now we are going to define the dual problem (2). First define the

dual norm ||.|', as follows
lyll' = Max{< z,y >; ||z|| =1 and x € R™}.

If y # 0, is a vector in R™, the vectors 3" and y* are respectively dual-|.||

and dual-||.||" of y and defined by:

Iyl =1, <y',y>=]yl’,

vl =1, <y*y>=]yl.
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If ||| is strictly convex, then for every nonzero y € R™, dual-||.| is
unique and the mapping v — v/ is continuous, and if ||.|| is smooth, then

dual-||.||" in the case of existence is unique and v — v* is continuous.

Theorem 2.1. |.|| is smooth if and only if ||.||" is strictly conver.

Proof. See [1].0

Now from [5], where 1 < p < o0, for L, norm,

T

lully = (Y (a)?),

i=1

o=

we have
115 = ll-llgy p+q=pg,

and if v # 0, the v/ and v*, with v} and v, as their elements, defined by

Now the problem (P’) ( dual of (P)) is as follows:

Maximize < b,y >,

subject to

yeK, |yl'=1. (P')
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(P) and (P’), respectively, are equivalent with the following problems:

Minimize||s — z||,

subject to
z € K+, where s = Eb, (P)
and
Maximize < s,y >,
subject to

yeK, |yl'=1. (P')

From now on, we use two latest problem (P) and (P’), and since R™
and subspaces K and K+ are finite dimension and the norm is strictly

convex, so (P) and (P’), have unique solution.

Theorem 2.2. Let y be the solution of (P'). Then the linear system
Az =b— < by >y

is consistent. In fact every solution of this system is a solution of (P),
and the remainder is < b,y > .

Proof. See [7].0J

The following theorems help us to illustrate our algorithm. One can see
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the proof of these Theorems in [2].
Theorem 2.3. Let s = Eb # 0 and t = s+ u, where u € K+,
Then t* is a minimizer of (P) if and only if t* € K. In this case t* is a

mazximizer of (P').

Lemma 2.4. Let 0#se K, ye K, |yl =1, and < s,y >> 0.

Define t € R™ as follows:
t=s+<s,y>(—-E)y.
Then Et* #0, (i.e. t* € K1).
Theorem 2.5. Let s = Eb# 0, t € R™, be such that
t=s+<sy>I—-E)y, <sy>>0,

wherey = (|Et*||") "L Et".

Then t* is a minimizer of (P) and y is a mazimizer of (P') and t* = y.
3. Algorithm

Now, as a consequence of the above theorems, we can present the ba-
sic algorithm to solve the problem (P). This algorithm consists of the
following steps:

Step 1. Close € > 0, y; € K, such that [[z1]' =1, and < s,y >> 0.

One suggestion for this, can be 3, = [|s||~'s. Choose the counter k = 1.
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Step 2. Choose t = s+ < s,yx > (I — E)y,,.

Step 3. If 1 — (||tx]" < s,yx >) < €, goto 10.

Step 4. If |[(I — E)ti|| < ¢, then yi = tg, goto 10.

Step 5. Choose 7 = (| Etg|’) ! Etx.

Step 6. If < 5,7, >< 1}, yp >=< s,y >, then ypoq =1y, ap = 1,

goto 9.

Step 7. Choose aj (0 < ai < 1) such that

< s, aprk + (1 — ap)yr >< (aprr + (1 — ag)ye)s re — yie >

= llagre + (1 — ar)yel < s,rk — yr > .

Step 8. Choose yi+1 = (||arri+ (1 — ar)ykl|) (ks + (1 — k) yk)-

Step 9. Choose k = k + 1, goto 2.

Step 10. yy is a solution of (P’) and t;, is a solution of minimizer in
(P).
Now from above algorithm, any solution of the following linear sys-

tem :

Aﬂ?=b—tk
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is an approximate solution of the overdetermined system

Arz=b

in the least square approximation.

Theorem 3.1. The sequence {yr} and {tr} from above algorithm,
tend respectively to the maximizer and minimizer of problems (P') and

(P).

4. Numerical result

In this section an example is given to illustrate the algorithm. This

example is chosen from [1, 3, 4, 5].

Example 4.1. Consider the following overdetermined linear system

of equation

1, = 1.52

x1 + 9 = 1.025
z1 + 2z9 = 0.475
x1 + 3x2 = 0.01

x1 + 4xe = —0.475

x1 + Sz = —1.005.
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Table 1:

| PIN[] & | = [ »p |
7 | 81| 1.500685 | -0.499662 | 0.02911148

6 | 46 | 1.501486 | -0.499711 | 0.02990692
5 | 19| 1.502293 | -0.499813 | 0.03105973
4 | 9 | 1.503757 | -0.500057 | 0.03287394
3 | 4 | 1.506860 | -0.500710 | 0.03612070
2 | 0 | 1.514762 | -0.502571 | 0.04321596
1.8 | 3 | 1.517371 | -0.503201 | 0.04566427
1.6 | 7 | 1.519679 | -0.503750 | 0.04879303

1.5 | 16 | 1.520005 | -0.503800 | 0.05079019
1.4 | 11 | 1.520126 | -0.503787 | 0.05327584
1.3 | 15 | 1.520215 | -0.503744 | 0.05643632
1.2 | 23 | 1.520187 | -0.503621 | 0.06054325
1.1 | 65 | 1.520037 | -0.503390 | 0.06597922

In Table 1, one can see the numerical results. In this Table , (P)
indicates the L, norm. N is the number of iteration, and p is the norm

of error in the (P) problem.



122

(1]

M. H. FARAHI, H. FAHIMIAN AND A.R. NAZEMI

References

I. Barrodale, and A. Young, Algorithms for best R™ linear approximation
on discrete set, Numer. Math., 8 (1966).

H. Fahimian, Improvment of the second algorithm of Remes using the EM
algorithm to approximate the continous functions, and approxrimation the
solution of the inconsistent systems, MSc Dessertation, Ferdowsi Univ.

R. W. Owens, An algorithm for best approximate solutions of Az = b
with a smooth strictly convex norm, Numer. Math., 29 (1977).

H. Spath, Mathematical Algorithms for Linear Regression, Academic

V. P. Sreedharan, An algorithm for non-negative norm minimal solutions,

V. P. Sreedharan, Least squares algorithms for finding solutions of overde-
termined systems of linear equations which minimize error in a smooth
strictly convex norm, J. Approxz. Theory 8 (1973).

2]
Mashhad (2006).
3]
4]
Press, Orlando, FL, (1992).
(5]
Numer. Funct. Anal. Optim., 9 (1987).
(6]
(7]

V. P. Sreedharan, Solutions of overdetermined linear equations which min-
imize error in an abstract norm, Numer. Math., 13 (1969).

Mohammad Hadi Farahi
Department of Mathematics
Ferdowsi University of Mashhd
Mashhad, Iran

E-mail: farahi@math.m.ac.ir

Hasan Fahimian
Department of Mathematics
Ferdowsi University of Mashhd
Mashhad, Iran

Ali Reza Nazemi
Department of Mathematics
Ferdowsi University of Mashhd
Mashhad, Iran



