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Abstract. In this paper we consider the weighted composition
operators on the weighted Hardy spaces. We investigate some
relations between the function theoretic of the composition map
and the weight function with the operator theoretic of the weighted
composition operators.
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1. Introduction

Suppose that u is a holomorphic function on the open unit disk ID and
let ¢ be a holomorphic self-map of ID. A weighted composition operator
Cly,, induced by the weight symbol u and composition symbol ¢ maps
an analytic function f in a functional Banach space of analytic function
into (Cupf)(2) = u(z)f(p(2)).

Note that C, ., is the composition operator Cy, given by C,(f) = fop
when u = 1. A recent book of Cowen and MacCluer is a good reference
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for the theory of composition operators([1]). Weighted composition op-
erators are recently the subject of attention due to the fact that of re-
sults have been obtained about composition operators in one and several
complex variables.

Forelli showed that an isometry on HP,1 < p < oo and p # 2, is a
weighted composition operator([4]). Throughout the paper {8(n)}5,
is a sequence of non-negative integers with 5(0) = 1 and 1 < p < 0.
we are mainly concerned about weighted Hardy spaces HP(/3). In fact,
HP((),1 < p < o0, is the space of formal power series f(z) = § f(n)z”
with "

117 = 1£1 = D 1f () PB(n)P < oo

n=0
Note that, for p = 2, the classical Hardy spaces, Bergman spaces and

the Dirichlet spaces are weighted Hardy spaces with 3(n) = 1,8(n) =
(n+ 1)_T1 and B(n) = (n+ 1)%, respectively . The space H?(3) becomes
a Hilbert space with inner product

< f.g>= Zangnﬁ(n)g

n=0

where f(z)=§ anz" and g(z)=§ by 2™ are the elements of H2(3)([1, 6]).
=0

n= n=0
If liminf ﬁ(n}i =1 or lim 5;{”:;1) = 1,then H?(3) consists of func-
tions analytic on ID. Generally the spaces HP(3) are reflexive Banach

spaces with the norm |.||g and the dual of HP(8) is H9(3¢) when

11— 1 and B% = {B(n) }u([5)).
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A complex number A is said to be a bounded point evaluation on
HP(3) if the functional of point evaluation at A, ey , is bounded. A
complex number A is a bounded point evaluation on HP(/3) if and only if
{%}n € 19([7]). If lim inf B(n)/™ = 1 then for each A in the open unit

disk, the functional of evaluation at), ey , is a bounded linear functional

on HP(3) and we have

0 n,n
ex(z) = ZO O
and
=,
q _
||€,\|| 4 Oﬁ(n)q

Some sources on formal power series include ([2,3,7,8,9]).
2. Main Results

From now on suppose that C, . is a bounded weighted composition
operator on HP(3),1 < p < oo , 3(0) = 1 and liminf 3(n)"/™ = 1. To
avoid (', being a multiplication operator , ¢ is taken to be different
from identity. Clearly the space HP((3),1 < p < o0, is contained in H?
and it is known as a small space when nio E’T%F <ooand 1/p+1/g=1
().

Lemma 1. If C,, is bounded on HP(f3), 1<p < oo, then

|le]l
[u(w)| < [|Cugllm =

”ego(w) ||
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for any w in the open unit disk.

Proof. First of all note that for any f in HP(f3),

< [, Chpew > =< Cuguf,en >=<u.fop, ey

= u(w)f(p(w)) = u(w) < f,ep@w) >
so Cy ,ew = u(w)eyy). Note that ”ﬂ%:fﬂ” =

1 for any w in ID. By
boundedness of C, ,

Caw

ICue - I S ICelll== I = ICupll-
llewll I w”

Hence

lu(w)ep@w)ll < ICugllllewll,

or

[
()] < [Cupll1%l o
Teo]

(e o]
Lemma 2. Suppose that Z ﬁ <oo,l<p< oo,l—l-l =1 and Cyy

is bounded on HP([3) . Then |Cupll is bounded below by Al

(E am) !/
Proof . By Lemma 1,
€
4(w)| < [Cugll- 1%
”e{p{w)”
(3 ey
'}
= |Gl 222
(3 Iw(w)|"‘f)—
> BT
(2 3y
< /=
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Since ||e > 1, then

tp(w)”
1
[u(w)] < [ICupll (D W)”q-

This completes the proof. [

Now we give the sufficient conditions to determine when the adjoint
of a weighted composition operator on weighted Hardy space HP([3) is
a composition operator.

Proposition 3. Let C,, be a weighted composition operator on
HP(B),1 <p<oo. IfCy , = Cy is a composition operator then u = &,
with w = 1 (0) and ¢ has Denjoy- Wolf point at 0.

Proof. If Cj ,=Cy , then Cj e\ = Cyey. It follows that

u(Negn (2) = ea(v(z2))
where A and z are in the open unit disk. So
o2 /\“w“
Z o Z 1)

Put z =0 and ¥(0) = w in (1), then we have

u(A) = Nt = ew(A).
?lz:(:) B(n)P

Put u = &, in (1), then

o e & (#0) 2 ,\nwn(z)
gﬁ(nw'z B(n)P Z

n=0
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for any A and z in the open unit disk and w = 1(0).
If \=0, then

H

-0 1
; By B

for each z in D. Therefore ¢(0) =0. O
Theorem 4. Let C,, be a compact weighted composition operator
on HP(B3),1 < p < oo . Suppose that Chp 18 a composition operator.

Then the spectrum of Cy,, is a subset of

{0.1, ¢'(0), (#(0)% (£ (0, - }.

Proof. Suppose that A is an eigenvalue of C,, . We will show that
A = 0,1 or has the form (¢'(0))" for some n . Note that Cy, is a
compact operator on infinite dimensional space H?(3). Then zero is in

the spectrum. Now if A # 0 , then for some nonzero f € HP(/3),

(Cupf)(2) = Af(2). (1)
If £(0) #0 , then
u(0)f(¢(0)) = Af(0).

But by proposition 3 , ¢(0) = 0 and u(0) = 1. then A = 1. Now suppose
that zero is a root of f with multiplicity of n > 0 .

Hence by differentiating from (1) , n times, we have

n—1
D) (@(2) + u(2) FM e ()" =AM () (2)
1=0
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where C}’s are functions of the different products of ¢ and deriva-

tives of u. Put z = 0 in (2). Since ¢(0) = 0 and u(0) = 1 then

F™(0)(¢'(0))* = Af™(0) and this completes the proof. [
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