# A Note on An Engel Condition with Generalized Derivations in Rings 

M. A. Raza*<br>Aligarh Muslim University<br>N. Rehman<br>Taibah University KSA<br>T. Bano<br>Aligarh Muslim University


#### Abstract

Let $R$ be a prime ring with characteristic different from two, $I$ be a nonzero ideal of $R$, and $F$ be a generalized derivation associated with a nonzero derivation $d$ of $R$. In the present paper we investigate the commutativity of $R$ satisfying the relation $F\left([x, y]_{k}\right)^{n}=\left([x, y]_{k}\right)^{l}$ for all $x, y \in I$, where $l, n, k$ are fixed positive integers. Moreover, let $R$ be a semiprime ring, $A=O(R)$ be an orthogonal completion of $R$, and $B=B(C)$ be the Boolean ring of $C$. Suppose $F\left([x, y]_{k}\right)^{n}=\left([x, y]_{k}\right)^{l}$ for all $x, y \in R$, then there exists a central idempotent element $e$ of $B$ such that $d$ vanishes identically on $e A$ and the ring $(1-e) A$ is commutative.


AMS Subject Classification: 16N60; 16U80; 16W25
Keywords and Phrases: Prime and semiprime rings, generalized derivation, generalized polynomial identity (GPI), ideal

## 1. Introduction

Let $R$ be an associative ring with center $Z(R)$. For each $x, y \in R$, define $[x, y]_{k}$ inductively by $[x, y]_{1}=x y-y x$ and $[x, y]_{k}=\left[[x, y]_{k-1}, y\right]$ for $k>1$. The ring $R$ is said to satisfy an Engel condition if there exists a positive integer $k$ such that $[x, y]_{k}=0$ for all $x, y \in R$. Note that an Engel condition is a polynomial

[^0]$[x, y]_{k}=\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}$ in non-commutative indeterminates $x, y$ and $[x+z, y]_{k}=[x, y]_{k}+[z, y]_{k}$. Recall that a ring $R$ is prime if $x R y=\{0\}$ implies either $x=0$ or $y=0$, and $R$ is semiprime if $x R x=\{0\}$ implies $x=$ 0 . An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+y d(x)$ holds, for all $x, y \in R$. In particular $d$ is an inner derivation induced by an element $q \in R$, if $d(x)=[q, x]$ holds, for all $x \in R$. An additive mapping $F: R \rightarrow R$ is called generalized derivation associated with a derivation $d$ if $F(x y)=F(x) y+x d(y)$ holds, for all $x, y \in R$.
The Engel type identity with derivation first appeared in the well-known paper of Posner [17] which states that a prime ring admitting a nonzero derivation $d$ must be commutative if $[d(x), x] \in Z(R)$ holds, for all $x \in R$. Since then, several authors have studied this kind of Engel type identities with derivations acting on an appropriate subset of prime and semiprime rings (see $[6,8,19]$ for a partial bibliography). In 1992, Daif and Bell [4, Theorem 3] proved that if in a semiprime ring $R$ there exists a nonzero ideal $I$ of $R$ and a derivation $d$ of $R$ such that $d([x, y])=[x, y]$ for all $x, y \in I$, then $I \subseteq Z(R)$. In addition, if $R$ is a prime ring, then $R$ is commutative. In 2003, Quadri et al. [18] extended the result of Daif and Bell and proved that if $R$ is a prime ring, $I$ a nonzero ideal of $R$ and $F$ a generalized derivation associated with a nonzero derivation $d$ such that $F([x, y])=[x, y]$ for all $x, y \in I$, then $R$ is commutative. Very recently, Huang and Davvaz [9] generalized the result of Quadri et al. and proved that if $R$ is a prime ring and $F$ is a generalized derivation associated with a nonzero derivation $d$ of $R$ such that $F([x, y])^{m}=[x, y]^{n}$ for all $x, y \in R$, where $m, n$ are fixed positive integers, then $R$ is commutative.
On the other hand, in 1994 Giambruno et al. [7] established that a ring must be commutative if it satisfies $\left([x, y]_{k}\right)^{n}=[x, y]_{k}$. Inspired by the above mention results it is natural to investigate what we can say about the commutativity of ring satisfying the relation $F\left([x, y]_{k}\right)^{n}=\left([x, y]_{k}\right)^{l}$, where $F$ is a generalized derivation associated with a nonzero derivation $d$ of $R$ and $l, n, k$ are fixed positive integers.
If we take $k=1$, then we obtain the following:
Corollary 1.1. ([9, Theorem A]) Let $R$ is a prime ring and $n, l$ are fixed positive integers. If $R$ admits a generalized derivation $F$ associated with a nonzero derivation $d$ such that $F([x, y])^{n}=([x, y])^{l}$ for all $x, y \in R$, then $R$ is commutative.

## 2. Generalized Derivation in Prime Ring

Throughout this section, we take $R$ is a prime ring, $I$ is a nonzero ideal, $U$ is the Utumi quotient ring, $C$ is the extended centroid and $Q$ is the symmetric

Martindale quotient ring. For a complete and detailed description of the theory of generalized polynomial identities involving derivations, we refer to [1].
We denote by $\operatorname{Der}(U)$ the set of all derivations on $U$. By a derivation word we mean an additive map $\Delta$ of the form $\Delta=d_{1} d_{2} \ldots d_{m}$ with each $d_{i} \in$ $\operatorname{Der}(U)$. Then a differential polynomial is a generalized polynomial with coefficients in $U$ of the form $\Phi\left(\Delta_{j} x_{i}\right)$ involving non-commuting indeterminates $x_{i}$ on which the derivation words $\Delta_{j}$ act as unary operations. The differential polynomial $\Phi\left(\Delta_{j} x_{i}\right)$ is said to be a differential identity on a subset $T$ of $U$ if it vanishes for any assignment of values from $T$ to its indeterminates $x_{i}$. Let $D_{\text {int }}$ be the $C$-subspace of $\operatorname{Der}(U)$ consisting of all inner derivations on $U$ and $d$ be a nonzero derivation on $R$. By [11, Theorem 2], we have the following result (see also [13, Theorem 1].
If $\Phi\left(x_{1}, \ldots, x_{n},{ }^{d} x_{1}, \ldots,{ }^{d} x_{n}\right)$ is a differential identity on $R$, then one of the following assertions holds:
(i) either $d \in D_{i n t}$;
(ii) or, $R$ satisfies the generalized polynomial identity

$$
\Phi\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}\right)
$$

Before starting our result, we state the following theorem which is very crucial for developing the proof of our main result.

Theorem 2.1. ([14, Theorem 3]) Every generalized derivation $F$ on a dense right ideal of $R$ can be uniquely extended to a generalized derivation of $U$ and assumes of the form $F(x)=a x+d(x)$, for some $a \in U$ and a derivation $d$ on $U$.

Lemma 2.2. Let $R$ be a prime ring with characteristics different from two, $n, k$ be the fixed positive integers and $b \in Q$ with $b \notin C$ such that $\left([b, x]_{k+1}\right)^{n}=0$ for all $x \in R$. Then $R$ satisfies a nonzero generalized polynomial identity (GPI).

Proof. By both [1, Theorem 6.4.1] and [3, Theorem 2], we have

$$
\left([b, x]_{k+1}\right)^{n}=0 \text { for all } x \in Q
$$

That is, the element $\left([b, X]_{k+1}\right)^{n}$ in the free product $T=Q *_{C} C\{X\}$ is a generalized polynomial identity on $R$. As $b \notin C$, we can easily see that the term $\left(b X^{k+1}\right)^{n}$ appears nontrivially in the expansion of $\left([b, X]_{k+1}\right)^{n}$. So $\left([b, X]_{k+1}\right)^{n}$ is a nonzero element in $T=Q *_{C} C\{X\}$. Therefore, $R$ satisfies a nonzero generalized polynomial identity.
Now, we prove our main result of this section.

Theorem 2.3. Let $R$ be a prime ring with characteristics different from two and $I$ be a nonzero ideal of $R$. If $R$ admits a nonzero generalized derivation $F$ associated with a nonzero derivation $d$ such that $F\left([x, y]_{k}\right)^{n}=\left([x, y]_{k}\right)^{l}$ for all $x, y \in I$, where $l, n, k$ are fixed positive integers, then $R$ is commutative.

Proof. Since $R$ is a prime ring and $F\left([x, y]_{k}\right)^{n}=\left([x, y]_{k}\right)^{l}$ for all $x, y \in I$. By Theorem 2.1, for some $a \in U$ and a derivation $d$ on $U$ such that $I$ satisfies the differential identity

$$
\left(a[x, y]_{k}+d\left([x, y]_{k}\right)\right)^{n}=\left([x, y]_{k}\right)^{l},
$$

which can be written as

$$
\begin{align*}
\left(a \left(\sum_{m=0}^{k}(-1)^{m}\right.\right. & \left.\binom{k}{m} y^{m} x y^{k-m}\right) \\
& +\quad \sum_{m=0}^{k}(-1)^{m}\binom{k}{m}\left(\sum_{i+j=m-1} y^{i} d(y) y^{j}\right) x y^{k-m} \\
& +\quad \sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} d(x) y^{k-m} \\
& \left.+\quad \sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x\left(\sum_{r+s=k-m-1} y^{r} d(y) y^{s}\right)\right)^{n} \\
& -\quad\left(\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}\right)^{l}=0 \tag{1}
\end{align*}
$$

Firstly we assume that $d$ is an outer derivation on $Q$. By Kharchencko's Theorem [11], I satisfies the generalized polynomial identity

$$
\begin{aligned}
& \left(a\left(\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}\right)+\sum_{m=0}^{k}(-1)^{m}\binom{k}{m}\left(\sum_{i+j=m-1} y^{i} z y^{j}\right) x y^{k-m}\right. \\
& \left.\quad+\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} w y^{k-m}+\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x\left(\sum_{r+s=k-m-1} y^{r} z y^{s}\right)\right)^{n} \\
& \quad-\left(\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} x y^{k-m}\right)^{l}=0 .
\end{aligned}
$$

In particular $x=z=0$, we have

$$
\left(\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} w y^{k-m}\right)^{n}=0 \text { for all } y, w \in I
$$

By Chuang [3, Theorem 2], this polynomial identity is also satisfied by $Q$ and hence $R$ as well, i.e., $\left(\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} y^{m} w y^{k-m}\right)^{n}=0$ for all $y, w \in R$. Substituting $y$ with $[b, w]$, where $b$ is a noncentral element of $R$ in the above identity, we have $\left([b, w]_{k+1}\right)^{n}=0$ for all $w \in R$. It follows from both $[1$, Theorem 6.4.1] and [3, Theorem 2] that $\left([b, w]_{k+1}\right)^{n}=0$ for all $w \in Q$.
In case $C$ is infinite, we have $\left([b, w]_{k+1}\right)^{n}=0$ for all $w \in Q \otimes_{C} \bar{C}$, where $\bar{C}$ is the algebraic closure of $C$. Since both $C$ and $Q \otimes_{C} \bar{C}$ are centrally closed [5, Theorem 2.5 and Theorem 3.5], we may replace $R$ by $Q$ or $Q \otimes_{C} \bar{C}$ according as $C$ is finite or infinite. Thus we may assume that $R$ is centrally closed over $C$ which is either finite or algebraically closed and $\left([b, w]_{k+1}\right)^{n}=0$ for all $w \in R$. By Lemma $2.2, R$ is a nontrivial generalized polynomial identity (GPI). By Martindale's Theorem [15], $R$ is a primitive ring and so is isomorphic to a dense subring of linear transformations on a vector space $\mathcal{V}$ over $C$.

Suppose that $\mathcal{V}$ is infinite dimensional over $C$. For any $v \in \mathcal{V}$, we claim that $v$ and $v b$ are $C$-dependent. On contrary suppose that $v$ and $v b$ are $C$ independent. We choose $v_{1}, v_{2}, \cdots, v_{k}$ such that $v, v b, v_{1}, \cdots, v_{k}$ are $C$-dependent. By the density of $R$ on $\mathcal{V}$, there exists $x_{0} \in R$ such that

$$
v x_{0}=0, v b x_{0}=v_{1}, v_{i} x_{0}=v_{i+1}, v_{k} x_{0}=v, \text { where } i=1,2, \cdots, k-1
$$

We see that

$$
v\left[b, x_{0}\right]_{k+1}=v b x_{0}^{k+1}=v_{1} x_{0}^{k}=v_{2} x_{0}^{k-1}=\cdots=v_{k} x_{0}=v
$$

and so $0=v\left(\left[b, x_{0}\right]_{k+1}\right)^{n}=v \neq 0, \quad$ a contradiction. Our next goal is to show that there exists $\alpha \in C$ such that $b v=v \alpha$, for any $v \in \mathcal{V}$. Now choose $v, w \in \mathcal{V}$ such that they are linearly $C$-independent. By the previous argument there exist $\alpha_{v}, \alpha_{w}, \alpha_{v+w} \in C$ such that $b v=v \alpha_{v}, b w=w \alpha_{w}, b(v+w)=$ $(v+w) \alpha_{v+w}$. Moreover $v \alpha_{v}+w \alpha=(v+w) \alpha_{v+w}$. Hence $v\left(\alpha_{v}-\alpha_{v+w}\right)+$ $w\left(\alpha_{w}-\alpha_{v+w}\right)=0$, and because $v, w$ are linearly $C$-independent, we have $\alpha_{v}=\alpha_{w}=\alpha_{v+w}$, that is, $\alpha$ does not depend on the choice of $v$. Now for $r \in R, v \in \mathcal{V}$, we have $b v=v \alpha, r(b v)=r(v \alpha)$ and also $b(r v)=(r v) \alpha$. Thus $0=[b, r] v$, for any $v \in \mathcal{V}$, that is $[b, r] \mathcal{V}=0$. Since $\mathcal{V}$ is a left faithful irreducible $R$-module, hence $[b, r]=0$, for all $r \in R$, i.e., $b \in C$, a contradiction.

So $\mathcal{V}$ must be of finite dimensional, i.e., $R \cong M_{t}(\mathbb{F})$ for some $t>1$. Now we assume that $t=2$, i.e., $M_{2}(\mathbb{F})$ satisfies $\left([b, w]_{k+1}\right)^{n}=0$. Let $e_{i j}$ be the usual unit matrix with 1 in $(i, j)$-entry and zero elsewhere. Take $b=\sum_{i, j=1}^{2} b_{i j} e_{i j}$ with $b_{i j} \in \mathbb{F}$ and by choosing $w=e_{11}$, we see that $\left[b, e_{11}\right]_{k+1}=(-1)^{k+1} b_{12} e_{12}+$ $b_{21} e_{21}$. Thus we have
$0=\left(\left[b, e_{11}\right]_{k+1}\right)^{2 n}=(-1)^{(k+1) n}\left(b_{12} b_{21}\right)^{n} e_{11}+(-1)^{(k+1) n}\left(b_{12} b_{21}\right)^{n} e_{22}$ which gives $b_{12} b_{21}=0$ and so either $b_{12}=0$ or $b_{21}=0$. Now we assume that $b_{21}=$ 0 . Let $\chi$ be any automorphism of $R$ such that $\chi(x)=\left(1+e_{21}\right) x\left(1-e_{21}\right)$. Therefore $\chi(b)=\left(b_{11}-b_{12}\right) e_{11}+b_{12} e_{12}+\left(b_{11}-b_{12}-b_{22}\right) e_{21}+\left(b_{12}+b_{22}\right) e_{22}$. Since $\left([\chi(b), w]_{k+1}\right)^{n}=0$ for all $x \in R$, then it can be easily seen that $b_{12}\left(b_{11}-\right.$ $\left.b_{12}-b_{22}\right)=0$. Hence either $b_{12}=0$ or $\left(b_{11}-b_{12}-b_{22}\right)=0$. Suppose that $\left(b_{11}-b_{12}-b_{22}\right)=0$. If $k$ is even, then by easy computation we see that $0=$ $\left(\left[b, e_{11}+e_{21}\right]_{k+1}\right)^{2 n}=\left(2 b_{12}^{2}\right)^{n} e_{11}+\left(2 b_{12}^{2}\right)^{n} e_{22}$. It implies that $\left(2 b_{12}^{2}\right)^{n}=0$ and so $b_{12}=0$. If $k$ is odd, then we have $0=\left(\left[b, e_{11}+e_{21}\right]_{k+1}\right)^{2 n}=\left(-2 b_{12}^{2}\right)^{n} e_{11}+$ $\left(-2 b_{12}^{2}\right)^{n} e_{22}$, which implies that $\left(-2 b_{12}^{2}\right)^{n}=0$ and so $b_{12}=0$. Thus in all, $b$ is a diagonal matrix. As above we know that $\chi(b)=\sum_{i=1}^{2} b_{i i} e_{i i}+\left(b_{11}-b_{22}\right) e_{21}$ is a diagonal matrix. Therefore, $b_{11}=b_{22}$, and so, $b$ is central in $R$, a contradiction. Now we consider the case when $t>2$. Let $b=\sum_{i, j=1}^{t}$ with $b_{i j} \in \mathbb{F}$. Write $b=\left(\begin{array}{cc}b_{11} & \mathcal{A} \\ \mathcal{B} & \mathcal{C}\end{array}\right)$ where $\mathcal{A}=\left(b_{12}, \cdots, b_{1 t}\right) \mathcal{B}=\left(b_{21}, \cdots, b_{t 1}\right)^{T}$ and $\mathcal{C}=\left(b_{i j}\right)$ with $2 \leqslant i, j \leqslant t$. Note that $\left[b, e_{11}\right]_{k+1}=\left(\begin{array}{cc}0 & (-1)^{k+1} \mathcal{A} \\ \mathcal{B} & 0\end{array}\right)$. By given hypothesis, one can have

$$
\left(\left[b, e_{11}\right]_{k+1}\right)^{2 n}=\left(\begin{array}{cc}
(-1)^{n(k+1)}(\mathcal{A B})^{n} & 0 \\
0 & (-1)^{n(k+1)}(\mathcal{B A})^{n}
\end{array}\right) .
$$

In particular $(-1)^{n(k+1)}(\mathcal{A B})^{n}=0$ and so $\mathcal{A B}=0$.
Let $\chi_{i j}$ be an inner automorphism of $R$ given by $\chi_{i j}(x)=\left(1+e_{i j}\right) x\left(1-e_{i j}\right)$ for $x \in R$. Write $1+e_{21}=\left(\begin{array}{cc}1 & 0 \\ \mathcal{E}_{2} & \mathcal{I}_{t-1}\end{array}\right)$ where $\mathcal{E}_{2}=(1,0, \cdots, 0)^{T}$ and $\mathcal{I}_{t-1}$ is the $(n-1)$-identity matrix. Thus $\chi_{21}(b)=\left(\begin{array}{cc}b_{11}-b_{12} & \mathcal{A} \\ b_{11} \mathcal{E}_{2}-b_{12} \mathcal{E}_{2}+\mathcal{B}-\mathcal{C} \mathcal{E}_{2} & \mathcal{E}_{2} \mathcal{A}+\mathcal{C}\end{array}\right)$. By easy calculation, it follows that $b_{11} b_{12}-b_{12}^{2}-\mathcal{A C E} \mathcal{E}_{2}=0$. Suppose first that $k$ is even. We can easily see that $\left[b, e_{11}+e_{21}\right]_{k+1}=\left(\begin{array}{cc}b_{12} & -\mathcal{A} \\ \mathcal{J}_{1} & -\mathcal{E}_{2} \mathcal{A}\end{array}\right)$ where $\mathcal{J}_{1}=\mathcal{B}+$ $\mathcal{C} \mathcal{E}_{2}-\mathcal{E}_{2} b_{11}$. Therefore $\left(\left[b, e_{11}+e_{21}\right]_{k+1}\right)^{2}=\left(\begin{array}{cc}b_{12}^{2}-\mathcal{A} \mathcal{J}_{1} & 0 \\ * & -\mathcal{J}_{1} \mathcal{A}+b_{12} \mathcal{E}_{2} \mathcal{A}\end{array}\right)$. Making use of both $\mathcal{A B}=0$ and $b_{11} b_{12}-b_{12}^{2}-\mathcal{A C E} \mathcal{E}_{2}=0$, we get $\mathcal{A} \mathcal{J}_{1}=-b_{12}^{2}$. Thus $\left(\left[b, e_{11}+e_{21}\right]_{k+1}\right)^{2}=\left(\begin{array}{cc}2 b_{12}^{2} & 0 \\ * & -\mathcal{J}_{1} \mathcal{A}+b_{12} \mathcal{E}_{2} \mathcal{A}\end{array}\right)$. Therefore by assumption, we have

$$
0=\left(\left[b, e_{11}+e_{21}\right]_{k+1}\right)^{2 n}=\left(\begin{array}{cc}
\left(2 b_{12}^{2}\right)^{n} & 0 \\
* & \left(-\mathcal{J}_{1} \mathcal{A}+b_{12} \mathcal{E}_{2} \mathcal{A}\right)^{n}
\end{array}\right)
$$

In particular, $\left(2 b_{12}^{2}\right)^{n}=0$, and so $b_{12}=0$. Next suppose that $k$ is odd. By computation we have $\left[b, e_{11}+e_{21}\right]_{k+1}=\left(\begin{array}{cc}-b_{12} & \mathcal{A} \\ \mathcal{J}_{2} & \mathcal{E}_{2} \mathcal{A}\end{array}\right)$ where $\mathcal{J}_{2}=\mathcal{B}+\mathcal{C} \mathcal{E}_{2}-$ $\left(b_{11}+2 b_{12}\right) \mathcal{E}_{2} b_{11}$. Thus

$$
\left(\left[b, e_{11}+e_{21}\right]_{k+1}\right)^{2}=\left(\begin{array}{cc}
b_{12}^{2}+\mathcal{A} \mathcal{J}_{2} & 0 \\
* & \mathcal{J}_{2} \mathcal{A}+b_{12} \mathcal{E}_{2} \mathcal{A}
\end{array}\right) .
$$

Applying both $\mathcal{A B}=0$ and $b_{11} b_{12}-b_{12}^{2}-\mathcal{A C E} \mathcal{E}_{2}=0$, we get $\mathcal{A} \mathcal{J}_{2}=-3 b_{12}^{2}$. Thus

$$
\left(\left[b, e_{11}+e_{21}\right]_{k+1}\right)^{2}=\left(\begin{array}{cc}
-2 b_{12}^{2} & 0 \\
* & \mathcal{J}_{2} \mathcal{A}+b_{12} \mathcal{E}_{2} \mathcal{A}
\end{array}\right)
$$

and so

$$
0=\left(\left[b, e_{11}+e_{21}\right]_{k+1}\right)^{2 n}=\left(\begin{array}{cc}
\left(-2 b_{12}^{2}\right)^{n} & 0 \\
* & \left(\mathcal{J}_{2} \mathcal{A}+b_{12} \mathcal{E}_{2} \mathcal{A}\right)^{n}
\end{array}\right)
$$

In particular, $\left(-2 b_{12}^{2}\right)^{n}=0$, and so $b_{12}=0$.
Now we claim that $b$ is a diagonal matrix. Since $\left(\left[\chi_{j 2}(b), x\right]_{k+1}\right)^{n}=0$ for all $x \in R$, where $j>2$, as what has been shown, we get that $-b_{1 j}=\chi_{j 1}(b)_{12}=$ 0 . So $b_{1 j}=0$ for $j>1$. For $1<j<s \leqslant t$, we get from $\left(\left[\chi_{j 2}(b), x\right]_{k+1}\right)^{n}=0$ for all $x \in R$, that $b_{j s}=\chi_{1 j}(b)_{1 s}=0$. This shows that $b$ must be lower triangular. Since the transpose of $b$ satisfies the same condition, $b$ is indeed diagonal. We have shown that $b=\sum_{i=1}^{n} b_{i i} e_{i i}$ with $b_{i i} \in \mathbb{F}$. For $1 \leqslant i \neq j \leqslant t$, as above we get that $\chi_{i j}(b)$ is a diagonal matrix. On the other hand, $\chi(b)=b+\left(b_{j j}-b_{i i}\right) e_{i j}$, we infer that $b_{j j}=b_{i i}$, and so $b$ is central in $R$, a contradiction.

Secondly we assume that $d$ is an inner derivation induced by an element $q \in Q$ such that $d(x)=[q, x]$ for all $x \in R$. Therefore from (1), we have

$$
\left(a[x, y]_{k}+\left[q,[x, y]_{k}\right]\right)^{n}=\left([x, y]_{k}\right)^{l} \quad \text { for all } x, y \in I
$$

By Chuang [3, Theorem 2], $I$ and $Q$ satisfy the same generalized polynomial identities, thus we have

$$
\left(a[x, y]_{k}+\left[q,[x, y]_{k}\right]\right)^{n}=\left([x, y]_{k}\right)^{l} \text { for all } x, y \in Q
$$

In case the center $C$ of $Q$ is infinite, we have

$$
\left(a[x, y]_{k}+\left[q,[x, y]_{k}\right]\right)^{n}=\left([x, y]_{k}\right)^{l} \text { for all } x, y \in Q \otimes_{C} \bar{C},
$$

where $\bar{C}$ is algebraic closure of $C$. Since both $Q$ and $Q \otimes_{C} \bar{C}$ are prime and centrally closed [5, Theorems 2.5 and 3.5], we may replace $R$ by $Q$ or $Q \otimes_{C} \bar{C}$
according as $C$ is finite or infinite. Thus we may assume that $R$ is centrally closed over $C$ (i.e., $R C=R$ ) which is either finite or algebraically closed and $\left(a[x, y]_{k}+\left[q,[x, y]_{k}\right]^{n}=\left([x, y]_{k}\right)^{l}\right.$ for all $x, y \in R$. By Martindale's Theorem [15, Theorem 3], $R C$ (and so $R$ ) is a primitive ring having nonzero socle $H$ with $\mathcal{D}$ as the associated division ring. Hence by Jacobson's Theorem [10, p.75], $R$ is isomorphic to a dense ring of linear transformations of some vector space $\mathcal{V}$ over $\mathcal{D}$ and $H$ consists of the finite rank linear transformations in $R$. If $\mathcal{V}$ is a finite dimensional over $\mathcal{D}$, then the density of $R$ on $\mathcal{V}$ implies that $R \cong M_{t}(\mathcal{D})$, where $t=\operatorname{dim}_{\mathcal{D}} \mathcal{V}$.

Assume first that $\operatorname{dim}_{\mathcal{D}} \mathcal{V} \geqslant 3$. First of all, we want to show that for any $v \in \mathcal{V}, v$ and $q v$ are linearly $\mathcal{D}$-dependent. If $v=0$, then $\{v, q v\}$ is linearly $\mathcal{D}$ dependent. Now suppose that $v \neq 0$ and $\{v, q v\}$ is linearly $\mathcal{D}$-independent. Since $\operatorname{dim}_{\mathcal{D}} \mathcal{V} \geqslant 3$, then there exists $w \in \mathcal{V}$ such that $\{v, q v, w\}$ is also linearly $\mathcal{D}$ independent. By the density of $R$ there exist $x, y \in R$ such that

$$
\begin{array}{lll}
x v=v, & x q v=0, & x w=v \\
y v=0, & y q v=w, & y w=w .
\end{array}
$$

This implies that $(-1)^{n} v=\left(a[x, y]_{k}+\left[q,[x, y]_{k}\right]\right)^{n} v-\left([x, y]_{k}\right)^{l} v=0$, a contradiction. So, we conclude that $\{v, q v\}$ are linearly $\mathcal{D}$-dependent, for all $v \in \mathcal{V}$. A standard argument shows that $q \in C$ and $d=0$, which contradicts our hypothesis.
Therefore $\operatorname{dim}_{\mathcal{D}} \mathcal{V}$ must be $\leqslant 2$. In this case $R$ is a simple GPI-ring with 1 , and so it is a central simple algebra finite dimensional over its center. By Lanski [12, Lemma 2], it follows that there exists a suitable filed $\mathbb{F}$ such that $R \subseteq M_{t}(\mathbb{F})$, the ring of all $t \times t$ matrices over $\mathbb{F}$, and moreover, $M_{t}(\mathbb{F})$ satisfies the same generalized polynomial identity of $R$.

If we assume $t \geqslant 3$, then by the same argument as above, we get a contradiction. Obviously if $t=1$, then $R$ is commutative. Thus we may assume that $t=2$, i.e., $R \subseteq M_{2}(\mathbb{F})$, where $M_{2}(\mathbb{F})$ satisfies $\left(a[x, y]_{k}+\left[q,[x, y]_{k}\right]\right)^{n}=$ $\left([x, y]_{k}\right)^{l}$. Since by choosing $x=e_{12}, y=e_{22}$ we have $\left(a e_{12}+q e_{12}-e_{12} q\right)^{n}=$ 0 . Right multiplying by $e_{12}$, we get $(-1)^{n}\left(e_{12} q\right)^{n} e_{12}=0$. Now set $q=\left(\begin{array}{ll}q_{11} & q_{12} \\ q_{21} & q_{22}\end{array}\right)$. By calculation, we find that $(-1)^{n}\left(\begin{array}{cc}0 & q_{21}^{n} \\ 0 & 0\end{array}\right)=0$, which implies that $q_{21}=0$. In the same manner, we can see that $q_{12}=0$. Thus we conclude that $q$ is a diagonal matrix in $M_{2}(\mathbb{F})$. Let $\chi \in \operatorname{Aut}\left(M_{2}(\mathbb{F})\right)$. Since $\left(\chi(a)[\chi(x), \chi(y)]_{k}+\right.$ $\left.\left[\chi(q),[\chi(x), \chi(y)]_{k}\right]\right)^{n}=\left([\chi(x), \chi(y)]_{k}\right)^{l}$, then $\chi(q)$ must be diagonal matrix in $M_{2}(\mathbb{F})$. In particular, let $\chi(x)=\left(1-e_{i j}\right) x\left(1+e_{i j}\right)$ for $i \neq j$. Then $\chi(q)=q+\left(q_{i i}-q_{j j}\right) e_{i j}$, that is $q_{i i}=q_{j j}$ for $i \neq j$. This implies that $q$ is
central in $M_{2}(\mathbb{F})$, which leads to $d=0$, a contradiction. This completes the proof of the theorem.
The following example shows that the primeness of $R$ is necessary in the hypothesis.
Example 2.4. Let $R=\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right): a, b \in S\right\}$ and $I=\left\{\left(\begin{array}{cc}0 & a \\ 0 & 0\end{array}\right): a \in S\right\}$, where $S$ is any non-commutative ring. We define a map $F: R \rightarrow R$ by $F(x)=$ $2 e_{11} x-x e_{11}$ associated with a nonzero derivation $d=\left[e_{11}, x\right]$. Then it is easy to see that $F$ is a nonzero generalized derivation and $I$ is a nonzero ideal of $R$ which satisfies $F\left([x, y]_{k}\right)^{n}=\left([x, y]_{k}\right)^{l}$ for $x, y \in I$. However, $R$ is not commutative.

## 3. Generalized Derivation in Semiprime Ring

In this section, we assume that $R$ is a semiprime ring with extended centroid $C$. We denote $A=O(R)$ the orthogonal completion of $R$ which is defined as the intersection of all orthogonally complete subset of $Q$ containing $R$. Also $B=B(C)$ and $\operatorname{spec}(B)$ denotes Boolean ring of $C$ and the set of all maximal ideal of $B$, respectively. It is well know that if $M \in \operatorname{spec}(B)$ then $R_{M}=R / R M$ is prime [1, Theorem 3.2.7]. We use the notations $\Omega$ - $\Delta$-ring, Horn formulas and Hereditary formulas. For more details see ([1], pages $37,38,43,120$ ). In order to prove our main result, we need the following two results which can be found in [1].

Lemma 3.1. ([1], Proposition 2.5.1) Any derivation $d$ of a semiprime ring $R$ can be extended uniquely to a derivation of $U$ (we shall let $d$ also denote its extension to $U$ ).

Lemma 3.2. ([1], Theorem 3.2.18) Let $R$ be an orthogonally complete $\Omega-\Delta$ ring with extended centroid $C, \Psi_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ Horn formulas of signature of $\Omega-\Delta, i=1,2, \cdots$ and $\Phi\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ a hereditary first-order formula such that $\neg \Phi$ is a Horn formula. Further, let $\vec{a}=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in R^{(n)}, \vec{c}=$ $\left(c_{1}, c_{2}, \cdots, c_{m}\right) \in R^{(m)}$. Suppose that $R \models \Phi(c)$ and for every maximal ideal $M$ of the Boolean ring $B=B(C)$, there exists a natural number $i=i(M)>0$ such that

$$
R_{M} \models \Phi\left(\phi_{M}(\vec{c})\right) \Rightarrow \Psi_{i}\left(\phi_{M}(\vec{a})\right)
$$

Then there exist a natural number $k>0$ and pairwise orthogonal idempotents $e_{1}, e_{2}, \cdots, e_{k} \in B$ such that $e_{1}+e_{2}+\cdots+e_{k}=1$ and $e_{i} R \models \Psi_{i}\left(e_{i} \vec{a}\right)$ for all $e_{i} \neq 0$.

Now, we prove our main result of this section.
Theorem 3.3. Let $R$ is a 2-torsion free semiprime ring and $F$ is a nonzero generalized derivation associated with a nonzero derivation $d$ of $R$ such that $F\left([x, y]_{k}\right)^{n}=\left([x, y]_{k}\right)^{l}$ for all $x, y \in R$, where $l, n, k$ are fixed positive integers. Further, let $A=O(R)$ is the orthogonal completion of $R$ and $B=B C$, where $C$ is the extended centroid of $R$. Then there exists a central idempotent element $e \in B$ such that $d$ vanishes identically on $e A$ and the ring $(1-e) A$ is commutative.

Proof. By the given hypothesis, we have $R$ satisfies

$$
F\left([x, y]_{k}\right)^{n}=\left([x, y]_{k}\right)^{l} .
$$

By Theorem 2.1, the generalized derivation $F$ can be extended uniquely to a generalized derivation on $U$. Since $U$ and $R$ satisfy the same differential identities (see [13]), we have $\left(a[x, y]_{k}+\left[q,[x, y]_{k}\right]\right)^{n}=\left([x, y]_{k}\right)^{l}$ for all $x, y \in$ $U$. According to ([1], Remark 3.1.16) $d(A) \subseteq A$ and $d(e)=0$ for all $e \in B$. Therefore, $A$ is an orthogonally complete $\Omega$ - $\Delta$ - ring where $\Omega=\{0,+,, ., d\}$. Consider the formulas
$\Phi=(\forall x)(\forall y)\left\|\left(a[x, y]_{k}+\left[q,[x, y]_{k}\right]\right)^{n}-\left([x, y]_{k}\right)^{l}=0\right\|$,
$\Psi_{1}=(\forall x)(\forall y)\|x y=y x\|$,
$\Psi_{2}=(\forall x)\|d(x)=0\|$.
One can easily verify that $\Phi$ is a hereditary first-order formula and $\neg \Phi, \Psi_{1}, \Psi_{2}$ are Horn formulas. Using Theorem 2,3, we can easily check that all the conditions of Lemma 3.2 are fulfilled. Hence there exist two orthogonal idempotent $e_{1}$ and $e_{2}$ such that $e_{1}+e_{2}=1$ and if $e_{i} \neq 0$, then $e_{i} A \models \Psi_{i}, i=1,2$. This completes the proof.

## Acknowledgment

The authors wishes to thank the referee for his/her their valuable comments, suggestions.

## References

[1] K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with Generalized Identities, Pure and Applied Mathematics, Marcel Dekker 196, New York, 1996.
[2] M. Bresar, On the distance of the composition of two derivations to be the generalized derivations, Glasgow Math. J., 33 (1991), 89-93.
[3] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (1988), 723-728.
[4] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15 (1992), 205-206.
[5] T. S. Erickson, W. S. Martindale III, and J. M. Osborn, Prime nonassociative algebras, Pacific. J. Math., 60 (1975), 49-63.
[6] V. De Filippis and S. Huang, Generalized derivations on semiprime rings, Bull. Korean Math. Soc., 48 (6) (2011), 1253-1259.
[7] A. Giambruno, J. Z. Goncalves, and A. Mandel, Rings with algebraic $n$ Engel elements, Comm. Algebra, 22 (5) (1994), 1685-1701.
[8] S. Huang, Derivations with Engel conditions in prime and semiprime rings, Czechoslovak Math. J., 61 (136) (2011), 1135-1140.
[9] S. Huang and B. Davvaz, Generalized derivations of rings and Banach algebras, Comm. Algebra, 41 (2013), 1188-1194.
[10] N. Jacobson, Structure of Rings, Colloquium Publications 37, Amer. Math. Soc. VII, Provindence, RI, 1964.
[11] V. K. Kharchenko, Differential identities of prime rings, Algebra Logic, 17 (1979), 155-168.
[12] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (1993), 731-734.
[13] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sin., 20 (1992), 27-38.
[14] T. K. Lee, Generalized derivation of left faithful rings, Comm. Algebra, 27 (8) (1999), 4057-4073.
[15] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
[16] J. H. Mayne, Centralizing mappings of prime rings, Cand. Math. Bull., 27 (1984), 122-126.
[17] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1958), 1093-1100.
[18] M. A. Quadri, M. S. Khan, and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. pure appl. Math., 34 (98) (2003), 1393-1396.
[19] N. Rehman, M. A. Raza, and S. Huang, On generalized derivations in prime ring with skew-commutativity conditions, Rend. Circ. Math. Palermo., 64 (2) (2015), 251-159.

## Mohd Arif Raza

Department of Mathematics
Guest Faculty
Aligarh Muslim University
Aligarh-202002, India
E-mail: arifraza03@gmail.com

## Nadeem ur Rehman

Department of Mathematics
Assistant Professor
Faculty of Scince Taibah University
Al-Madinah, KSA.
E-mail: rehman100@gmail.com

## Tarannum Bano

Department of Mathematics
Ph. D. Research Scholar
Aligarh Muslim University
Aligarh-202002, India
E-mail: tbano.rs@amu.ac.in


[^0]:    Received: July 2015; Accepted: November 2015

    * Corresponding author

