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Abstract. In this paper we introduce a new concept of autosoluble
groups, which is in a way a generalized version of the notion of soluble
groups. Using the autocommutators, a new series will be constructed,
which is some how a generalization of the derived series of a given group
G. We then determine the structure of such groups, when the general-
ized series are terminated.

AMS Subject Classification: 20D45; 20E36; 20K10; 20K15.
Keywords and Phrases: Soluble group, autocommutator subgroup,
absolute centre, autosoluble group.

1. Introduction

Let G be a group and Aut(G) the full automorphisms group of G, then
for α ∈ Aut(G) and g ∈ G, [g, α] = g−1gα = g−1α(g) is the autocommu-
tator of g and α. Clearly, if α = ϕx (x ∈ G) is an inner automorphism
then [g, ϕx] = g−1gϕx = g−1x−1gx, which is the ordinary commutator of
the element g and x of G. We may define the autocommutator of higher
weight inductively as follows:

[g, α1, α2, . . . , αn] = [[g, α1, α2, . . . , αn−1], αn],

for all α1, α2, . . . , αn ∈ Aut(G), g ∈ G and n > 1.
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The subgroup

K(G) = [G, Aut(G)] = 〈[g, α] | g ∈ G, α ∈ Aut(G)〉

is called the autocommutator subgroup of G (see [3]). Assume K0(G) = G

and K1(G) = K(G), then for n > 1 we may define

Kn(G) = [Kn−1(G), Aut(G)]

= 〈[g, α1, α2, . . . , αn] | g ∈ G, α1, α2, . . . , αn ∈ Aut(G)〉,

which is the natural generalization of γn+1(G), the (n + 1)st-term of
the lower central series of G. Clearly, Kn(G) = γn+1(G), when all
the automorphisms αi’s are taken to be the inner automorphisms of
G. One can easily see that γn+1(G) 6 Kn(G), n > 1 and Kn(G) is a
characteristic subgroup of G. Hence, we obtain the following descending
series of G.

G ⊇ K1(G) = K(G) ⊇ K2(G) ⊇ . . . ⊇ Kn(G) ⊇ . . . . (1)

We may also define

K(2)(G) = K(K(G)) = [K(G), Aut(K(G))]

and inductively,

K(n)(G) = K(K(n−1)(G)) , n > 2,

which is called the nth-autocommutator subgroup of G. Clearly, if we con-
sider the inner automorphisms of G, we obtain the nth-derived subgroup,
G(n) of G and hence G(n) is contained in K(n)(G).
The absolute centre of G is defined as follows:

L(G) = {x ∈ G | [x, α] = 1 , ∀α ∈ Aut(G)},

which is contained in Z(G), the centre of G. Now, assume L1(G) = L(G)
and the nth-absolute centre of G is defined in the following way

Ln(G)
Ln−1(G)

= L(
G

Ln−1(G)
) , for n > 2.
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Clearly, if we consider the canonical homomorphism ϕ : G −→ G
Ln−1(G) ,

one may define Ln(G) = ϕ−1(L( G
Ln−1

)). Now we call G to be an au-
tonilpotent group, whenever Ln(G) = G, for some n > 1. One can easily
see that Ln(G) 6 Zn(G) and so every autonilpotent group is nilpotent.
Also in [6, Theorem 2.13], we have proved that any finite abelian group
is autonipotent if and only if is a cyclic 2-group. It can be verified that
for any natural number n,

G(n) 6 γn+1(G) 6 Kn(G) 6 K(n)(G).

One observes that, if Ln(G) = G then Kn(G) = 1. By the above
discussion, we may define the following

Definition 1.1. A group G is called autosoluble if K(n)(G) = 〈1〉, for
some natural number n.
Clearly, the autosolubility of groups implies solubility and nilpotency,
while their converses are not valid, in general. For counter examples,
consider the cyclic group Zp of odd prime order p then K(Zp) = Zp.
Also, the symmetric group S3 is soluble, which is not autosoluble.
For a given group G, we have the following descending chain of charac-
teristic autocommutator subgroups

G ⊇ K(G) ⊇ K(2)(G) ⊇ . . . ⊇ K(n)(G) ⊇ . . . .

So, one is interested to know under what conditions the above series
terminates, i.e., the group G is autosoluble. This is the concept, which
will be studied in the next section.

2. Properties of Autosoluble Groups

In this section, we give some properties of autosoluble groups. In fact,
we show that an abelian group is autosoluble if and only if it is a cyclic
group.
The following result of [3] is useful in our investigation.
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Theorem 2.1. If G and H are finite groups with (|G|, |H|) = 1, then

Aut(G×H) ∼= Aut(G)×Aut(H).

The proof of the following result may be verified easily.

Theorem 2.2. Let H1 and H2 be characteristic subgroups of a given
group G = H1 ×H2. Then

K(H1 ×H2) = K(H1)×K(H2).

Theorem 2.3. Let G and H be autosoluble finite groups with coprime
orders. Then G×H is also autosoluble.

Proof. The proof follows using induction and the above results. �
The following lemmas are needed for proving our main theorem.

Lemma 2.4. If H is a characteristic subgroup of index two of a given
group G, then K(G) is contained in H.

Proof. Clearly G = H ∪ gH and since α(g) /∈ H, for all α ∈ Aut(G),
the result follows by the definition of K(G). �

Lemma 2.5. Let G be a finite cyclic group, then K(n)(G) = G2n
.

Proof. It is enough to prove the result for n = 1, then the claim follows
inductively. So let G = 〈x | xm = 1〉 be the cyclic group of order m,
then the map α : G −→ G given by α(x) = x−1 is an automorphism of
G. Hence x2 = [x−1, α]−1 ∈ K(G), which implies that G2 ⊆ K(G). If
m is odd, then it is easily seen that K(G) 6 G = G2. The case m is
even, implies that G2 is a characteristic subgroup of index 2 in G and
hence by Lemma 2.4, the autocommutator subgroup K(G) is contained
in G2, which completes the proof. �

Lemma 2.6. Let G be a finite abelian group of odd order, then K(n)(G) =
G, for all n ∈ N.
The following proposition determines a class of abelian groups, which
are non-autosoluble, and its proof can be seen easily.
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Proposition 2.7. If G ∼= Z2 × . . .× Z2︸ ︷︷ ︸
n−times

(n > 2), then K(G) = G.

Remark 2.8. If

G ∼= Z2m × . . .× Z2m︸ ︷︷ ︸
n−times

×Z2k1 . . .× Z2kr (m > k1 > . . . > kr > 0, n > 2),

then K(G) = G.
One notes that for a nontrivial group G, K(G) = 〈1〉 if and only if

G ∼= Z2. Therefore no groups of odd order can be autosoluble, because
they must contain a cyclic subgroup of order 2. In the other words, such
groups have even orders.
In the following, we determine the structure of abelian 2-groups which
are autosoluble.

Lemma 2.9. Let G = Z2n be the cyclic group of order 2n and H be an
abelian 2-group of exponent 2m with m < n. Then

K(G×H) = G2 ×H.

Proof. See [1]. �
The above lemma gives the following

Corollary 2.10. Let n > m1 > m2 > . . . > mr be natural numbers,
then

K(Z2n × Z2m1 × . . .× Z2mr ) = Z2n−1 × Z2m1 × . . .× Z2mr .

Now, we are able to prove our main theorem of this section.

Theorem 2.11. The finite abelian group G is autosoluble if and only if
G ∼= Z2n, for some natural number n.

Proof. Assume G is a finite abelian autosoluble group, then the group
G contains a sylow 2-subgroup. So G is the direct product of its sylow
subgroups, i.e., G ∼= P1×P2×. . .×Pr, with at least one sylow 2-subgroup.
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Now, if |G| has a prime divisor p (p 6= 2), then the sylow p-subgroup P

say, is of odd order and hence can not be autosoluble. Thus K(m)(P ) 6=
〈1〉, for all m ∈ N. One notes that, since the orders of Pi’s are mutually
coprime, by Theorem 2.2, we have K(m)(G) = K(m)(P1)×. . .×K(m)(Pr),
for all m ∈ N. Now, as G is autosoluble we must have K(s)(Pi) = 〈1〉,
for some s ∈ N and all 1 6 i 6 r, which is a contradiction. Therefore
|G| does not have any prime divisors except 2 and so either G is cyclic
or

G ∼= Z2m1 × . . .× Z2mt , m1 > m2 > . . . > mt > 0, t > 2.

If for some i, mi 6= 0, then by repeated applications of Corollary 2.10
there exists d ∈ N such that

K(d)(G) ∼= Z2m × . . .× Z2m︸ ︷︷ ︸
n−times

×Z2k1 . . .× Z2kr (k1, . . . , kr,m ∈ N, n > 2).

Clearly, by Remark 2.8 the group G can not be autosoluble, which gives
a contradiction and hence G ∼= Z2n , as required. �

Conversely, Lemma 2.5 gives the result.
By the discussion before the Definition 1.1, we have the following

Corollary 2.12. Every abelian autonilpotent group is autosoluble.
Finally, we give an example of a family of non-abelian autosoluble groups.

Example 2.13. The dihedral 2-groups are autosoluble. To see this let

G = 〈a, b | a2n−1
= b2 = 1 , bab = a−1〉,

be the dihedral 2-group of order 2n. Then clearly the group of automor-
phisms of G consists of the following set:

Aut(G) =

{
ϕij

∣∣∣ ϕij :
a 7−→ ai

b 7−→ ajb
, i is odd, 1 6 i 6 n and 0 6 j < 2n−1

}
.

An easy calculation implies that K(G) ∼= Z2n−1 and since Z2n−1 is
autosoluble of length n− 1, it implies that G is autosoluble of length n.
We remark that the generalized quaternion groups are not autosoluble.
This can be verified using the structure of such groups.



SOME PROPERTIES OF AUTOSOLUBLE GROUPS 19

References

[1] C. Chis, M. Chis, and G. Silberberg, Abelian groups as autocommutator
groups, Arch. Math., (Basel), 90 (2008), 490-492.

[2] M. Deaconescu and G. L. Walls, Cyclic groups as autocommutator groups,
Communications in Algebra, 35 (2007), 215-219.

[3] P. Hegarty, The absolute centre of a group, Journal of Algebra, 169 (1994),
929-935.

[4] P. Hegarty, Autocommutator subgroups of finite groups, Journal of Alge-
bra, 190 (1997), 556-562.

[5] M. R. R. Moghaddam, F. Parvaneh, and M. Naghshineh, On the lower
autocentral series of abelian groups, Bulletin of Korean Math Soc., (To
appear).

[6] D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed, Springer-
Verlag, New York, 1996.

[7] F. Parvaneh and M. R. R. Moghaddam, Some properties of autonilpotent
groups (submitted).

Foroud Parvaneh
Department of Mathematics
Assistant Professor of Mathematics
Islamic Azad University-Kermanshah Branch
Kermanshah, Iran
E-mail: fparvaneh@iauksh.ac.ir

Mohammad Reza R. Moghaddam
Department of Mathematics
Professor of Mathematics
Ferdowsi University
Mashhad, Iran
E-mail: rezam@ferdowsi.um.ac.ir


