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An Error Bound for Solution of Fredholm
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Abstract. In this paper, we will obtain an efficient computable upper
bound for approximate solution of linear Fredholm integral equations
obtained by Adomian decomposition method. Numerical examples are
presented to show the effectiveness of the upper bounds.
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1. Introduction

The Adomian decomposition method was developed by G. Adomian
in the beginning of the 1980’s [3, 4]. This method has been used for
solving algebraic, differential, integro-differential, differential-delay, and
partial differential equations. The solution is usually represented as an
infinite series which converges to accurate solution. Despite of classical
methods, Adomian decomposition method does not need to have some
techniques and assumptions which may change the underlying problem
seriously such as linearization or perturbation. The reader is referred
to [2, 11, 14] for undefined notations and terminology and more details.
In many papers [1, 9, 10] convergence of Adomian method have been
discussed by various techniques. To review the standard Adomian de-
composition method, refer to [8, 12, 13].
In this paper we present a satisfactory posterior error for approximate
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solution produced by Adomian method.
This paper is organized as follows. In section 2, a brief description of
Adomian method is presented. A posterior error for approximate so-
lution of integral equations of the second kind obtained by Adomian
method is discussed in Section 3. In section 4, some examples are il-
lustrated to applied the posterior error and compare the solutions. In
conclusion we give an interpretation of the results.

2. Outline of Adomian Decomposition Method

We consider the functional equation

u = f + Lu + Nu, (1)

where L is a linear operator, N represents an analytical nonlinear oper-
ator, and f is the source term. For nonlinear equations, the nonlinear
term Nu is usually represented by an infinite series of the so-called Ado-
mian polynomials

N(u) =
∞∑

k=o

Ak, (2)

where Ak ’s are generated for all kinds of nonlinearity and obtained by

Ak =
1
k!

dk

dλk
[N(

∞∑
i=0

uiλ
i)]|λ=0

, k = 0, 1, 2, · · · . (3)

Specific algorithms were set in [5, 6, 13] to formulate Adomian polyno-
mials. In the following, we sketch the basic principles of the standard
Adomian decomposition method. The standard Adomian method de-
fines the solution u by the series

u =
∞∑

n=0

un, (4)

where the components u0, u1, u2, . . . are usually determined recursively.
If we substitute (2) and (4) into (1), we will have

∞∑
n=0

un = f + L

∞∑
n=0

un +
∞∑

n=0

An. (5)
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Leading to:
u0 = f,

uk+1 = L(uk) + Ak(u0, u1, . . . , uk), k > 0. (6)

Substituting Ak into (5) leads to the determination of the components
of u. Having determined the components u0, u1, u2, . . . the solution u in
a series form defined by (4) follows immediately.

3. An Error Bound for Approximate Solution
Using ADM

We consider numerical solution of linear Fredholm integral equation of
the second kind

u(x) = f(x) + λ

∫ b

a
k(x, t)u(t)dt, a 6 x 6 b (7)

which we can write it in the form

u = f + λku, (8)

where k(x, t) and f(x) are known L2 functions, and u(x) is to be deter-
mined.
The Adomian technique consists of representing u(x) as a series

u(x) =
∞∑

n=0

un(x). (9)

Now if we substitute (9) in the relation (7), we will have

∞∑
n=0

un(x) = f(x) + λ

∫ b

a
k(x, t)

∞∑
n=0

un(t)dt.

Note that the Adomian method uses the following recursive relations

u0(x) = f(x),
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un+1(x) = λ

∫ b

a
k(x, t)un(t)dt, n = 0, 1, 2, · · · (10)

which we can write it in the form

u0 = f,

un+1 = λkun, n = 0, 1, 2, · · · . (11)

The following theorem presents foregoing upper bound.

Theorem 3.1. Let

u(x) =
∞∑

n=0

un(x)

be the solution obtained by Adomian method for equation (7) and

um =
m∑

n=0

un, (12)

be an approximation of u. If ‖λk‖ < 1 and

em = um − u (13)

then

‖em‖ 6
‖um+1‖
1− ‖λk‖

. (14)

Proof. Since em = um − u then

em = em+1 − um+1. (15)

Also from equation(11) we have

u1 = λku0

u2 = λku1

...

um+1 = λkum.
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Summing up the above equations, we have

m+1∑
n=1

un =
m∑

n=0

λkun = λk
m∑

n=0

un.

Now using (12)
um+1 − u0 = λkum. (16)

Since u is the solution of (8) thus

u = f + λku. (17)

By subtracting (17) from (16) we have

um+1 − u− u0 = λkum − f − λku.

Using u0 = f , we conclude

um+1 − u = λk(um − u)

and, by (13)
em+1 = λkem. (18)

Next, from (15) we have

‖em‖ = ‖em+1 − um+1‖ 6 ‖em+1‖+ ‖um+1‖.

Now using (18), we have

‖em‖ 6 ‖λkem‖+ ‖um+1‖

thus
‖em‖ 6

‖um+1‖
1− ‖λk‖

,

and the proof is complete. �

Corollary 3.2. Suppose all the assumptions in Theorem (3.1.) hold,
then

‖em‖ 6
‖um+1 − um‖

1− ‖λk‖
. (19)

Proof. By hypothesis um+1 = um+1 − um and the proof is trivial. �
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4. Numerical Examples

Now we illustrate the above conclusion by some examples.

Example 1. Consider the following integral equation:

u(x) =
23
24

cos x +
∫ π

6

0
(sin2 t cos x)u(t)dt, 0 6 x 6

π

6
,

with the exact solution u(x) = cos x .
Using Adomian method, we have

un(x) =
23

24n+1
cos x, n = 0, 1, 2, · · · .

Thus u5 =
∑5

n=0 un = 23
24(1 + 1

24 + · · ·+ 1
245 ) cos x

= (1− 1
246 ) cos x = 0.999999994767 cos x

and
e5 = 0.5232780886× 10−8 cos x.

Therefore
‖e5‖E 6 0.5232780886× 10−8.

On the other hand, by the theorem ‖e5‖E 6 ‖u6‖E

1−‖λk‖E
.

Since ‖λk‖E = 0.057475 we conclude

‖e5‖E 6
‖ 23

247 cos x‖E

1− 0.057475
6

23
247

1− 0.057475
= 0.532055× 10−8.

We observe that the posterior error is quite satisfactory.

Example 2. Consider the following integral equation:

u(x) = cos x +
∫ π

6

0
u(t) cos x2dt.

Apply the decomposition method, then we have the following

u0(x) = cos x,
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u1(x) =
1
2

cos x2,

u2(x) =
∫ π

6

0
cos x2 cos t2

2
dt ' 0.259839 cos x2,

u3(x) ' 0.135032 cos x2,

u4(x) ' 0.070173 cos x2,

u5(x) ' 0.0364673 cos x2,

u6(x) ' 0.0189512 cos x2,

u7(x) ' 0.0098485 cos x2,

u8(x) ' 0.00511804 cos x2,

u9(x) ' 0.00265973 cos x2,

u10(x) ' 0.0013822 cos x2,

u11(x) ' 0.000718297 cos x2,

u12(x) ' 0.000373282 cos x2,

u13(x) ' 0.000193986 cos x2,

u14(x) ' 0.0001008 cos x2,

u15(x) ' 0.0000523886 cos x2,

u14(x) ' cos x + 1.040857335 cos x2,

‖k‖E ' 0.2700914619,

‖e14‖ 6
|0.000052 cos x2|
1− 0.27009146

6
0.000052
0.729908

= 0.000071

Remark. In Example 2., the exact solution is not known and for i > 2,
ui is obtained by quadrature rule [7].

Example 3.

u(x) = −7x +
∫ 2

0
3xtu(t)dt 0 < x < 2,

with the exact solution u(x) = x .
In this example ‖k‖E = 8 and posterior error is not applicable. On the
other hand, if we use Adomian method, we have
u0(x) = −7x

u1(x) = −56x = −7× 8x
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u2(x) = −448x = −7× 82x

un(x) = −7× 8nx,

It shows that Adomian method is not convergent.

5. Conclusion

Inequality (14) represents a computable error bound, provided that ‖λk‖
is known or can be estimated and also ‖λk‖ < 1. Computationally,
often we can estimate ‖λk‖ rather easily, also ‖um+1‖ is computable in
the course of Adomian process. Inequality (14) is useless if ‖λk‖ > 1
although ‖λk‖ < 1 is not a necessary condition for convergence of the
series u =

∑∞
n=0 un.
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