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Abstract. The asymptotic distribution for the ratio of sample pro-
portions in two independent bernoulli populations is introduced. The
presented method can be used to derive the asymptotic confidence in-
terval and hypothesis testing for the ratio of population proportions.
The performance of the new interval is comparable with similar confi-
dence intervals in the large sample cases. Then the simulation study
is provided to compare our confidence interval with some other meth-
ods. The proposed confidence set has a good coverage probability with
a shorter length.
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1. Introduction

It is of interest to make inference about the ratio of the proportions
two independent binomials. This parameter is more applicable than the
difference of proportions in some applications. The advantage of using
ratio instead of difference lies in the fact that the difference of two small
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proportions is also small and has no meaningful description (see for in-
stance [1]). Many researchers have presented some methods to inference
about the ratio of proportions. This can be found in [2-7]. ([8]) Com-
pared several Wald-type intervals, as the special cases of a non-iterative
approximation to a Bayesian interval. ([9]) proposed an exact uncondi-
tional joint confidence set for two binomial parameters estimated from
independent samples. In the present work, the asymptotic distribu-
tion for the ratio of sample proportions is presented. It will be applied
to construct asymptotic confidence interval and perform test statistics.
This method is the most efficient way in comparison with other methods
where sample size is large.

2. Large Sample Inference

Let X1, ..., Xm and Y1, . . . , Yn be two independent samples from two
Bernoulli distributions with the parameters p1 and p2, respectively. We
are interested in making inference about the parameter R = p1

p2
. Since

p1 =
∑m

i=1 Xi

m and p2 =
∑n

i=1 Yi

n are consistent estimators for p1 and p2, it
seems reasonable to estimate R by R = p1

p2
. Note that by strong large

number theorem, p2
a.s
−→ p2 6= 0 and therefore, R is well-defined in large

sample theory. There is no loss in assuming m=n . In the following
theorem, we will give the asymptotic distribution of R.

Theorem 2.1. Under the above assumptions,

√
n

(
R−R

)
L
−→N

(
0, σ2

)
as n →∞

where σ2 = R
p2

(R (1− p2) + 1− p1) .

Proof. By the central limit theorem,
√

n (pi − pi)converges in law to
N (0, pi (1− pi)) as n → ∞ for i = 1, 2 . By independence of p1and
p2and Slutsky’s theorem we have

√
n

((
p1

p2

)
−

(
p1

p2

))
L
−→N (0, Σ) as n →∞
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where

Σ =
[

p1 (1− p1) 0
0 p2 (1− p2)

]

Let’s define g : R2 −→ R as g(x1, x2) = x1
x2

. Then the gradient func-

tion with respect to g is 5g(x1, x2) =
(

1
x2 ,−x1

x2

)
. Also 5g(p1, p2)Σ 5

g(p1, p2)T = σ2. Since 5g is continuous in neighborhood of (p1, p2),
therefore, by Cramer’s rule we have

√
n (g(p1, p2)− g(p1, p2)) =

√
n

(
R−R

)
L
−→N

(
0, σ2

)
as n →∞

By the theorem we have just proved,

Tn =
√

n

(
R−R

σ

)
L
−→N (0, 1) as n →∞ (1)

This result can be used to construct an asymptotic confidence interval
and hypothesis testing as follows:

2.1 Asymptotic Confidence Interval

Since the parameter σ in Tn depends on the unknown parameter R,
it cannot be used as a pivotal quantity for the parameter R. In the
following theorem, we try to estimate the parameter σ.

Theorem 2.1.1. On the same hypothesis of Theorem 2.1.

T ∗n =
√

n

(
R−R
∧
σn

)
L
−→N (0, 1) as n →∞ (2)

where
∧
σn =

(
R
p2

(
R (1− p2) + 1− p1

))1/2
.

Proof. By the weak law of large numbers pi−pi = op(1), i = 1, 2. From
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this and Slutsky’s theorem we have
(

p1

p2

)
P
−→

(
p1

p2

)
as n →∞

Let’s define f : (0, 1)× (0, 1) → R+ as

f(x, y) =

√
x(1− x)

y2
+

x2(1− y)
y3

By Slutsky’s theorem
∧
σn−σ = op(1).Using Theorem 2.1. completes the

proof.
Now T ∗n can be used as a pivotal quantity to construct an asymptotic
confidence interval for R,

(
R−

∧
σn√

n
zα/2 , R +

∧
σn√

n
zα/2

)
(3)

2.2 Hypothesis Testing

Hypothesis testing about R is important in practice. For instance, the
assumption R = 1 is equivalent to the assumption p1 = p2. In general,
to test H0 : R = R0 , the test statistic can be

T0 =
√

n


 R−R0√

R0

p2
(R0 (1− p2) + 1− p1)


 (4)

By similar methodology applied in Theorem 2.1.1. it can be shown that
under null hypothesis, T0 has asymptotic standard normal distribution.
Note that, in the case n 6= m, it is sufficient to replace n by n∗ =
min (m,n) in the above results. It is easy to see that the power function
of test H0 : R = R0 on the basis of the test statistic (4), is as follows:

β(p1, p2) =
m∑

i=1

n∑

j=1

(
m

i

)(
n

j

)
pi
1p

j
2(1− p1)m−i(1− p2)n−jIA(i, j)

where
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A =
{

(x, y) :
√

n∗
∣∣∣∣
nx

my
−R0

∣∣∣∣ > zα/2

√
n

y

(
R0

(
1− y

n

)
+ 1− x

n

)}

In the case R0 = 1, which is equivalent to p1 = p2, we can also use Wald
statistics as follows:

W =
p1 − p2√

p (1− p)
(

1
m + 1

n

) ,

where p =
∑m

i=1 Xi+
∑n

i=1 Yi

m+n . Figure 1. compares the power functions
based on the test statistics W and T0 with p1 = 0.5. As can be seen,
although the probability of the first type error based on W is less than
that based on T0, the power of the test based on T0is greater than that
based on W .

Remark 2.3. This method can be applied to other distributions, such
as geometric distribution. By the same method used in the proof of Theo-
rem 1, one can see that if X1, ..., Xm and Y1, . . . , Yn are two independent
samples from two geometric distributions, then

√
n

(
R−R

)
L
−→N

(
0, σ2

)
as n →∞ ,
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where σ2 = 1
p2

2

(
1−p1

p1
2 + R2 1−p2

p2
2

)
. Also, it is easy to show that,

T ∗n =
√

n

(
R−R
∧
σn

)
L
−→N (0, 1) as n →∞

where
∧
σn =

(
1

p2
2

(
1−p1

p1
2 + R

2 1−p2

p2
2

))1/2
.

3. Simulation Study

In this section, we provide a simulation study to compare our confidence
interval (3) with similar works, in view of the empirical coverage and
average length. The best general reference is [8] which compared the
following three large sample confidence intervals for R:
Log-limits method:

R exp

(
±zα/2

√
1∑m

i=1 Xi
+

1∑n
i=1 Yi

− 1
m
− 1

n

)

LOG0.5 method:

θ0.5 exp

(
±zα/2

√
var

(
log

(∧
θ0.5

)))
,

where

log
(∧

θ0.5

)
= log

(∑m
i=1 Xi + 0.5
m + 0.5

)
− log

(∑n
i=1 Yi + 0.5
n + 0.5

)

and

var

(
log

(∧
θ0.5

))
=

1∑m
i=1 Xi + 0.5

+
1∑n

i=1 Yi + 0.5
− 1

m + 0.5
− 1

n + 0.5

Inverse hyperbolic sine method:

R exp

(
±2 sinh−1

(
zα/2

2

√
1∑m

i=1 Xi
+

1∑n
i=1 Yi

− 1
m
− 1

n

))
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We simulate 50000 times of the above confidence intervals with m =
n = 50, 100, 200 and 500 for different values of p1 and p2. The empirical
coverage and mean lengths are summarized in Table 1.
We see that, in terms of the empirical probability coverage, our method
is weaker than other methods when sample size is small. But in large
sample size cases, all the intervals have the same empirical probability
coverage. In terms of the length of the interval, our method is the
best in all cases. Therefore, the critical region which is constructed by
inverting our confidence interval has more power than the critical regions
corresponding to the other confidence intervals. This subject can be seen
by a simulation study to test H0 : R = 1 , the empirical powers of the
tests are presented in Table 2.

Table 1.CI-1:Confidence interval in(4),CI-2:Log-limits CI-3:LOG0.5 and CI-4:
inverse hyperbolic confidence intervals

p1=0.3,p2=0.7 p1=0.8,p2=0.7 p1=0.7,p2=0.3
n CI coverage length coverage length coverage length

CI-1 0.93976 0.3965921 0.94702 0.532843 0.94 2.391832
50 CI-2 0.95328 0.4114769 0.95194 0.537808 0.95392 2.494745

CI-3 0.94954 0.4103981 0.95254 0.530169 0.9501 2.376941
CI-4 0.94932 0.407461 0.94948 0.536542 0.94972 2.466623
CI-1 0.9442 0.2797325 0.95006 0.372997 0.94816 1.597835

100 CI-2 0.94924 0.2848217 0.9519 0.374674 0.95056 1.628632
CI-3 0.94918 0.2845568 0.9515 0.372071 0.95056 1.593943
CI-4 0.94924 0.2835016 0.9519 0.374251 0.95056 1.620625
CI-1 0.94748 0.1975773 0.95086 0.262139 0.94892 1.101314

200 CI-2 0.95146 0.199349 0.95238 0.262718 0.95138 1.111466
CI-3 0.9509 0.1992746 0.95214 0.261815 0.95064 1.100122
CI-4 0.951 0.1988979 0.9523 0.262572 0.95082 1.10888
CI-1 0.9492 0.1248825 0.95046 0.165343 0.95068 0.685916

500 CI-2 0.95036 0.1253268 0.95118 0.165488 0.95074 0.68838
CI-3 0.9506 0.1253109 0.95068 0.165262 0.95016 0.685638
CI-4 0.95014 0.1252149 0.95086 0.165452 0.95048 0.68776

R package version 2.11.1software has been employed for the computa-
tions in this simulation.
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Table 2. T-1: Empirical powers of the tests based on T0 in (4),T-2:
Test based on Log-limits approach, T-3: Test based on LOG0.5
approach and T-4: Test based on inverse hyperbolic approach

n C.R p1=0.3,p2=0.7 p1=0.5,p2=0.8 p1=0.2,p2=0.3 p1=0.2,p2=0.5
T-1 0.99302 0.92846 0.361 0.95032

50 T-2 0.98022 0.8927 0.18808 0.88716
T3 0.97918 0.892 0.1844 0.88556
T-4 0.98712 0.8933 0.2044 0.8903
T-1 0.99948 0.98586 0.4433 0.99028

75 T-2 0.99862 0.97686 0.28258 0.97562
T-3 0.99862 0.97686 0.2717 0.97492
T-4 0.99862 0.97748 0.29346 0.97638
T-1 1 0.99692 0.51168 0.998

100 T-2 0.99994 0.99472 0.35778 0.99486
T-3 0.99994 0.99472 0.34932 0.9948
T-4 0.99996 0.99472 0.36698 0.99488
T-1 1 0.99992 0.63484 0.99996

150 T-2 1 0.99984 0.50654 0.99984
T-3 1 0.99984 0.50506 0.99984
T-4 1 0.99984 0.5143 0.99988

Acknowledgement
We would like to thank the editor and referees for their constructive
comments.

References

[1] A. Agresti,Categorical Data Analysis, Wiley, New York, 2002.

[2] G. E. Noether, Two confidence intervals for the ratio of two probabilities
and some measures of effectiveness, Journal of the American Statistical
Association, 52 (1957), 3645.

[3] D. G. Thomas and J. J. Gart, A table of exact confidence limits for dif-
ferences and ratios of two proportions and their odds ratio, Journal of the
American Statistical Association, 72 (1977), 73-76.



LARGE SAMPLE INFERENCE ON THE RATIO OF TWO ... 95

[4] D. Katz, J. Baptista, S. P. Azen, and M. C. Pike, Obtaining confidence
intervals for the risk ratio in cohort studies, Biometrics, 34 (1978), 469-
474.

[5] P. A. R. Koopman, Confidence intervals for the ratio of two binomial
proportions, Biometrics, 40 (1984), 513-517.

[6] J. J. Gart and J. Nam, Approximate interval estimation of the ratio of
binomial parameters: a review and corrections for skewness, Biometrics,
44 (1988), 323-338.

[7] R. G. Newcombe, Logit confidence intervals and the inverse sinh transfor-
mation, American Statistician, 55 (2001), 200-202.

[8] R. M. Price and D. G. Bonett, Confidence intervals for a ratio of two
independent binomial proportions, Statist. Med,. 27 (2008), 5497-5508.
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