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Abstract. In this paper, a new method is presented for solving non-
linear fuzzy optimization problems (NFOP) where all coefficients of the
problem are triangular fuzzy numbers. First, we convert NFOP problem
to an interval nonlinear programming problem (INP) by α-cuts and in
general case, we determine INP based on α. Then by solving INP model,
the optimal solution of the main problem is obtained. To illustrate the
proposed method numerical examples are solved and the obtained re-
sults are discussed.
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1. Introduction

In traditional optimization problems, the coefficients of the problems
are evermore treated as deterministic values. However, uncertainty al-
ways exits in practical engineering problems. In order to deal with the
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uncertain programming, fuzzy and stochastic approaches are generally
used to describe the imprecise characteristics. In stochastic program-
ming (e.g. [3] (1959); [9] (1982); [14] (2003); [5] (2005)) the uncertain
coefficients are regarded as random variables and their probability dis-
tributions are assumed to be known. In fuzzy programming (e.g. [22]
(1986); [6] (1989); [15] (1989); [13] (2001)) the constraints and objective
function are viewed as fuzzy sets and their membership functions need
to be known. In these methods, the membership functions and probabil-
ity distributions play important roles. However, it is sometimes difficult
to specify an appropriate membership function or accurate probability
distribution in an uncertain environment.
Newly, the interval analysis method was developed to model the un-
certainty in uncertain optimization problems, in which the bounds of
the uncertain coefficients are only required, not necessarily knowing the
probability distributions or membership functions. Many researchers
(Tanaka et al. (1984), Rommelfanger (1989), Chanas and Kuchta (1996a,b),
Tong (1994), Liu and Da (1999), Sengupta et al. (2001), Zhang et al.
(1999) and etc.) studied the linear interval number programming prob-
lems. Nevertheless, for most of the engineering problems, the objective
function and constraints are nonlinear, and they are always obtained
through numerical algorithms such as finite element method (FEM) in-
stead of the explicit expressions. The reference (Ma, 2002), seems the
first publication on nonlinear interval number programming (NINP). In
this reference, a deterministic optimization method is used to obtain
the interval of the nonlinear objective function. As a result, an effective
method still have not been developed to deal with the general NINP
problem in which there exit not only uncertain nonlinear objective func-
tion but also uncertain nonlinear constraints, so far.

Fuzzy set theory has been applied to many disciplines such as control
theory and operation research, mathematical modeling and industrial
applications. Tanaka, et al [25], first proposed the concept of fuzzy opti-
mization on general level. Zimmerman [29] proposed the first formatting
of fuzzy linear programming. An optimal solution of fuzzy nonlinear pro-
gramming problems introduced by A. Kumar and J. Kaur [11] and B.
Kheirfam [10]. In their works, they have taken all coefficients and deci-
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sion variables to be fuzzy numbers and all the constraints to be linear. In
[1, 18] authors have developed KKT conditions for solving fuzzy nonlin-
ear programming problems with continuous and differentiable objective
function and constraints.

In this paper, we focus on solving fuzzy nonlinear optimization prob-
lems. we take all coefficients of the objective function and constraints to
be fuzzy numbers. We convert the NFOP into a crisp form with using the
α-cuts. The crisp form will be interval nonlinear programming problem
and this form of the problem will be free of the compulsion member-
ship functions for solve. This paper is organized as follows: in Section
2., some basic definitions and arithmetic operations of triangular fuzzy
numbers and intervals are reviewed. In Section 3., formulations of fuzzy
nonlinear programming problems for solving INP problems are discussed
and Interval nonlinear programming method is proposed. In Section 4.,
to demonstrate the effectiveness of the proposed method, some examples
are solved. The conclusion appears in Section 5..

2. Preliminaries

Definition 2.1. Let I = {K : K = [a, b] , a, b ∈ R} and let A,B ∈ I

then the interval arithmetic operations are defined by

A ∗B = {α ∗ β : α ∈ A, β ∈ B},

where ∗ ∈ {+,−,×, /}. (note that: / is undefined when 0 ∈ B).

Letting A = [a, b] and B = [c, d] it can be shown that it is equivalent to

A+B = [a, b] + [c, d] = [a+ c, b+ d] , (Minkowski addition)

A−B = [a, b]− [c, d] = [a− d, b− c] , (Minkowski difference)

A ·B = [a, b] · [c, d] = [min (ac, ad, bc, bd) ,max (ac, ad, bc, bd) ] ,
A

B
=

[a, b]
[c, d]

= [a, b] .
[
1
d
,
1
c

]
if 0 /∈ [c, d] ,

kA = {ka : a ∈ A}. (Scalar multiplication)
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This means that each interval operation ∗ ∈ {+,−,×, /} is reduced to
real operations and comparisons.

Note. [24] If k = −1, scalar multiplication gives the opposite −A =
(−1)A = {−a : a ∈ A} but, in general, A + (−A) 6= 0, i.e. the
opposite of A is not the inverse of A in Minkowski addition (unless
A = {a} is a singleton). Minkowski difference is A−B = A+ (−1)B =
{a− b : a ∈ A, b ∈ B}. A first implication of this fact is that, in general,
even if it is true that (A+C = B +C) ⇔ A = B, addition/subtraction
simplification is not valid, i.e. (A+B)−B 6= A.
To partially overcome this situation, the following H-difference was in-
troduced:

Definition 2.2. [24] Let X = Rn, n > 1, of real vectors equipped with
standard addition and scalar multiplication operations. Following Dia-
mond and Kloeden (see [7]), denote by K(X) and KC (X) the spaces
of nonempty compact and compact convex sets of X. Then, the H-
difference of A and B is defined as:

A	B = C ⇐⇒ A = B + C (1)

and an important property of 	 is that A 	 A = {0} , ∀ A ∈ K(X)
and (A+B) 	 B = A, ∀ A,B ∈ K (X); H-difference is unique, but
a necessary condition for A 	 B to exist is that A contains a translate
{c}+B of B. In general, A−B 6= A	B.

Now, some definitions and notations of fuzzy set theory are reviewed.

Definition 2.3. [18] Let R be the set of real numbers and ã : R→ [0, 1]
be a fuzzy set. We say that ã is a fuzzy number if it satisfies the following
properties:

1. ã is normal, that is, there exists x0 ∈ R such that ã (x0) = 1.

2. ã is fuzzy convex, that is,

ã (tx+ (1− t) y) > min {ã (x) , ã (y)} ; ∀ x, y ∈ R , t ∈ [0, 1]
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3. ã is upper semi continuous on R, that is, {x| ã(x) > α} is a closed
subset of R for each α ∈ [0, 1];

4. cl{x ∈ R|ã (x) > 0} forms a compact set.

F(R) denotes the set of all fuzzy numbers on R. For all α ∈ (0, 1], α-
level set ãα of any ã ∈ F (R) is defined as ãα= {x ∈ R | ã(x) > α}. The
0-level set ã0 is defined as the closure of the set {x ∈ R | ã (x)>0}. By
definition of fuzzy numbers, it was proved that, for any ã ∈ F (R) and
for each α ∈ (0, 1], ãα is compact convex subset of R, and we write
ãα =

[
ãL

α, ã
U
α

]
.

Definition 2.4. [20] According to Zadeh’s extension principle, we have
addition and scalar multiplications in fuzzy number space F (R) by their
α-cuts are as follows:

(ã⊕ b̃)α =
[
ãL

α+b̃Lα, ã
U
α +b̃Uα

]
(µ⊗ ã)α =

[
µãL

α, µã
U
α

]
We define difference of two fuzzy numbers by their α-cuts by using H-
difference as follows:

(ã−b̃)α = ãα 	 b̃α,

where ã, b̃ ∈ F (R) , µ ∈ R and α ∈ [0, 1].

Proposition 2.5. [18] For ã ∈ F (R), we have

1. ãL
α is bounded left continuous nondecreasing function on (0, 1];

2. ãU
α is bounded left continuous nonincreasing function on (0, 1];

3. ãL
α and ãU

α are right continuous at α = 0;

4. ãL
α 6 ãU

α .

Moreover, if the pair of functions ãL
α and ãU

α satisfy the conditions (1)-
(4), then there exists a unique ã ∈ F (R) such that ãα =

[
ãL

α, ã
U
α

]
for

each α ∈ [0, 1].
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We define here a partial order relation on fuzzy number space.

Definition 2.6. [18] For ã, b̃ ∈ F (R) and ãα =
[
ãL

α, ã
U
α

]
, b̃α =

[
b̃Lα, b̃

U
α

]
,

are two closed intervals in R, for all α ∈ [0, 1], we define

1. ã�b̃ ⇔ ãL
α 6 b̃Lα, ãU

α 6 b̃Uα

2. ã ≺ b̃ if and only if for all α ∈ [0, 1]:{
ãL

α<b̃
L
α

ãU
α<b̃

U
α

or

{
ãL

α 6 b̃Lα

ãU
α<b̃

U
α

or

{
ãL

α<b̃
L
α

ãU
α 6 b̃Uα

Definition 2.7. [20] The membership function of a triangular fuzzy
number ã is definedby

µã (r) =
{ r−a

b−a , if a 6 r 6 b
c−r
c−b , if b<r 6 c

which is denoted by ã = (a, b, c). The α-level set of ã is then:

ãα = [(1− α) a+ αb, (1− α) c+ αb].

Definition 2.8. [18]Let V be a real vector space and F (R) be a fuzzy
number space. Then a function f̃ : V → F (R) is called fuzzy-valued
function defined on V . Corresponding to such a function f̃ and α ∈ [0, 1],
we define two real-valued functions f̃L

α and f̃U
α on V as f̃U

α (x) = (f̃(x))
U

α

and f̃L
α (x) = (f̃(x))

L

α for all x ∈ V .

3. Fuzzy Nonlinear Optimization

Let T ⊆ Rn be an open subset of Rn and fj(X), gj (X) be nonlinear
(or linear) real-valued functions on T . Consider the following nonlinear
fuzzy optimization problem:

min f̃ (X) =
∑n

j=1 c̃jfj(X),
s.t. ∑n

j=1 ãijgj (X) 4 b̃i, i= 1, . . . ,m;
X > 0,

(2)
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where c̃j (j = 1, . . . , n), ãij and b̃i (i = 1, . . . ,m) are triangular fuzzy
numbers.

Definition 3.1. Let X0 ∈ S =

X ∈ T :

n
j=1 ãijgj (X)  b̃i, i= 1, . . . ,m, X  0



we say X0 is an optimal solution of NFOP (2) if there exists no X1(=
X0) ∈ S such that:

f̃(X1) ≺ f̃
�
X0

.

Now, we can convert NFOP (2) to interval nonlinear programming (INP)
by α-cuts technique. Let α ∈ [0, 1] and

c̃j =
�
c1j , c

2
j , c

3
j


, ãij =

�
a1ij , a

2
ij , a

3
ij


, b̃i = (b1i , b

2
i , b

3
i ),

be triangular fuzzy numbers.
According to the Definition 2.7, we have

f̃α (X) =




n

j=1

(
�
c2j − c1j


α+ c1j )f j(X),

n

j=1

(c3j −
�
c3j − c2j


α)f j (X)



 .

In addition, the constraints can be converted to



n

j=1

(
�
a2ij − a1ij


α+ a1ij)gj(X),

n

j=1

(a3ij −
�
a3ij − a2ij


α)gj (X)






�
b2j − b1j


α+ b1j , b

3
j −
�
b3j − b2j


α

.

Therefore, NFOP (2) is converted to INP problem as

min f (X) =
n

j=1


cj , cj

fj (X) ,

s.t. n
j=1


aij , aij

gj (X) 


bi, bi

, i = 1, 2, . . . ,m;

X  0.
(3)

where for j = 1, . . . , n and i = 1, . . . , m:

cj =
�
c2j − c1j


α+ c1j , cj = c3j −

�
c3j − c2j


α,

aij =
�
a2ij − a1ij


α+ a1ij , aij = a3ij −

�
a3ij − a2ij


α,

bi =
�
b2j − b1j


α+ b1j , bi = b3j −

�
b3j − b2j


α.
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j=1 ãijgj (X)  b̃i, i= 1, . . . ,m, X  0



we say X0 is an optimal solution of NFOP (2) if there exists no X1(=
X0) ∈ S such that:

f̃(X1) ≺ f̃
�
X0

.

Now, we can convert NFOP (2) to interval nonlinear programming (INP)
by α-cuts technique. Let α ∈ [0, 1] and

c̃j =
�
c1j , c

2
j , c

3
j


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By setting α = 1 in the problem (3), the following nonlinear program-
ming will be obtained:

min f1 (X ′) =
∑n

j=1 c
2
jfj(X ′),

s.t. ∑n
j=1 a

2
ijgj (X ′) 6 b2j , i= 1, . . . ,m;

X ′ > 0.

(4)

By setting α = 0 in the problem (3),the following interval nonlinear
programming will be obtained:

min z =
∑n

j=1

[
c1j , c

3
j

]
fj (X) ,

s.t. ∑n
j=1

[
a1

ij , a
3
ij

]
gj (X) 6

[
b1j , b

3
j

]
, i = 1, 2, . . . ,m;

X > 0.

(5)

Theorem 3.2. [17] For INP Problem (5) the best and worst optimum
values can be obtained by solving the following problems respectively:

min z =
∑n

j=1 c
′
j fj (X) ,

s.t. ∑n
j=1 a

′′
ijgj (X) 6 bi, i = 1, 2, . . . ,m;

X > 0.

(6)

min z =
∑n

j=1 c
′′
j fj (X) ,

s.t. ∑n
j=1 a

′
ijgj (X) 6 bi, i = 1, 2, . . . ,m;

X > 0.

(7)

where

c′j =

{
c1j , fj (X) > 0

c3j , fj (X) 6 0
, a′′ij =

{
a1

ij , gj (X) > 0

a3
ij , gj (X) 6 0

,

c′′j =

{
c3j , fj (X) > 0

c1j , fj (X) 6 0
, a′ij =

{
a3

ij , gj (X) > 0

a1
ij , gj (X) 6 0

.
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Theorem 3.3. [17] If the objective function for Problem (5) is changed
to ‘max’, the best and worst optimum values can be obtained by solving
the following problems respectively:

max z =
n

j=1 c

j fj (X) ,

s.t. n
j=1 a


ijgj (X)  bi, i = 1, 2, . . . ,m;

X  0.

(8)

max z =
n

j=1 c

j fj (X) ,

s.t. n
j=1 a


ijgj (X)  bi, i = 1, 2, . . . ,m;

X  0,

(9)

where aij , a

ij , c


j and c


j are as defined in theorem 3.2.

Definition 3.4. If X ∗ =
�
x∗1, x

∗
2, . . . , x

∗
n

T
, X∗ = (x∗1, x

∗
2, . . . , x

∗
n)T

and X∗ = (x∗1, x
∗
2, . . . , x

∗
n)T are the optimal solutions of the problems (4),

(6) and (7) respectively and z∗, z∗ and z∗ are the optimum value of the
problems (4), (6) and (7) respectively,then the fuzzy optimal solution and
the fuzzy optimum value of the problem (2) are as follow respectively:

X∗ = [
�
x∗1, x

∗
1, x

∗
1


,
�
x∗2, x

∗
2, x

∗
2


, . . . ,
�
x∗n, x

∗
n, x

∗
n


]T and z∗ =

�
z∗, z

∗
, z∗

.

Definition 3.5. If
�
x∗i , x

∗
i , x

∗
i


, 1  i  n, are all triangular fuzzy

numbers then X∗is called a strong fuzzy solution. Otherwise, if ∃i; ; 1 
i  n,
�
x∗i , x

∗
i , x

∗
i


is not a triangular fuzzy number, then by reordering�

x∗i , x
∗
i , x

∗
i


such that all elements of X∗ remain fuzzy numbers, the

solution is called a weak fuzzy solution.

Therefore, by using Theorem 3.2 and Definitions 3.4 and 3.5, we can
obtain the optimal solution of the problem (2).

4. Numerical Examples

In this section, we will explain previous method with presenting several
examples. Note that for obtaining the optimal solutions of the nonlinear
programming problems, the function fmincon of MATLAB is used.
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Example 4.1. [1] Consider the following nonlinear fuzzy programming
problem

max z̃ = (1, 3, 4)x2
1 + (1, 2, 3)x2

2,
s.t.

(0, 1, 3)x1 + (2, 3, 5)x2 4 (3, 4, 6) ,
(1, 2, 4)x1 − (0, 1, 2)x2 4 (1, 2, 5) ,
x1, x2 > 0.

(10)

Now, we convert the problem (10) to an interval nonlinear programming
by α-cuts:

max zα = [2α+ 1, 4− α]x2
1 + [α+ 1, 3− α]x2

2,
s.t.

[α, 3− 2α]x1 + [α+ 2, 5− 2α]x2 6 [α+ 3, 6− 2α] ,
[α+ 1, 4− 2α]x1 − [α, 2− α]x2 6 [α+ 1, 5− 3α] ,
x1, x2 > 0, α ∈ [0, 1] .

(11a)
Setting α = 1, the following nonlinear programming problem will be obtained:

max z′ = 3x′21 + 2x′22,
s.t.

x′1 + 3x′2 6 4,
2x′1 − x′2 6 2,
x′1, x

′
2 > 0.

(11b)

The optimal solution of this problem is obtained:

z′
∗ = 7.597, x′∗1 = 1.429, x′∗2 = 0.857.

with cut α = 0, we have:

max z = [1, 4]x2
1 + [1, 3]x2

2,
s.t.

[0, 3]x1 + [2, 5]x2 6 [3, 6] ,
[1, 4]x1 − [0, 2]x2 6 [1, 5] ,
x1, x2 > 0.

(11c)
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Now, by considering the Theorem 3.3, we have two problems as below:

max z = 4x2
1 + 3x2

2,
s.t.

2x2 6 6,
x1 − 2x2 6 5,
x1, x2 > 0.

(11d)

The optimal solution of this problem is obtained:

x∗1 = 11, x∗2 = 3, z∗ = 511.

max z = x2
1 + x2

2,

s.t.
3x1 + 5x2 6 3,
4x1 6 1,
x1, x2 > 0.

(11e)

The optimal solution of this problem is:

x∗1 = 0, x∗2 = 0.6, z∗ = 0.36.

Therefore, by using definition 3.2, the strong fuzzy optimal solution of
the problem (10) is:

x∗1 =
(
x∗1, x

′∗
1, x

∗
1

)
= (0, 1.429, 11) , x∗2 =

(
x∗2, x

′∗
2, x

∗
2

)
= (0.6, 0.857, 3)

and the fuzzy optimum value of the objective function is:

z∗ =
(
z∗, z′

∗
, z∗
)

= (0.36, 7.597, 511) .

Example 4.2. [9] Consider the following nonlinear fuzzy programming
problem:

min z̃ = (1, 2, 3)x2
1 + (0, 1, 2)x2

2,
s.t.

(x1 − 2)2 + (x2 − 2)2 6 1.
x1, x2 > 0.

(12)
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Now, we convert the problem (12) into an interval nonlinear program-
ming by α-cuts:

min zα = [α+ 1, 3− α]x2
1 + [α, 2− α]x2

2,
s.t.

(x1 − 2)2 + (x2 − 2)2 6 1,
x1, x2 > 0.

(13a)

Setting α = 1, the following intervalnonlinear programming will be obtained:

min z′ = 2x′21 + x′22,
s.t.

(x′1 − 2)2 + (x′2 − 2)2 6 1,
x′1, x

′
2 > 0.

(13b)

The optimal solution of this problem is:

z′
∗ = 4.814, x′∗1 = 1.155, x′∗2 = 1.465.

Setting α = 0, we have:

min z = [1, 3]x2
1 + [0, 2]x2

2,
s.t.

(x1 − 2)2 + (x2 − 2)2 6 1,
x1, x2 > 0.

(13c)

Now, by considering the theorem ??, we have two problems as below:

min z = 3x2
1 + 2x2

2,
s.t.

(x1 − 2)2 + (x2 − 2)2 6 1,
x1, x2 > 0.

(13d)

The optimal solution of this problem is:

x∗1 = 1.207, x∗2 = 1.391, z∗ = 8.239.

min z = x2
1,

s.t.
(x1 − 2)2 + (x2 − 2)2 6 1,
x1, x2 > 0.

(13e)
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Theorem 3.3. [17] If the objective function for Problem (5) is changed
to ‘max’, the best and worst optimum values can be obtained by solving
the following problems respectively:

max z =
n

j=1 c

j fj (X) ,

s.t. n
j=1 a


ijgj (X)  bi, i = 1, 2, . . . ,m;

X  0.

(8)

max z =
n

j=1 c

j fj (X) ,

s.t. n
j=1 a


ijgj (X)  bi, i = 1, 2, . . . ,m;

X  0,

(9)

where aij , a

ij , c


j and c


j are as defined in theorem 3.2.

Definition 3.4. If X ∗ =
�
x∗1, x

∗
2, . . . , x

∗
n

T
, X∗ = (x∗1, x

∗
2, . . . , x

∗
n)T

and X∗ = (x∗1, x
∗
2, . . . , x

∗
n)T are the optimal solutions of the problems (4),

(6) and (7) respectively and z∗, z∗ and z∗ are the optimum value of the
problems (4), (6) and (7) respectively,then the fuzzy optimal solution and
the fuzzy optimum value of the problem (2) are as follow respectively:

X∗ = [
�
x∗1, x

∗
1, x

∗
1


,
�
x∗2, x

∗
2, x

∗
2


, . . . ,
�
x∗n, x

∗
n, x

∗
n


]T and z∗ =

�
z∗, z

∗
, z∗

.

Definition 3.5. If
�
x∗i , x

∗
i , x

∗
i


, 1  i  n, are all triangular fuzzy

numbers then X∗is called a strong fuzzy solution. Otherwise, if ∃i; ; 1 
i  n,
�
x∗i , x

∗
i , x

∗
i


is not a triangular fuzzy number, then by reordering�

x∗i , x
∗
i , x

∗
i


such that all elements of X∗ remain fuzzy numbers, the

solution is called a weak fuzzy solution.

Therefore, by using Theorem 3.2 and Definitions 3.4 and 3.5, we can
obtain the optimal solution of the problem (2).

4. Numerical Examples

In this section, we will explain previous method with presenting several
examples. Note that for obtaining the optimal solutions of the nonlinear
programming problems, the function fmincon of MATLAB is used.
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The optimal solution of this problem is:

x∗1 = 1, x∗2 = 2, z∗ = 1.

Therefore by using of Definition 3.4, the optimal solution of the problem
(12) is:

x∗1 =

x∗1, x

∗
1, x

∗
1


= (1, 1.155, 1.391) , x∗2 =


x∗2, x

∗
2, x

∗
2


= (2, 1.465, 1.391)

and the fuzzy optimum value of objective function is:

z∗ =
�
z∗, z

∗
, z∗


= (1, 4.814, 8.239) .

However, x∗2 is not a triangular fuzzy number. Therefore, by reordering
elements of x∗2, we have:

u∗2 =

x∗2, x

∗
2, x

∗
2


= (1.391, 1.465, 2) .

Hence, the optimal solution X∗ = (x∗1, u
∗
2)T of this problem according

to definition 3.3 is a weak fuzzy solution.

5. Conclusion

In this paper, a new method was presented for solving nonlinear fuzzy
programming problems. First, this problem was converted into an in-
terval nonlinear programming problem by α-cuts. Then the cuts α = 0
and α = 1 were used. In general, we have three nonlinear programming
problems; to solve the problems fmincon function in Matlab may be
used. Then according to Definition 3.4 and Definition 3.5 the fuzzy opti-
mal solution and fuzzy optimal value of the main problem were obtained.
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