Journal of Mathematical Extension Vol. 11, No. 1, (2017), 1-13 ISSN: 1735-8299 URL: http://www.ijmex.com

Fourier-Dunkl Dini Lipschitz Functions in the Space $L^p_{\alpha,n}$

R. DAHER

University Hassan II

S. EL OUADIH^{*}

University Hassan II

Abstract. In this paper, we consider the generalized Fourier-Dunkl transform associated with the Dunkl operator on \mathbb{R} and we give condition of quite different kind for a function to have a transform belonging to certain L_p -classes.

AMS Subject Classification: 42B37

Keywords and Phrases: Differential-difference operator, generalized Fourier-Dunkl transform, generalized translation operator

1. Introduction

Theorems 5.1 and 5.2 in Younis [5] characterized the set of functions in $L^2(\mathbb{R})$ satisfying the Cauchy Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms, namely we have the following theorem.

Theorem 1.1. ([5]) Let $f \in L^2(\mathbb{R})$. Then the following are equivalents (a) $||f(x+h) - f(x)|| = o\left((\log \frac{1}{h})^{-1}\right)$, as $h \to 0$, (b) $\int_{|\lambda| \ge r} |\widehat{f}(\lambda)|^2 d\lambda = o\left((\log r)^{-1}\right)$, as $r \to \infty$,

Received: August 2015; Accepted: January 2016

^{*}Corresponding author

where \hat{f} stands for the Fourier transform of f.

Theorem 1.2. ([5]) Let $f \in L^2(\mathbb{R})$. Then the following are equivalents (a) $\|f(x+h) - f(x)\| = O\left(\frac{h^{\delta}}{(\log \frac{1}{h})^{\gamma}}\right)$, as $h \to 0, 0 < \delta < 1, \gamma \ge 0$

(b)
$$\int_{|\lambda| \ge r} |\widehat{f}(\lambda)|^2 d\lambda = O\left(\frac{r^{-2\delta}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty,$$

where \hat{f} stands for the Fourier transform of f.

In this paper, we consider a first-order singular differential-difference operator Λ on \mathbb{R} which generalizes the Dunkl operator Λ_{α} . We prove an analog of Theorems 1.1 and 1.2 in the generalized Fourier-Dunkl transform associated to Λ in $L^p_{\alpha,n} := L^p(\mathbb{R}, |x|^{2\alpha+2n(2-p)+1}dx)$. For this purpose, we use a generalized translation operator.

In this section, we develop some results from harmonic analysis related to the differential-difference operator Λ . Further details can be found in [1] and [6]. In all what follows assume where $\alpha > -1/2$ and n a nonnegative integer.

Consider the first-order singular differential-difference operator Λ defined on \mathbb{R} by

$$\Lambda f(x) = f'(x) + \left(\alpha + \frac{1}{2}\right) \frac{f(x) - f(-x)}{x} - 2n \frac{f(-x)}{x}.$$

For n = 0, we define the differential-difference operator Λ_{α} by

$$\Lambda_{\alpha}f(x) = f'(x) + \left(\alpha + \frac{1}{2}\right)\frac{f(x) - f(-x)}{x},$$

which is referred to as the Dunkl operator of index $\alpha + 1/2$ associated with the reflection group \mathbb{Z}_2 on \mathbb{R} . Such operators have been introduced by Dunkl (see [3], [4]) in connection with a generalization of the classical theory of spherical harmonics.

Define $L^p_{\alpha,n}$, $1 \leq p \leq \infty$, as the class of measurable functions f on \mathbb{R} for which $\|f\|_{p,\alpha,n} < \infty$, where

$$||f||_{p,\alpha,n} = \left(\int_{\mathbb{R}} |f(x)|^p x^{2\alpha+2n(2-p)+1}\right)^{1/p}, \text{ if } p < \infty,$$

and $||f||_{\infty,\alpha,n} = ||f||_{\infty} = ess \sup_{x \in \mathbb{R}} |f(x)|$. If p = 2, then we have $L^2_{\alpha,n} = L^2(\mathbb{R}, |x|^{2\alpha+1})$. The one-dimensional Dunkl kernel is defined by

$$e_{\alpha}(z) = j_{\alpha}(iz) + \frac{z}{2(\alpha+1)}j_{\alpha+1}(iz), z \in \mathbb{C},$$
(1)

where

$$j_{\alpha}(z) = \Gamma(\alpha+1) \sum_{m=0}^{\infty} \frac{(-1)^m (z/2)^{2m}}{m! \Gamma(m+\alpha+1)}, z \in \mathbb{C},$$
(2)

is the normalized spherical Bessel function of index α . It is well-known that the functions e_{α} are the solutions of the differential-difference equation

$$\Lambda_{\alpha} u = \lambda u, u(0) = 1.$$

From (2) we see that

$$\lim_{z \to 0} \frac{j_{\alpha}(z) - 1}{z^2} \neq 0.$$
(3)

Hence, there exists c > 0 and $\eta > 0$ satisfying

 $|z| \leq \eta \Rightarrow |j_{\alpha}(z) - 1| \ge c|z|^2.$

Lemma 1.3. For $x \in \mathbb{R}$ the following inequalities are fulfilled

(i) $|j_{\alpha}(x)| \leq 1$, (ii) $|1 - j_{\alpha}(x)| \leq x^2/2$,

(iii) $|1-j_{\alpha}(x)| \ge c$ with $|x| \ge 1$, where c > 0 is a certain constant which depends only on α .

Proof. Similarly as the proof of Lemma 2.9 in [2]. \Box

For $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$, put

$$\varphi_{\lambda}(x) = x^{2n} e_{\alpha+2n}(i\lambda x).$$

where $e_{\alpha+2n}$ is the Dunkl kernel of index $\alpha + 2n$ given by (1).

Proposition 1.4. (i) φ_{λ} satisfies the differential equation

$$\Lambda \varphi_{\lambda} = i \lambda \varphi_{\lambda}.$$

(ii) For all $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$

$$|\varphi_{\lambda}(x)| \leqslant |x|^{2n} e^{|Im\lambda||x|}$$

The generalized Fourier-Dunkl transform that we call it the integral transform is defined by

$$\mathcal{F}_{\Lambda}f(\lambda) = \int_{\mathbb{R}} f(x)\varphi_{-\lambda}(x)|x|^{2\alpha+1}dx, \lambda \in \mathbb{R}, f \in L^{1}_{\alpha,n}.$$

Let $f \in L^1_{\alpha,n}$ such that $\mathcal{F}_{\Lambda}(f) \in L^1_{\alpha+2n} = L^1(\mathbb{R}, |x|^{2\alpha+4n+1}dx)$. Then the inverse generalized Fourier-Dunkl transform is given by the formula

$$f(x) = \int_{\mathbb{R}} \mathcal{F}_{\Lambda} f(\lambda) \varphi_{\lambda}(x) d\mu_{\alpha+2n}(\lambda),$$

where

$$d\mu_{\alpha+2n}(\lambda) = a_{\alpha+2n}|\lambda|^{2\alpha+4n+1}d\lambda, \quad a_{\alpha} = \frac{1}{2^{2\alpha+2}(\Gamma(\alpha+1))^2}.$$

Proposition 1.5. (i) For every $f \in L^p_{\alpha,n}$,

$$\mathcal{F}_{\Lambda}(\Lambda f)(\lambda) = i\lambda \mathcal{F}_{\Lambda}(f)(\lambda).$$

(ii) For every $f \in L^1_{\alpha,n} \cap L^2_{\alpha,n}$ we have the Plancherel formula

$$\int_{\mathbb{R}} |f(x)|^2 |x|^{2\alpha+1} dx = \int_{\mathbb{R}} |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda).$$

(iii) The generalized Fourier-Dunkl transform \mathcal{F}_{Λ} extends uniquely to an isometric isomorphism from $L^2_{\alpha,n}$ onto $L^2(\mathbb{R}, \mu_{\alpha+2n})$.

By Plancherel equality and Marcinkiewics interpolation Theorem (see [7]) we get for $f \in L^p_{\alpha,n}$ with $1 \leq p \leq 2$ and q such that $\frac{1}{p} + \frac{1}{q} = 1$,

$$\|\mathcal{F}_{\Lambda}(f)\|_{q,\alpha+2n} \leqslant K \|f\|_{p,\alpha,n},\tag{4}$$

where K is a positive constant.

The generalized translation operators τ^x , $x \in \mathbb{R}$, tied to Λ are defined by

$$\begin{aligned} \tau^x f(y) &= \frac{(xy)^{2n}}{2} \int_{-1}^1 \frac{f(\sqrt{x^2 + y^2 - 2xyt})}{(x^2 + y^2 - 2xyt)^n} \left(1 + \frac{x - y}{\sqrt{x^2 + y^2 - 2xyt}} \right) A(t) dt \\ &+ \frac{(xy)^{2n}}{2} \int_{-1}^1 \frac{f(-\sqrt{x^2 + y^2 - 2xyt})}{(x^2 + y^2 - 2xyt)^n} \left(1 - \frac{x - y}{\sqrt{x^2 + y^2 - 2xyt}} \right) A(t) dt, \end{aligned}$$

where

$$A(t) = \frac{\Gamma(\alpha + 2n + 1)}{\sqrt{\pi}\Gamma(\alpha + 2n + 1/2)} (1+t)(1-t^2)^{\alpha + 2n - 1/2}$$

Proposition 1.6. Let f be in $L^p_{\alpha,n}$, $1 \leq p \leq \infty$. Then for all $x \in \mathbb{R}$, the function $\tau^x f$ belongs to $L^p_{\alpha,n}$, and

$$\|\tau^x f\|_{p,\alpha,n} \leqslant 2x^{2n} \|f\|_{p,\alpha,n}.$$

Furthermore,

$$\mathcal{F}_{\Lambda}(\tau^{x}f)(\lambda) = x^{2n} e_{\alpha+2n}(i\lambda x) \mathcal{F}_{\Lambda}(f)(\lambda).$$
(5)

2. Dini-Lipschitz Condition

Definition 2.1. Let $f \in L^p_{\alpha,n}$, $1 \leq p \leq \infty$, and define

$$\|\tau^{h}f(x) + \tau^{-h}f(x) - 2h^{2n}f(x)\|_{p,\alpha,n} \leq C \frac{h^{\eta+2n}}{(\ln\frac{1}{h})^{\gamma}}, \quad \eta > 0, \gamma \ge 0,$$

i.e.,

$$\|\tau^{h}f(x) + \tau^{-h}f(x) - 2h^{2n}f(x)\|_{p,\alpha,n} = O\left(\frac{h^{\eta+2n}}{(\ln\frac{1}{h})^{\gamma}}\right),$$

for all x in \mathbb{R} and for all sufficiently small h, C being a positive constant. Then we say that f satisfies a Dini-Lipschitz of order η , or f belongs to $Lip(\eta, \gamma, p)$. **Definition 2.2.** If however

$$\frac{\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,\alpha,n}}{\frac{h^{\eta+2n}}{(\ln\frac{1}{h})^{\gamma}}} \to 0, \quad as \quad h \to 0, \gamma \ge 0,$$

then f is said to be belong to the little Dini-Lipschitz class $lip(\eta, \gamma, p)$.

Remark 2.3. Let $\eta > 1$. If $f \in Lip(\eta, \gamma, p)$, then $f \in lip(1, \gamma, p)$.

Proof. For $x \in \mathbb{R}$, h small and $f \in Lip(\eta, \gamma, p)$, we have

$$\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,\alpha,n} \leq C \frac{h^{\eta+2n}}{(\ln \frac{1}{h})^{\gamma}}.$$

Then

$$(\log \frac{1}{h})^{\gamma} \| \tau^{h} f(x) + \tau^{-h} f(x) - 2h^{2n} f(x) \|_{p,\alpha,n} \leqslant Ch^{\eta+2n}.$$

Therefore

$$\frac{(\log \frac{1}{h})^{\gamma}}{h^{1+2n}} \|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,\alpha,n} \leqslant Ch^{\eta-1},$$

which tends to zero with $h \to 0$. Thus

$$\frac{(\log \frac{1}{h})^{\gamma}}{h^{1+2n}} \|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,\alpha,n} \to 0, \quad h \to 0.$$

Then $f \in lip(1, \gamma, p)$. \Box

Remark 2.4. If $\eta < \nu$, then $Lip(\eta, 0, p) \supset Lip(\nu, 0, p)$ and $lip(\eta, 0, p) \supset lip(\nu, 0, p)$.

Proof. We have $0 \le h \le 1$ and $\eta < \nu$, then $h^{\nu} \le h^{\eta}$. Then the proof of theorem is immediate. \Box

3. New Results on Dini-Lipschitz Class

Theorem 3.1. Let $\eta > 2$ and $1 \leq p \leq 2$. If f belongs to the Dini-Lipschitz class, i.e.,

$$f \in Lip(\eta, \gamma, p), \quad \eta > 2, \gamma \ge 0, 1 \le p \le 2.$$

Then f is null almost everywhere on \mathbb{R} .

Proof. Assume that $f \in Lip(\eta, \gamma, p)$. Then we have

$$\|\tau^{h}f(x) + \tau^{-h}f(x) - 2h^{2n}f(x)\|_{p,\alpha,n} \leq C \frac{h^{\eta+2n}}{(\ln\frac{1}{h})^{\gamma}}, \quad \gamma \ge 0.$$

By using the formulas (1), (2), and (5) we have the generalized Fourier-Dunkl transform of $\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)$ is $2h^{2n} (j_{\alpha+2n}(\lambda h) - 1)\mathcal{F}_{\Lambda} f(\lambda)$.

By formula (4), we get

$$2^{q}h^{2qn}\int_{\mathbb{R}}|j_{\alpha+2n}(\lambda h)-1|^{q}|\mathcal{F}_{\Lambda}f(\lambda)|^{q}d\mu_{\alpha+2n}(\lambda)\leqslant K^{q}C^{q}\frac{h^{q\eta+2qn}}{(\ln\frac{1}{h})^{q\gamma}}$$

Therefore

$$\int_{\mathbb{R}} |j_{\alpha+2n}(\lambda h) - 1|^q |\mathcal{F}_{\Lambda}f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) \leqslant \frac{K^q C^q}{2^q} \frac{h^{q\eta}}{(\ln\frac{1}{h})^{q\gamma}}.$$

Then

$$\frac{\int_{\mathbb{R}} |j_{\alpha+2n}(\lambda h) - 1|^q |\mathcal{F}_{\Lambda} f(\lambda)|^q d\mu_{\alpha+2n}(\lambda)}{h^{2q}} \leqslant \frac{K^q C^q}{2^q} \frac{h^{q\eta-2q}}{(\ln\frac{1}{h})^{q\gamma}}$$

Since $\eta > 2$ we have

$$\lim_{h \to 0} \frac{h^{q\eta - 2q}}{(\ln \frac{1}{h})^{q\gamma}} = 0$$

Thus

$$\lim_{h \to 0} \int_{\mathbb{R}} \left(\frac{|1 - j_{\alpha+2n}(\lambda h)|}{\lambda^2 h^2} \right)^q \lambda^{2q} |\mathcal{F}_{\Lambda} f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = 0$$

And also from the formula (3) and Fatou theorem, we obtain

$$\int_{\mathbb{R}} \lambda^{2q} |\mathcal{F}_{\Lambda} f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = 0.$$

Hence $\lambda^2 \mathcal{F}_{\Lambda} f(\lambda) = 0$ for all $\lambda \in \mathbb{R}$, and so f(x) is the null function. \Box

Theorem 3.2. Let $f \in L^p_{\alpha,n}, 1 \leq p \leq 2$. If f belongs to lip(2,0,p). *i.e.*,

$$\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,\alpha,n} = O(h^{2+2n}), \quad as \quad h \to 0.$$

Then f is null almost everywhere on \mathbb{R} .

Proof. Assume that $f \in lip(2, 0, p)$. Then we have

$$\frac{\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,\alpha,n}}{h^{2+2n}} \to 0, \quad as \quad h \to 0$$

By using the formulas (1), (2) and (5) we have the generalized Fourier-Dunkl transform of $\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)$ is $2h^{2n} (j_{\alpha+2n}(\lambda h) - 1)\mathcal{F}_{\Lambda} f(\lambda)$.

By formula (4), we get

$$\frac{2^q h^{2qn} \int_{\mathbb{R}} |j_{\alpha+2n}(\lambda h) - 1|^q |\mathcal{F}_{\Lambda} f(\lambda)|^q d\mu_{\alpha+2n}(\lambda)}{h^{2q+2nq}} \to 0, \quad as \quad h \to 0$$

Thus

$$\lim_{h \to 0} \int_{\mathbb{R}} \left(\frac{|1 - j_{\alpha+2n}(\lambda h)|}{\lambda^2 h^2} \right)^q \lambda^{2q} |\mathcal{F}_{\Lambda} f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = 0.$$

And also from the formula (3) and Fatou theorem, we obtain

$$\int_{\mathbb{R}} \lambda^{2q} |\mathcal{F}_{\Lambda} f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = 0.$$

Hence $\lambda^2 \mathcal{F}_{\Lambda} f(\lambda) = 0$ for all $\lambda \in \mathbb{R}$, and so f(x) is the null function. \Box Now, we give another the main result of this paper analog of Theorem 1.2.

Theorem 3.3. Let $f \in L^p_{\alpha,n}$. If f(x) belongs to $Lip(\eta, \gamma, p)$. Then

$$\int_{|\lambda| \ge r} |\mathcal{F}_{\Lambda} f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = O\left(\frac{r^{-q\eta}}{(\ln r)^{q\gamma}}\right), \quad as \quad r \to \infty,$$

where $1 \leq p \leq 2$ and q such that $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. Let $f \in Lip(\eta, \gamma, p)$. Then we have

$$\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,\alpha,n} = O\left(\frac{h^{\eta+2n}}{(\ln\frac{1}{h})^{\gamma}}\right) \quad \text{as} \quad h \to 0.$$

From formulas (1), (2) and (5) we have the generalized Fourier-Dunkl transform of $\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)$ is $2h^{2n} (j_{\alpha+2n}(\lambda h) - 1) \mathcal{F}_{\Lambda} f(\lambda)$. By formula (4), we obtain $2^q h^{2qn} \int_{\mathbb{R}} |j_{\alpha+2n}(\lambda h) - 1|^q |\mathcal{F}_{\Lambda} f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) \leq K^q ||\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)||_{p,\alpha,n}^q$. If $|\lambda| \in [\frac{1}{h}, \frac{2}{h}]$, then $|\lambda h| \ge 1$ and (*iii*) of Lemma 1.3 implies that $1 \leq \frac{1}{r^q} |j_{\alpha+2n}(\lambda h) - 1|^q$.

Then

$$\begin{split} \int_{\frac{1}{h} \leqslant |\lambda| \leqslant \frac{2}{h}} |\mathcal{F}_{\Lambda} f(\lambda)|^{q} d\mu_{\alpha+2n}(\lambda) & \leqslant \quad \frac{1}{c^{q}} \int_{\frac{1}{h} \leqslant |\lambda| \leqslant \frac{2}{h}} |j_{\alpha+2n}(\lambda h) - 1|^{q} |\mathcal{F}_{\Lambda} f(\lambda)|^{q} d\mu_{\alpha+2n}(\lambda) \\ & \leqslant \quad \frac{1}{c^{q}} \int_{-\infty}^{+\infty} |j_{\alpha+2n}(\lambda h) - 1|^{q} |\mathcal{F}_{\Lambda} f(\lambda)|^{q} d\mu_{\alpha+2n}(\lambda) \\ & \leqslant \quad \frac{h^{-2qn} K^{q}}{2^{q} c^{q}} \|\tau^{h} f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,\alpha,n}^{q} \\ & = \quad O\left(\frac{h^{q\eta}}{(\ln \frac{1}{h})^{q\gamma}}\right). \end{split}$$

So we obtain

$$\int_{r \leq |\lambda| \leq 2r} |\mathcal{F}_{\Lambda} f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) \leq C \frac{r^{-q\eta}}{(\ln r)^{q\gamma}}, \quad r \to \infty$$

where C is a positive constant. Now, we have

$$\begin{split} \int_{|\lambda| \ge r} |\mathcal{F}_{\Lambda} f(\lambda)|^{q} d\mu_{\alpha+2n}(\lambda) &= \sum_{i=0}^{\infty} \int_{2^{i}r \le |\lambda| \le 2^{i+1}r} |\mathcal{F}_{\Lambda} f(\lambda)|^{q} d\mu_{\alpha+2n}(\lambda) \\ &\leqslant C \left(\frac{r^{-q\eta}}{(\ln r)^{q\gamma}} + \frac{(2r)^{-q\eta}}{(\ln 2r)^{q\gamma}} + \frac{(4r)^{-q\eta}}{(\ln 4r)^{q\gamma}} + \cdots \right) \\ &\leqslant C \frac{r^{-q\eta}}{(\ln r)^{q\gamma}} \left(1 + 2^{-q\eta} + (2^{-q\eta})^{2} + (2^{-q\eta})^{3} + \cdots \right) \\ &\leqslant K_{\eta} \frac{r^{-q\eta}}{(\ln r)^{q\gamma}}, \end{split}$$

where $K_{\eta} = C(1 - 2^{-q\eta})^{-1}$ since $2^{-q\eta} < 1$. Consequently

$$\int_{|\lambda| \ge r} |\mathcal{F}_{\Lambda} f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = O\left(\frac{r^{-q\eta}}{(\ln r)^{q\gamma}}\right), \quad as \quad r \to \infty,$$

and this completes the proof. $\hfill\square$

Theorem 3.4. Let $f \in L^2_{\alpha,n}, \ 0 < \eta < 1$ and $\gamma \ge 0$. If

$$\int_{|\lambda| \ge r} |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty,$$

then $f \in Lip(\eta, \gamma, 2)$.

Proof. Suppose that

$$\int_{|\lambda| \ge r} |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right), \quad as \quad r \to \infty.$$

and write

$$\|\tau^{h}f(x) + \tau^{-h}f(x) - 2h^{2n}f(x)\|_{2,\alpha,n}^{2} = 4h^{4n}(I_{1} + I_{2}),$$

where

$$I_1 = \int_{|\lambda| < \frac{1}{h}} |j_{\alpha+2n}(\lambda h) - 1|^2 |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda),$$

and

$$I_{2} = \int_{|\lambda| \ge \frac{1}{h}} |j_{\alpha+2n}(\lambda h) - 1|^{2} |\mathcal{F}_{\Lambda}f(\lambda)|^{2} d\mu_{\alpha+2n}(\lambda)$$

Firstly, we use the formulas $|j_{\alpha+2n}(\lambda h)| \leq 1$ and

$$I_2 \leqslant 4 \int_{|\lambda| \ge \frac{1}{h}} |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = \left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}}\right), \quad as \quad h \to 0.$$

 Set

$$\phi(x) = \int_{x}^{+\infty} |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda).$$

Integrating by parts we obtain

$$\begin{split} \int_0^x \lambda^2 |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) &= \int_0^x -\lambda^2 \phi'(\lambda) d\lambda = -x^2 \phi(x) + 2 \int_0^x \lambda \phi(\lambda) d\lambda \\ &\leqslant C_1 \int_0^x \lambda \lambda^{-2\eta} (\log \lambda)^{-2\gamma} d\lambda = O(x^{2-2\eta} (\log x)^{-2\gamma}), \end{split}$$

where C_1 is a positive constant.

We use the formula (ii) of Lemma 1.2

$$\begin{split} \int_{-\infty}^{+\infty} |j_{\alpha+2n}(\lambda h) - 1|^2 |\mathcal{F}_{\Lambda}f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) &= O\left(h^2 \int_{|\lambda| < \frac{1}{h}} \lambda^2 |\mathcal{F}_{\Lambda}f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda)\right) \\ &+ \left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}}\right) \\ &= O\left(h^2 \frac{h^{2\eta-2}}{(\log \frac{1}{h})^{2\gamma}}\right) + O\left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}}\right) \\ &= O\left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}}\right), \end{split}$$

and this ends the proof. \Box

By analogy with the proof of the Theorems 3.3 and 3.4, we can establish the following results.

Theorem 3.5. Let $f \in L^p_{\alpha,n}$. If

$$\|\tau^{h}f(x) + \tau^{-h}f(x) - 2h^{2n}f(x)\|_{p,\alpha,n} = o\left(h^{2n}(\ln\frac{1}{h})^{-1}\right), \quad as \quad h \to 0,$$

then

$$\int_{|\lambda| \ge r} |\mathcal{F}_{\Lambda} f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = o\left((\ln r)^{-q}\right), \quad as \quad r \to \infty,$$

where $1 \leqslant p \leqslant 2$ and q such that $\frac{1}{p} + \frac{1}{q} = 1$.

Theorem 3.6. Let $f \in L^2_{\alpha,n}$. If

$$\int_{|\lambda| \ge r} |\mathcal{F}_{\Lambda} f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = o\left((\ln r)^{-2}\right), \quad as \quad r \to \infty,$$

then

$$\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{2,\alpha,n} = o\left(h^{2n} (\ln\frac{1}{h})^{-1}\right), \quad as \quad h \to 0.$$

Acknowledgements

The authors would like to thank the any nomos referees for their valuable comments and suggestions.

References

- S. A. Al Sadhan, R. F. Al Subaie, and M. A. Mourou, Harmonic analysis associated with a first-order singular differential-difference operator on the real line. *Current Advances in Mathematics Research*, 1 (2014), 23-34.
- [2] E. S. Belkina and S. S. Platonov, Equivalence of K-Functionnals and Modulus of Smoothness Constructed by Generalized Dunkl Translations, *Izv. Vyssh. Uchebn. Zaved. Mat.*, 8 (2008), 3-15.
- [3] C. F. Dunkl, Differential-difference operators associated to reflection groups. Transactions of the American Mathematical Society, 311 (1989), 167-183.
- [4] C. F. Dunkl, Hankel transforms associated to finite reflection groups. Contemporary Mathematics, 138 (1992), 128-138.
- [5] M. S. Younis, Fourier transforms of Dini-Lipschitz functions. Int., J. Math. Math. Sci., 9 (2) (1986), 301-312. doi:10.1155/S0161171286000376.
- [6] R. F. Al Subaie and M. A. Mourou, Inversion of two Dunkl type Intertwining Operators on R Using Generalized Wavelets, *Far East Journal of Applied Mathematics*, 88 (2014), 91-120.
- [7] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Claredon, oxford, 1948, Komkniga. Moxow. 2005.

RADOUAN DAHER

Department of Mathematics Faculty of Sciences Aïn Chock Ph.D. Student of Mathematics University Hassan II Casablanca, Morocco E-mail: rjdaher024@gmail.com

SALAH EL OUADIH

Department of Mathematics Faculty of Sciences Aïn Chock Ph.D. Student of Mathematics University Hassan II Casablanca, Morocco E-mail: salahwadih@gmail.com