Fourier-Dunkl Dini Lipschitz Functions in the Space $L_{\alpha,n}^p$

R. DAHER
University Hassan II

S. EL OUADIH*
University Hassan II

Abstract. In this paper, we consider the generalized Fourier-Dunkl transform associated with the Dunkl operator on \mathbb{R} and we give condition of quite different kind for a function to have a transform belonging to certain L_p-classes.

AMS Subject Classification: 42B37
Keywords and Phrases: Differential-difference operator, generalized Fourier-Dunkl transform, generalized translation operator

1. Introduction

Theorems 5.1 and 5.2 in Younis [5] characterized the set of functions in $L^2(\mathbb{R})$ satisfying the Cauchy Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms, namely we have the following theorem.

Theorem 1.1. ([5]) Let $f \in L^2(\mathbb{R})$. Then the following are equivalents

(a) $\|f(x + h) - f(x)\| = o\left((\log \frac{1}{h})^{-1}\right)$, as $h \to 0$,

(b) $\int_{|\lambda| \geq r} |\hat{f}(\lambda)|^2 d\lambda = o\left((\log r)^{-1}\right)$, as $r \to \infty$,
where \(\hat{f} \) stands for the Fourier transform of \(f \).

Theorem 1.2. ([5]) Let \(f \in L^2(\mathbb{R}) \). Then the following are equivalents

(a) \[\| f(x+h) - f(x) \| = O \left(\frac{h^\delta}{(\log \frac{1}{h})^\gamma} \right), \quad \text{as} \quad h \to 0, 0 < \delta < 1, \gamma \geq 0 \]

(b) \[\int_{|\lambda| \geq r} |\hat{f}(\lambda)|^2 d\lambda = O \left(\frac{r^{-2\delta}}{(\log r)^{2\gamma}} \right), \quad \text{as} \quad r \to \infty, \]

where \(\hat{f} \) stands for the Fourier transform of \(f \).

In this paper, we consider a first-order singular differential-difference operator \(\Lambda \) on \(\mathbb{R} \) which generalizes the Dunkl operator \(\Lambda_\alpha \). We prove an analog of Theorems 1.1 and 1.2 in the generalized Fourier-Dunkl transform associated to \(\Lambda \) in \(L^p_{\alpha,n} := L^p(\mathbb{R}, |x|^{2\alpha+2n(2-p)+1} dx) \). For this purpose, we use a generalized translation operator.

In this section, we develop some results from harmonic analysis related to the differential-difference operator \(\Lambda \). Further details can be found in [1] and [6]. In all what follows assume where \(\alpha > -1/2 \) and \(n \) a non-negative integer.

Consider the first-order singular differential-difference operator \(\Lambda \) defined on \(\mathbb{R} \) by

\[
\Lambda f(x) = f'(x) + \left(\alpha + \frac{1}{2} \right) \frac{f(x) - f(-x)}{x} - 2n \frac{f(-x)}{x}.
\]

For \(n = 0 \), we define the differential-difference operator \(\Lambda_\alpha \) by

\[
\Lambda_\alpha f(x) = f'(x) + \left(\alpha + \frac{1}{2} \right) \frac{f(x) - f(-x)}{x},
\]

which is referred to as the Dunkl operator of index \(\alpha + 1/2 \) associated with the reflection group \(\mathbb{Z}_2 \) on \(\mathbb{R} \). Such operators have been introduced by Dunkl (see [3], [4]) in connection with a generalization of the classical theory of spherical harmonics.

Define \(L^p_{\alpha,n}, 1 \leq p \leq \infty \), as the class of measurable functions \(f \) on \(\mathbb{R} \) for which \(\| f \|_{p,\alpha,n} < \infty \), where

\[
\| f \|_{p,\alpha,n} = \left(\int_\mathbb{R} |f(x)|^p x^{2\alpha+2n(2-p)+1} \right)^{1/p}, \quad \text{if} \quad p < \infty,
\]
and \(\|f\|_{\infty,a,n} = \|f\|_{\infty} = \text{ess sup}_{x \in \mathbb{R}} |f(x)| \).

If \(p = 2 \), then we have \(L^2_{a,n} = L^2(\mathbb{R}, |x|^{2\alpha+1}) \).

The one-dimensional Dunkl kernel is defined by

\[
e_\alpha(z) = j_\alpha(iz) + \frac{z}{2(\alpha + 1)} j_{\alpha+1}(iz), z \in \mathbb{C},
\]

(1)

where

\[
j_\alpha(z) = \Gamma(\alpha + 1) \sum_{m=0}^{\infty} \frac{(-1)^m (z/2)^{2m}}{m! \Gamma(m + \alpha + 1)}, z \in \mathbb{C},
\]

(2)

is the normalized spherical Bessel function of index \(\alpha \). It is well-known that the functions \(e_\alpha \) are the solutions of the differential-difference equation

\[
\Lambda_\alpha u = \lambda u, u(0) = 1.
\]

From (2) we see that

\[
\lim_{z \to 0} \frac{j_\alpha(z) - 1}{z^2} \neq 0.
\]

(3)

Hence, there exists \(c > 0 \) and \(\eta > 0 \) satisfying

\[
|z| \leq \eta \Rightarrow |j_\alpha(z) - 1| \geq c|z|^2.
\]

Lemma 1.3. For \(x \in \mathbb{R} \) the following inequalities are fulfilled

(i) \(|j_\alpha(x)| \leq 1 \),

(ii) \(|1 - j_\alpha(x)| \leq x^2/2 \),

(iii) \(|1 - j_\alpha(x)| \geq c \) with \(|x| \geq 1 \), where \(c > 0 \) is a certain constant which depends only on \(\alpha \).

Proof. Similarly as the proof of Lemma 2.9 in [2]. \(\square \)

For \(\lambda \in \mathbb{C} \), and \(x \in \mathbb{R} \), put

\[
\varphi_\lambda(x) = x^{2n} e_{\alpha+2n}(i\lambda x).
\]

where \(e_{\alpha+2n} \) is the Dunkl kernel of index \(\alpha + 2n \) given by (1).
Proposition 1.4. (i) φ_λ satisfies the differential equation

$$\Lambda \varphi_\lambda = i\lambda \varphi_\lambda.$$

(ii) For all $\lambda \in \mathbb{C}$, and $x \in \mathbb{R}$

$$|\varphi_\lambda(x)| \leq |x|^{2n} e^{|Im\lambda||x|}.$$

The generalized Fourier-Dunkl transform that we call it the integral transform is defined by

$$\mathcal{F}_\Lambda f(\lambda) = \int_{\mathbb{R}} f(x) \varphi_{-\lambda}(x) |x|^{2\alpha+1} dx, \lambda \in \mathbb{R}, f \in L^1_{\alpha,n}.$$

Let $f \in L^1_{\alpha,n}$ such that $\mathcal{F}_\Lambda(f) \in L^1_{\alpha+2n} = L^1(\mathbb{R}, |x|^{2\alpha+4n+1} dx)$. Then the inverse generalized Fourier-Dunkl transform is given by the formula

$$f(x) = \int_{\mathbb{R}} \mathcal{F}_\Lambda(f)(\lambda) \varphi_\lambda(x) d\mu_{\alpha+2n}(\lambda),$$

where

$$d\mu_{\alpha+2n}(\lambda) = a_{\alpha+2n}|\lambda|^{2\alpha+4n+1} d\lambda, \quad a_\alpha = \frac{1}{2^{2\alpha+2}(\Gamma(\alpha+1))^2}.$$

Proposition 1.5. (i) For every $f \in L^p_{\alpha,n}$,

$$\mathcal{F}_\Lambda(\Lambda f)(\lambda) = i\lambda \mathcal{F}_\Lambda(f)(\lambda).$$

(ii) For every $f \in L^1_{\alpha,n} \cap L^2_{\alpha,n}$ we have the Plancherel formula

$$\int_{\mathbb{R}} |f(x)|^2 |x|^{2\alpha+1} dx = \int_{\mathbb{R}} |\mathcal{F}_\Lambda(f)(\lambda)|^2 d\mu_{\alpha+2n}(\lambda).$$

(iii) The generalized Fourier-Dunkl transform \mathcal{F}_Λ extends uniquely to an isometric isomorphism from $L^2_{\alpha,n}$ onto $L^2(\mathbb{R}, \mu_{\alpha+2n})$.

By Plancherel equality and Marcinkiewics interpolation Theorem (see [7]) we get for $f \in L^p_{\alpha,n}$ with $1 \leq p \leq 2$ and q such that $\frac{1}{p} + \frac{1}{q} = 1$,

$$\|\mathcal{F}_\Lambda(f)\|_{q,\alpha+2n} \leq K \|f\|_{p,\alpha,n}, \quad (4)$$
where K is a positive constant.
The generalized translation operators τ^x, $x \in \mathbb{R}$, tied to Λ are defined by

\[
\tau^x f(y) = \frac{(xy)^{2n}}{2} \int_{-1}^{1} f(\sqrt{x^2 + y^2 - 2xy} t) \left(1 + \frac{x - y}{\sqrt{x^2 + y^2 - 2xy}} \right) A(t) dt
\]

\[
+ \frac{(xy)^{2n}}{2} \int_{-1}^{1} f(-\sqrt{x^2 + y^2 - 2xy} t) \left(1 - \frac{x - y}{\sqrt{x^2 + y^2 - 2xy}} \right) A(t) dt,
\]

where

\[
A(t) = \frac{\Gamma(\alpha + 2n + 1)}{\sqrt{\pi} \Gamma(\alpha + 2n + 1/2)} (1 + t)(1 - t^2)^{\alpha + 2n - 1/2}.
\]

Proposition 1.6. Let f be in $L^p_{\alpha,n}$, $1 \leq p \leq \infty$. Then for all $x \in \mathbb{R}$, the function $\tau^x f$ belongs to $L^p_{\alpha,n}$, and

\[
\|\tau^x f\|_{p,\alpha,n} \leq 2x^{2n} \|f\|_{p,\alpha,n}.
\]

Furthermore,

\[
\mathcal{F}_\Lambda(\tau^x f)(\lambda) = x^{2n} e^{\alpha+2n(i\lambda x)} \mathcal{F}_\Lambda(f)(\lambda).
\]

(5)

2. Dini-Lipschitz Condition

Definition 2.1. Let $f \in L^p_{\alpha,n}$, $1 \leq p \leq \infty$, and define

\[
\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,\alpha,n} \leq C \left(\frac{h^{\eta + 2n}}{\ln \frac{1}{h}} \right)^\gamma, \quad \eta > 0, \gamma \geq 0,
\]

i.e.,

\[
\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,\alpha,n} = O \left(\frac{h^{\eta + 2n}}{\ln \frac{1}{h}} \right)^\gamma,
\]

for all $x \in \mathbb{R}$ and for all sufficiently small h, C being a positive constant. Then we say that f satisfies a Dini-Lipschitz of order η, or f belongs to $\text{Lip}(\eta, \gamma, p)$.
Definition 2.2. If however
\[\frac{\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,a,n}}{h^{\eta+2n}/(\ln \frac{1}{h})^{\gamma}} \to 0, \quad \text{as} \quad h \to 0, \gamma \geq 0, \]
then \(f \) is said to be belong to the little Dini-Lipschitz class \(\text{lip}(\eta, \gamma, p) \).

Remark 2.3. Let \(\eta > 1 \). If \(f \in \text{Lip}(\eta, \gamma, p) \), then \(f \in \text{lip}(1, \gamma, p) \).

Proof. For \(x \in \mathbb{R}, \) small and \(f \in \text{Lip}(\eta, \gamma, p) \), we have
\[\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,a,n} \leq Ch^{\eta+2n}/(\ln \frac{1}{h})^{\gamma}. \]
Then
\[(\log \frac{1}{h})^{\gamma}\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,a,n} \leq C h^{\eta+2n}. \]
Therefore
\[(\log \frac{1}{h})^{\gamma}\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,a,n} \leq C h^{\eta-1}, \]
which tends to zero with \(h \to 0 \). Thus
\[(\log \frac{1}{h})^{\gamma}\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,a,n} \to 0, \quad h \to 0. \]
Then \(f \in \text{lip}(1, \gamma, p) \). \(\square \)

Remark 2.4. If \(\eta < \nu \), then \(\text{Lip}(\eta, 0, p) \supset \text{Lip}(\nu, 0, p) \) and \(\text{lip}(\eta, 0, p) \supset \text{lip}(\nu, 0, p) \).

Proof. We have \(0 \leq h \leq 1 \) and \(\eta < \nu \), then \(h^\nu \leq h^\eta \).
Then the proof of theorem is immediate. \(\square \)

3. New Results on Dini-Lipschitz Class

Theorem 3.1. Let \(\eta > 2 \) and \(1 \leq p \leq 2 \). If \(f \) belongs to the Dini-Lipschitz class, i.e.,
\[f \in \text{Lip}(\eta, \gamma, p), \quad \eta > 2, \gamma \geq 0, 1 \leq p \leq 2. \]
Then f is null almost everywhere on \mathbb{R}.

Proof. Assume that $f \in Lip(\eta, \gamma, p)$. Then we have

$$\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{p,\alpha,n} \leq C \frac{h^{\eta+2n}}{(\ln \frac{1}{h})^\gamma}, \quad \gamma \geq 0.$$

By using the formulas (1), (2), and (5) we have the generalized Fourier-Dunkl transform of $\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)$ is $2h^{2n}(j_{\alpha+2n}(\lambda h) - 1)F_\Lambda f(\lambda)$.

By formula (4), we get

$$2^q h^{2q} \int_\mathbb{R} |j_{\alpha+2n}(\lambda h) - 1|^q |F_\Lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) \leq K^q C^q \frac{h^{\eta+2q}}{(\ln \frac{1}{h})^q \gamma}.$$

Therefore

$$\int_\mathbb{R} |j_{\alpha+2n}(\lambda h) - 1|^q |F_\Lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) \leq K^q C^q \frac{h^{\eta}}{2^q} \frac{h^{\eta}}{(\ln \frac{1}{h})^{q\gamma}}.$$

Then

$$\frac{\int_\mathbb{R} |j_{\alpha+2n}(\lambda h) - 1|^q |F_\Lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda)}{h^{2q}} \leq K^q C^q \frac{h^{\eta-2q}}{2^q} \frac{h^{\eta-2q}}{(\ln \frac{1}{h})^{q\gamma}}.$$

Since $\eta > 2$ we have

$$\lim_{h \to 0} \frac{h^{\eta-2q}}{(\ln \frac{1}{h})^{q\gamma}} = 0.$$

Thus

$$\lim_{h \to 0} \int_\mathbb{R} \left(\frac{|1 - j_{\alpha+2n}(\lambda h)|}{\lambda^2 h^2} \right)^q \lambda^{2q} |F_\Lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = 0.$$

And also from the formula (3) and Fatou theorem, we obtain

$$\int_\mathbb{R} \lambda^{2q} |F_\Lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = 0.$$

Hence $\lambda^2 F_\Lambda f(\lambda) = 0$ for all $\lambda \in \mathbb{R}$, and so $f(x)$ is the null function. \(\square \)
Theorem 3.2. Let \(f \in L^p_{\alpha,n}, 1 \leq p \leq 2 \). If \(f \) belongs to \(\text{lip}(2,0,p) \), i.e.,
\[
\| \tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x) \|_{p,\alpha,n} = O(h^{2+2n}), \quad \text{as} \quad h \to 0.
\]
Then \(f \) is null almost everywhere on \(\mathbb{R} \).

Proof. Assume that \(f \in \text{lip}(2,0,p) \). Then we have
\[
\| \tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x) \|_{p,\alpha,n} \to 0, \quad \text{as} \quad h \to 0
\]
By using the formulas (1), (2) and (5) we have the generalized Fourier-Dunkl transform of \(\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x) \) is \(2h^{2n} (j_{\alpha+2n}(\lambda h) - 1) \mathcal{F}_\Lambda f(\lambda) \).

By formula (4), we get
\[
2^q h^{2qn} \int_\mathbb{R} \frac{|j_{\alpha+2n}(\lambda h) - 1|^q |\mathcal{F}_\Lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda)}{h^{2q+2n}} \to 0, \quad \text{as} \quad h \to 0
\]
Thus
\[
\lim_{h \to 0} \int_\mathbb{R} \left(\frac{|1 - j_{\alpha+2n}(\lambda h)|}{\lambda^2 h^2} \right)^q \lambda^{2q} |\mathcal{F}_\Lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = 0.
\]
And also from the formula (3) and Fatou theorem, we obtain
\[
\int_\mathbb{R} \lambda^{2q} |\mathcal{F}_\Lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = 0.
\]
Hence \(\lambda^2 \mathcal{F}_\Lambda f(\lambda) = 0 \) for all \(\lambda \in \mathbb{R} \), and so \(f(x) \) is the null function. \(\square \)

Now, we give another the main result of this paper analog of Theorem 1.2.

Theorem 3.3. Let \(f \in L^p_{\alpha,n} \). If \(f(x) \) belongs to \(\text{Lip}(\eta,\gamma,p) \). Then
\[
\int_{|\lambda| \geq r} |\mathcal{F}_\Lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = O \left(\frac{r^{1-q\eta}}{(\ln r)^{q\gamma}} \right), \quad \text{as} \quad r \to \infty,
\]
where \(1 \leq p \leq 2 \) and \(q \) such that \(\frac{1}{p} + \frac{1}{q} = 1 \).
\textbf{Proof.} Let \(f \in \text{Lip}(\eta, \gamma, p) \). Then we have

\[\| \tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x) \|_{p,\alpha,n} = O \left(\frac{h^{n+2n}}{(\ln \frac{1}{h})^q} \right) \text{ as } h \to 0. \]

From formulas (1), (2) and (5) we have the generalized Fourier-Dunkl transform of \(\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x) \) is \(2h^{2n} (j_{\alpha+2n}(\lambda h) - 1) \mathcal{F}_\lambda f(\lambda) \).

By formula (4), we obtain

\[2^q h^{2qn} \int_{\mathbb{R}} |j_{\alpha+2n}(\lambda h) - 1|^q |\mathcal{F}_\lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) \leq K^q \| \tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x) \|^q_{p,\alpha,n}. \]

If \(|\lambda| \in \left[\frac{1}{h}, \frac{2}{h} \right] \), then \(|\lambda h| \geq 1 \) and (iii) of Lemma 1.3 implies that

\[1 \leq \frac{1}{c^q} |j_{\alpha+2n}(\lambda h) - 1|^q. \]

Then

\[
\begin{align*}
\int_{\frac{1}{h} \leq |\lambda| \leq \frac{2}{h}} |\mathcal{F}_\lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) & \leq \frac{1}{c^q} \int_{\frac{1}{h} \leq |\lambda| \leq \frac{2}{h}} |j_{\alpha+2n}(\lambda h) - 1|^q |\mathcal{F}_\lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) \\
& \leq \frac{1}{c^q} \int_{-\infty}^{+\infty} |j_{\alpha+2n}(\lambda h) - 1|^q |\mathcal{F}_\lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) \\
& \leq \frac{h^{-2qn} K^q}{2^q c^q} \| \tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x) \|^q_{p,\alpha,n} \\
& = O \left(\frac{h^{qq}}{(\ln \frac{1}{h})^q} \right).
\end{align*}
\]

So we obtain

\[\int_{r \leq |\lambda| \leq 2r} |\mathcal{F}_\lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) \leq C \frac{r^{-qn}}{(\ln r)^q}, \quad r \to \infty. \]

where \(C \) is a positive constant. Now, we have

\[
\begin{align*}
\int_{|\lambda| \geq r} |\mathcal{F}_\lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) &= \sum_{i=0}^{\infty} \int_{2^i r \leq |\lambda| \leq 2^{i+1} r} |\mathcal{F}_\lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) \\
& \leq C \left(\frac{r^{-qn}}{(\ln r)^q} + \frac{(2r)^{-qn}}{(\ln 2r)^q} + \frac{(4r)^{-qn}}{(\ln 4r)^q} + \cdots \right) \\
& \leq C \frac{r^{-qn}}{(\ln r)^q} \left(1 + 2^{-qn} + (2^{-qn})^2 + (2^{-qn})^3 + \cdots \right) \\
& \leq K \eta \frac{r^{-qn}}{(\ln r)^q},
\end{align*}
\]
where $K_\eta = C(1 - 2^{\eta})^{-1}$ since $2^{\eta} > 1$.

Consequently
\[
\int_{|\lambda| \geq r} |{\mathcal F}_\Lambda f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = O\left(\frac{r^{-\eta}}{(\ln r)^{\eta}}\right), \text{ as } r \to \infty,
\]
and this completes the proof. \(\square\)

Theorem 3.4. Let $f \in L^2_{\alpha,n}$, $0 < \eta < 1$ and $\gamma \geq 0$. If
\[
\int_{|\lambda| \geq r} |{\mathcal F}_\Lambda f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right), \text{ as } r \to \infty,
\]
then $f \in \text{Lip}(\eta, \gamma, 2)$.

Proof. Suppose that
\[
\int_{|\lambda| \geq r} |{\mathcal F}_\Lambda f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = O\left(\frac{r^{-2\eta}}{(\log r)^{2\gamma}}\right), \text{ as } r \to \infty,
\]
and write
\[
\|\tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x)\|_{2,\alpha,n}^2 = 4h^{4n}(I_1 + I_2),
\]
where
\[
I_1 = \int_{|\lambda| < \frac{1}{h}} |j_{\alpha+2n}(\lambda h) - 1|^2 |{\mathcal F}_\Lambda f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda),
\]
and
\[
I_2 = \int_{|\lambda| \geq \frac{1}{h}} |j_{\alpha+2n}(\lambda h) - 1|^2 |{\mathcal F}_\Lambda f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda).
\]
Firstly, we use the formulas $|j_{\alpha+2n}(\lambda)| \leq 1$ and
\[
I_2 \leq 4 \int_{|\lambda| \geq \frac{1}{h}} |{\mathcal F}_\Lambda f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = \left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}}\right), \text{ as } h \to 0.
\]
Set
\[
\phi(x) = \int_x^{+\infty} |{\mathcal F}_\Lambda f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda).
\]
Integrating by parts we obtain
\[
\int_0^x \lambda^2 |\mathcal{F}\alpha f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = \int_0^x -\lambda^2 \phi'(\lambda) d\lambda = -x^2 \phi(x) + 2 \int_0^x \lambda \phi(\lambda) d\lambda
\]
\[
\leq C_1 \int_0^x \lambda \lambda^{-2\eta}(\log \lambda)^{-2\gamma} d\lambda = O(x^{2-2\eta}(\log x)^{-2\gamma}),
\]
where \(C_1\) is a positive constant.
We use the formula (ii) of Lemma 1.2
\[
\int_{-\infty}^{+\infty} |j_{\alpha+2n}(\lambda h) - 1|^2 |\mathcal{F}\alpha f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = O \left(h^2 \int_{|\lambda| < \frac{1}{h}} \lambda^2 |\mathcal{F}\alpha f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) \right)
\]
\[
+ \left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}} \right)
\]
\[
= O \left(h^{2} \frac{h^{2\eta-2}}{(\log \frac{1}{h})^{2\gamma}} \right) + O \left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}} \right)
\]
\[
= O \left(\frac{h^{2\eta}}{(\log \frac{1}{h})^{2\gamma}} \right),
\]
and this ends the proof. \(\square\)

By analogy with the proof of the Theorems 3.3 and 3.4, we can establish the following results.

Theorem 3.5. Let \(f \in L^p_{\alpha,n}\). If
\[
\|r^h f(x) + r^{-h} f(x) - 2 h^{2n} f(x)\|_{p,\alpha,n} = o \left(h^{2n}(\ln \frac{1}{h})^{-1} \right), \quad \text{as} \quad h \to 0,
\]
then
\[
\int_{|\lambda| \geq r} |\mathcal{F}\alpha f(\lambda)|^q d\mu_{\alpha+2n}(\lambda) = o \left((\ln r)^{-q} \right), \quad \text{as} \quad r \to \infty,
\]
where \(1 \leq p \leq 2\) and \(q\) such that \(\frac{1}{p} + \frac{1}{q} = 1\).

Theorem 3.6. Let \(f \in L^2_{\alpha,n}\). If
\[
\int_{|\lambda| \geq r} |\mathcal{F}\alpha f(\lambda)|^2 d\mu_{\alpha+2n}(\lambda) = o \left((\ln r)^{-2} \right), \quad \text{as} \quad r \to \infty,
\]
then

\[\| \tau^h f(x) + \tau^{-h} f(x) - 2h^{2n} f(x) \|_{2, \alpha, n} = o \left(h^{2n} \left(\ln \frac{1}{h} \right)^{-1} \right), \quad \text{as} \quad h \to 0. \]

Acknowledgements
The authors would like to thank the any names referees for their valuable comments and suggestions.

References

RADOUAN DAHER
Department of Mathematics
Faculty of Sciences Aïn Chock
Ph.D. Student of Mathematics
University Hassan II
Casablanca, Morocco
E-mail: rjdaier024@gmail.com

SALAH EL OUADIH
Department of Mathematics
Faculty of Sciences Aïn Chock
Ph.D. Student of Mathematics
University Hassan II
Casablanca, Morocco
E-mail: salahwadih@gmail.com