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Abstract. In this paper, we consider the generalized Fourier-Dunkl
transform associated with the Dunkl operator on R and we give condi-
tion of quite different kind for a function to have a transform belonging
to certain L,—classes.
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1. Introduction

Theorems 5.1 and 5.2 in Younis [5] characterized the set of functions in
L?(R) satisfying the Cauchy Lipschitz condition by means of an asymp-
totic estimate growth of the norm of their Fourier transforms, namely
we have the following theorem.

Theorem 1.1. ([5]) Let f € L*(R). Then the following are equivalents
(a) |f(x+h)=f@)]|=o0(logy)™"), as h—0,

f 2 =o((logr)~! as 1 — o0
(b) /W\fw dx = o ((logr) ™). ,
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where ]? stands for the Fourier transform of f.

Theorem 1.2. ([5]) Let f € L2(R). Then the following are equivalents
() Wf@+n)—f@I=0(l), e h—00<6<1,9>0

log +)7
-2

(b) F2dr =0 ((lg)

) , as T — 00,
|A[Zr

where ]? stands for the Fourier transform of f.

In this paper, we consider a first-order singular differential-difference
operator A on R which generalizes the Dunkl operator A,. We prove
an analog of Theorems 1.1 and 1.2 in the generalized Fourier-Dunkl
transform associated to A in L5, := LP(R, |z|?*+2*(2=P)*14z). For this
purpose, we use a generalized translation operator.

In this section, we develop some results from harmonic analysis related
to the differential-difference operator A. Further details can be found in
[1] and [6]. In all what follows assume where o« > —1/2 and n a non-
negative integer.

Consider the first-order singular differential-difference operator A de-
fined on R by

M) =@+ (ar ) LOTED 5 100

For n = 0, we define the differential-difference operator A, by

1 z)— f(—=x
Aaf@) = £(a) + (a5 ) TOZIE,
2 x
which is referred to as the Dunkl operator of index « + 1/2 associated
with the reflection group Zs on R. Such operators have been introduced
by Dunkl (see [3], [4]) in connection with a generalization of the classical

theory of spherical harmonics.

Define Lﬁm, 1 < p < 00, as the class of measurable functions f on R for
which || f|[p,a,n < 00, where

1/p
T ( / |f<x>rpx2a+2”<2—p>“) it p<oo,
R
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and || flloo,a,n = || flloo = esssupger [ f(2)]-
If p = 2, then we have L7, = L*(R, |z[>*1).
The one-dimensional Dunkl kernel is defined by

z

mjaﬂ(iz)az € C, (1)

ea(z) = ja(iz) +

where

(D)™ (z/2)""

Ja(z) =(a+1) mzo mT(m+a+ 1)’

ze€C, (2)

is the normalized spherical Bessel function of index «. It is well-known
that the functions e, are the solutions of the differential-difference equa-
tion

Aqu = Au,u(0) = 1.

From (2) we see that

ty 5 A0 2

Hence, there exists ¢ > 0 and n > 0 satisfying

2] <1 = |jalz) — 1] = |2

Lemma 1.3. For x € R the following inequalities are fulfilled
(i) lja(x)] <1,
(i) |1 = ja(z)] < 22/2,

<
(i) |1 — jo(z)| = c with |x| > 1, where ¢ > 0 is a certain constant which
depends only on «.

Proof. Similarly as the proof of Lemma 2.9 in [2]. O
For A € C, and z € R, put
ox () = 2% eqyon(iNT).

where e, is the Dunkl kernel of index a + 2n given by (1).
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Proposition 1.4. (i) ¢, satisfies the differential equation
Apy = idp).
(i1) For all A € C, and x € R

[pa(@)] < JafPrel AL,

The generalized Fourier-Dunkl transform that we call it the integral
transform is defined by

Faf(A /f (@)|z]** M dz, A €R, f € L,

Let f € L, such that FA(f) € L} ,9, = L*(R,|z[**T*"*1dz). Then the
inverse generalized Fourier-Dunkl transform is given by the formula

= /l;fAf(A)gO)\(x)d,ua—i-?n(A)’

where

1

Aptgson(N) = agaon| A\PAT AN, a, = .
Hat2n(A) = Gayon|Al v @ 220+2(T (o + 1))2

Proposition 1.5. (i) For every f € L5,
Fa(A)A) = AFA(S) ).

(it) For every f € L, N L2, we have the Plancherel formula

/ (@) Pt de = / FafO) P dptasan(N).
R R

(iii) The generalized Fourier-Dunkl transform Fy extends uniquely to an

isometric isomorphism from La . onto L2(R, pig1on)-

By Plancherel equality and Marcinkiewics interpolation Theorem (see
[7]) we get for f € Lh , with 1 < p < 2 and ¢ such that % + % =1,

[FA(N) lgav2n < K| fllp,an, (4)
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where K is a positive constant.
The generalized translation operators 7%, x € R, tied to A are defined
by

i) = (my2)2n /_11 fg, [x2 + 42 — 2zyt) (1 N x—y ) A(t)dt

a2 +y? - 2ayt)" Va2 +y? — 2yt
ST T s o _
PC) /f( 2w;ry zyt) (| z-—y Alt)dt,
2 Jo (2 +y? - 2ayt)" Va2 +y? =2yt

where
INa+2n+1)

A) = Vil (o +2n+1/2)

(1 + t)(l _ t2)o¢+2n—1/2.

Proposition 1.6. Let f be in L5, 1 < p < oo. Then for all z € R,
the function 7 f belongs to Lh ., and

I f

pb,a,n < 2$2anHp7a7n'

Furthermore,

FA(T [)A) = 2 equan(iA2) FA(f)(N). (5)

2. Dini-Lipschitz Condition

Definition 2.1. Let f € Lk, 1 < p < oo, and define

h77+2n
(In %)V ’

17" f () + 77" f(z) = 20°" f () |p.an < C n>0,v20,

i.€.,
h —h 2 pEn
17" f(z) + 77" f(x) = 207" f (@) lpan = O | 72 | »
(ln E)’y
for all x in R and for all sufficiently small h, C being a positive constant.
Then we say that f satisfies a Dini-Lipschitz of order n, or f belongs to
Lip(n,7,p).
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Definition 2.2. If however
7" f(x) + 77" f(2) — 207" f (@) [|p,arn

hn+2n
(In %)V

—0, as h—0,v>0,

then f is said to be belong to the little Dini-Lipschitz class lip(n,~y,p).
Remark 2.3. Let n > 1. If f € Lip(n,,p), then f € lip(1,~,p).

Proof. For x € R, h small and f € Lip(n,~,p), we have

hn+2n
h —h 2n
17" f (@) + 77" f (@) = 207" f(2)[lp.an < C(ln%w-
Then
1 _ n "

(log 2)"[7"f (@) + 77" f(2) = 207" f (@) [[p.cm < CRT**".
Therefore

log +)Y _ n _

(hu’;i 17" f(2) + 77" (x) = 207" ()| p.an < OB,

which tends to zero with h — 0. Thus

(log )7
h1+2n

Then f € lip(1,~v,p). O

17" f (x) + 77" f(x) = 20°" f (@) |p,an — 0. B — O

Remark 2.4. If n < v, then Lip(n,0,p) D Lip(v,0,p) and lip(n,0,p) D
lip(v,0,p).

Proof. We have 0 < h <1 and 7 < v, then h¥ < A".
Then the proof of theorem is immediate. [

3. New Results on Dini-Lipschitz Class

Theorem 3.1. Let n > 2 and 1 < p < 2. If f belongs to the Dini-
Lipschitz class, i.e.,

f € Lip(n,v,p), 1n>2,7>0,1<p<2.
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Then f is null almost everywhere on R.

Proof. Assume that f € Lip(n,~,p). Then we have
h77+2n
(In %)V ’
By using the formulas (1), (2), and (5) we have the generalized Fourier-

Dunkl transform of 7" f(x) + 77" f(z) — 2h%" f () is 2h%"(jar2n(Ah) —

DFAf(N).
By formula (4), we get

I7"f () + 77" f(a) — 20%" f ()

p,a,n < C

9 hq77+2qn
29h q"/ ljaton(AR) — 4 FAf (M) dpar2n(N) < K1CT——5—.
R (ln E)q')/
Therefore
K107 pa

asan(R) — 19 Fr FO)|9dparon(N) < .
J, et O0) ~ LIEAS ) dcszn) < “g

Then

/R‘ja-l-%()‘h) — IFAS N daton (V) pgma pan-2q
<
= ST mhe

Since n > 2 we have
han—2aq

lim =
hli% (In %)‘W

Thus

. |1_ja+2n(/\h)’ / 2
tiny [ (P2 B sz 0 920 () =0

And also from the formula (3) and Fatou theorem, we obtain
[ XEA SO 20 (3) = 0.
R

Hence A2F5 f(A) = 0 for all A € R, and so f(x) is the null function. O
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Theorem 3.2. Let f € L5 ,,1 < p < 2. If f belongs to lip(2,0,p). i.e.,
17" f(x) + 77" f(z) = 20°" f(2) | p.asn = O(R**?"), as b — 0.
Then f is null almost everywhere on R.

Proof. Assume that f € lip(2,0,p). Then we have

I7" f(z) + 77" f(z) — 20*" (@) [[p,an
h2+2n

—0, as h—0

By using the formulas (1), (2) and (5) we have the generalized Fourier-
Dunkl transform of 7" f(x) + 77" f(z) — 2h%" f(x) is 2h%"(jasr2n(AR) —

DFAfN).
By formula (4), we get

gap20m / osan(AB) — 1191 Fa f ) “dpta 20 (M)
R —0, as h—0

h2q+2ng
Thus
. 11— Jar2n(AR)\? |2
tiy [ (=2 B0 sy ) 20 () = 0

And also from the formula (3) and Fatou theorem, we obtain
[ XEA SO s (0) = 0.
R

Hence A5 f(\) =0 for all A € R, and so f(x) is the null function. O

Now, we give another the main result of this paper analog of Theorem
1.2.

Theorem 3.3. Let f € LL,,,. If f(z) belongs to Lip(n,~y,p). Then

—qn
/|/\|> |FAf (M dpa+ran(A) = O <T> , as T — 00,

(Inr)ay

wherel<p<2andqsuchthat%—i—%:l.



FOURIER-DUNKL DINI LIPSCHITZ FUNCTIONS ... 9

Proof. Let f € Lip(n,~,p). Then we have

+2n
HThf(l‘) + T_hf(x) - 2h2nf(:L‘)Hp,a,n =0 ((}fZ ;11)7> as h—0.

From formulas (1), (2) and (5) we have the generalized Fourier-Dunkl
transform of 7% f () + 77" £ () — 202" £ () is 202" (jaron(AR) = 1) Faf (V).
By formula (4), we obtain

2qh2qn/R ‘ja+2n(/\h)—1|q’.7:Af(/\)‘qd/Ja+2n()‘) < Kq||Thf($)+7-_hf(x)_2h2nf( )Hpa n

If [A| € [}, 2], then [AR| > 1 and (iii) of Lemma 1.3 implies that
1
1< liasan (M) = 11
Then
1
;s PO dherza) < o1 2n (M) = TV SO (V)
1
< “ ‘]a+2n()‘h)_1|q’}—/\f( )|*dpatan(N)
h~ Qquq h —h 2n
< T I ) 47 ) - 2
pan
= Ol o1 |-
(lnﬁ)‘ﬂ
So we obtain
[ IO () < O
A a+2n < V-, I — Q.
<A<2r o2 (Inr)av
where C is a positive constant. Now, we have
[ O e = 3 [ O a2
[AIZr o 22t
rfq"] (27‘)7(1,’7
<
h C((lnr)q“Y (In2r)a 1n4r ay + >
< 14979 4 (9= 271) 3
C(lnr)‘”( +277 4 (277)2 4 ( +-
'r_qn
<

T(lnrya’
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where K, = C(1 —279")~1 since 279" < 1.
Consequently

/ |FafN)|%dpat2n(N) = O <an) , as 1 — 00,
IAI>r (

Inr)ay

and this completes the proof. [

Theorem 3.4. Let f € L2, ,0<n<1landy>0. If

a,n’

log )27

P2
/ | FafN)Pdpatan(A) = O <77> , as 1 — 00,
IAI>r (

then f € Lip(n,~,2).

Proof. Suppose that

logr)2Y

r2n
/ SO dszn() = 0 <(> Cas oo
Al>r
and write

" f(x) + 77" f(2) = 20" f (@) 5.0 = 4R(I1+ I2),

where

I = / oszn (V) — 1P| Ff ) Pdpias2n (M),
A<+
and

I2 = /}\|> |ja+2n()‘h) - 1|2’-7:Af()‘)‘2d/‘a+2n()‘)'

1
0
Firstly, we use the formulas |ja+on(AR)| < 1 and

h2"
I < 4/ |~7:Af()\)|2dﬂa+2n()\) =\ o1 |0 4S h — 0.
N> L (log 7)*

Set oo
o) = / Faf O Pt an(N).
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Integrating by parts we obtain

/0 TN

/x X2/ (A)dA = —226(z) + Q/Ox AG(A)dA

0

VAN

C / A "(log \)"27d\ = O(x* 1 (log z) ™),
0

where (7 is a positive constant.
We use the formula (i) of Lemma 1.2

—00

h

h2n
(log )%
h2n72 h?n
= O[hn? +0|—
( (10g}1)27) ((bg}l)%)
h2n
= 0—],
((bgi)%)

By analogy with the proof of the Theorems 3.3 and 3.4, we can establish
the following results.

+oo
/ las2a(M0) = 1P FAf N Pdpasan(d) = 0(}# /)\|<1/\2|-7:Af(/\)|2dﬂa+2n()\))

and this ends the proof. [

Theorem 3.5. Let f € LL,,,. If

I7"f () + 77" f (@) — 20%" f ()

1
pan =0 <h2”(ln h)1> , as h—0,
then

/M|> Faf ) tasan(N) = 0 ()7, as 7 — oo,

wherel<p<2andqsuchthat%%—%:l.

Theorem 3.6. Let f € ng,n' If

/w FafO)Pdtaran()) = o (Inr)2), as 7 — oo,
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then
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1

17" f () + 77" f(2) = 287" f(2) | 2,00 = 0 (hQ”(ln )‘1> , as h—0.

h
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