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1. Introduction

Throughout this paper the notation R stands for a commutative ring
with unity and X stands for a topological Tychonoff space. We denote
by Spec(R), Max(R) and Min(R) the set of all prime ideals, maximal
ideals and minimal prime ideals of R, respectively. Also, by Jac(R) and
Rad(R) we mean the Jacobson radical and the prime radical of R, re-
spectively. If S ⊆ R, then by A(S) we mean the set of all annihilators of
S; briefly, we use A(a) instead of A({a}). For each a ∈ R, let aR, Ma

and Pa be the ideal generated by a, the intersection of all maximal ideals
containing a and the intersection of all minimal prime ideals containing
a, respectively. If A ⊆ R, then we briefly use the notations

V (A) = {P ∈ Spec(R) : A ⊆ P} , D(A) = Spec(R) \ V (A).

Assuming that I is an ideal of R, the set {a ∈ R : a ∈ aI} is denoted
by m(I) which is called the pure part of I. It is well-known that m(I)
is an ideal of R and m(I) = {a ∈ R : I +A(a) = R}. An ideal I is said
to be pure if I = m(I). One can easily see that a maximal ideal M of a
reduced ring R is pure if and only if M ∈ Min(R). For more information
about the pure ideals, refer to [1], [2] and [8]. The ring of all continuous
functions on a topological space X is denoted by C(X). By A◦ and A we
mean the interior and the closure of a subset A of X respectively. Also
if f ∈ C(X) and A ⊆ X, then we define

Z(f) = {x ∈ X : f(x) = 0} , Coz(f) = X \ Z(f)

OA(X) = {f ∈ C(X) : A ⊆ Z◦(f)} , MA(X) = {f ∈ C(X) : A ⊆ Z(f)}.
In particular, if A = {x}, then we use Ox(X) and Mx(X) instead of
O{x}(X) andM{x}(X), respectively. For undefined terms and notations,
the readers is referred to [9], [11] and [15].
In Section 1, first we deal with the connection between the set of ideals
of a ring R and the set of ideals contained in a fixed ideal of R. Next,
we give some statements about the von Neumann regular(or briefly reg-
ular) elements and ideals, see [3] and [10], for more information about
regular ideals. In the sequential, we see that, under some conditions (for
example, in reduced rings) regular ideals coincide with P-ideals.



P-IDEALS AND PMP-IDEALS IN ... 21

Section 2 is devoted to P-ideals and PMP-ideals in a ring R. P-ideals
in C(X) are introduced and studied in [14], but PMP-ideal is a new
concept. In this section, we find some equivalent conditions for these
notions and then we obtain some new results. For instance, we show
that an ideal I of R is a P-ideal if and only if D(I) ⊆ Max(R); also, it is
shown that an ideal I of R is a PMP-ideal if and only if D(I) ⊆ Min(R).
Using characterization of P-ideals and PMP-ideals as intersections of
prime ideals, we find that in any commutative ring R, the largest P-
ideal (resp., PMP-ideal) exists.
In Section 3, we prove that if R is a reduced ring, then I is a P-ideal
if and only if I is regular and also we prove that every proper ideal I
of a reduced ring R is a PMP-ideal if and only if R is a regular ring or
R is a local ring(i.e., ring which has exactly one maximal ideal) with
dim(R) = 1. In addition, in this section, we find an equivalent condition
for a PMP-ideal to be a P-ideal.
In Proposition 1.3, in order to find a one-one correspondence between
the set of prime ideals not containing a given ideal I of R and the set of
prime ideals of I as a ring, we need the following lemma.
In Proposition 1.3, in order to find a one-one correspondence between
the set of prime ideals not containing a given ideal I of R and the set of
prime ideals of I as a ring, we need the following lemma.

Lemma 1.1. Let I be an ideal of R and H be a semiprime ideal in the
ring I, then H is an ideal in R.

Proof. Suppose that a ∈ H and r ∈ R, hence r2a ∈ I which implies
that (ra)2 = (r2a)a ∈ H. This shows that ra ∈ H. 

Definition 1.2. Let I be an ideal of R. A maximal prime ideal of I is
a prime ideal of I which is maximal with this property.

In the following proposition Maxp(I) and DM (I) denote the set of all
maximal prime ideals of I and D(I)∩Max(R), respectively. For another
proof of part (a) of the following proposition, see Lemma 3.1 of [13]

Proposition 1.3. Let I be an ideal of R and ϕ be the mapping from
D(I) to Spec(I) with ϕ(P ) = P ∩ I. Then
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(a) ϕ is an order-preserving bijection.
(b) H is a prime and maximal ideal of I if and only if ϕ−1(H) ∈ DM (I).
In other words we have ϕ(DM (I)) = Maxp(I) ∩Max(I).

Proof. (a). It is clear that ϕ is well-defined. We claim that ϕ is onto. To
see this, let H ∈ Spec(I). Clearly, S = I \H is a multiplicatively closed
set in R and S ∩ H = ∅. Hence, there exists a prime ideal P of R

containing H such that P ∩S = ∅. Furthermore, it is clear that P ∩I =
H. Now, suppose that P,Q ∈ D(I) and P ∩ I ⊆ Q ∩ I. Therefore,
P ∩ I ⊆ Q and I  Q which imply that P ⊆ Q.
(b). Suppose that H ∈ Maxp(I)∩Max(I). By part (a), there exists P ∈
D(I) such that P ∩I = H. It is sufficient to show that P ∈ Max(R). Let
a /∈ P and i ∈ I \ P , hence ai ∈ I \ P and then (P + aiR) ∩ I =
I. Therefore, there exist p ∈ P and r ∈ R such that i = p + rai. Thus,
i(1 − ar) = p ∈ P , hence 1 − ar ∈ P and consequently P + aR =
R. Conversely, suppose that M = ϕ−1(H) ∈ DM (I), we must show
that H ∈ Max(I). Let a ∈ I \ H, then a /∈ M and hence M + aR =
R. Therefore, I = IR = I(M + aR) = IM + aI ⊆ (M ∩ I) + aI =
H + aI. Thus, I = H + aI and we are done. 

Corollary 1.4. Let I be an ideal of R, S be a subring of R and I ⊆ S.
Then there exists an order preserving bijection between the set of prime
ideals of R not containing I and the set of all prime ideals of S not
containing I.

Proof. By the previous proposition, the proof is clear. 

Recall that an element a ∈ R is called a regular element whenever
there exists b ∈ R such that a = a2b. An ideal I of R is called a regular
ideal if each of its elements is regular. If each member of R is regular,
then we say that R is a regular ring, see [10] and [3].

The following proposition is well-known.

Proposition 1.5. Let a ∈ R, then the following statements are equiva-
lent:
(a) a is a regular element.
(b) There exists an idempotent e ∈ R such that aR = eR.
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(c) A(a) is generated by an idempotent.
(d) A2(a) is generated by an idempotent.
(e) A(a)⊕A2(a) = R.
(f) A(a)⊕ aR = R.

Lemma 1.6. Let R be a reduced ring and e ∈ R be an idempotent
element. Then Pe = eR. Furthermore, if Jac(R) = (0), then Me =
Pe = eR.

Proof. By [6, Theorem 1.4], we have Pa = A2(a). Hence, Pe = A2(e) =
eR. To show the second part, using [3, Theorem 2.9], we have Ma ⊆ Pa

for any a ∈ R and so Me = Pe = eR. 

Lemma 1.7. Let R be a reduced ring and a, b ∈ R such that a = bn for
a natural n  2. Consider the following conditions:
(a) a is a regular element.
(b) aR is a semiprime ideal.
(c) Pa = aR.
(d) Ma = aR.
(e) aR is an intersection of maximal ideals.
Then parts (a), (b) and (c) are equivalent, (a) implies (d) and (e) and
if Jac(R) = (◦), then all of the above conditions are equivalent.

Proof. First we prove the implications (a)⇒ (b), (c), (d), (e). By part
(b) of Proposition 1.5, there exists an idempotent element e ∈ R such
that aR = eR, so Pa = Pe = eR = aR. Also, if Jac(R) = (◦), then
Ma =Me = eR = aR.
(b) ⇒ (a). By our hypothesis, we have b ∈ aR and so there exists
c ∈ R such that b = ac. Clearly, a = bn = (ac)n = a2d in which
d = cnan−2. Hence, a is a regular element.
(c) ⇒ (b). It is clear.
Furthermore, if Jac(R) = (◦), then (d)⇒ (b) and (e)⇒ (b) are clear. 

Proposition 1.8. Let R be a reduced ring and I be an ideal of R.
Consider the following conditions:
(a) I is a regular ideal.
(b) aR is a semiprime ideal for any a ∈ I.
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(c) Pa = aR for any a ∈ I.
(d) Ma = aR for any a ∈ I.
(e) aR is an intersection of maximal ideals for any a ∈ I.
Then parts (a), (b) and (c) are equivalent, (a) implies (d) and (e) and
if Jac(R) = (◦), then all of the above conditions are equivalent.

Proof. Clearly (b) implies (a) and the remainder of the proof is an
immediate consequence of Lemma 1.7. 

2. P-Ideals and PMP-Ideals in Commutative Rings

In this section we study the properties P-ideals and PMP-ideals in com-
mutative rings and we investigate the relations between these ideals.

Definition 2.1. Let R be a ring and I be an ideal of R. Then I is called
a P-ideal, whenever every prime ideal of the ring I is a maximal ideal
of I. Also, I is called a PMP-ideal, whenever every prime ideal of the
ring I is a maximal prime ideal of I.

Obviously, the zero ideal is a P-ideal and PMP-ideal and also every P-
ideal is a PMP-ideal; but a PMP-ideal is not a P-ideal in general. To see
this, consider the reduced local ring R = Z2Z, then clearly, the unique
maximal ideal of R is a PMP-ideal which is not a P-ideal. In some rings
such as C(X), these concepts coincide.
In the next proposition, we find a necessary and sufficient condition
for an ideal I to be a P-ideal (resp., PMP-ideal). The first part of the
following theorem is well-known in the context of C(X), see [14].

Theorem 2.2. Let R be a ring and I be an ideal of R. Then
(a) I is a P-ideal if and only if D(I) ⊆ Max(R).
(b) I is a PMP-ideal if and only if D(I) ⊆ Min(R).

Proof. (a ⇒). Assume that P ∈ D(I), then P \ I ∈ Spec(I). Hence,
H = P \ I is a maximal ideal of I. Now, by part (b) of Proposition 1.3,
we have P = ϕ−1(H) ∈ Max(R).
(a ⇐). Suppose that H ∈ Spec(I). By part (a) of Proposition 1.3, we
have ϕ−1(H) = P ∈ D(I). By our hypothesis, P ∈ Max(R) and so by
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part (b) of Proposition 1.3, we have H ∈ Maxp(I) \Max(I).
(b). Suppose that P ∈ D(I) andQ is a prime ideal contained in P , hence
Q ∈ D(I). Consequently, P \ I ∈ Maxp(I) and Q∩ I ∈ Maxp(I). Hence,
P \ I = Q \ I implies that P = Q and consequently, P ∈ Min(R). The
converse is clear. 

Remark 2.3. Let I and J be two ideals of a ring R and I ⊆ J . If J is a
P-ideal (resp., PMP-ideal), then J/I is a P-ideal (resp., PMP-ideal) of
the ring R/I. The converse is true if I is a P-ideal (resp., PMP-ideal).

We remind the reader that, for any ideal I of a ring R, the radical of I
is the ideal

√
I defined by

√
I = {a ∈ R : an ∈ I for some n ∈ N}. Also

I is called a semiprime ideal whenever I =
√
I. In the following remark,

we observe that for investigating P-ideals and PMP-ideals it is enough
to consider semiprime ideals.

Remark 2.4. Let R be a ring and I be an ideal of R. Then D(I) =
D(
√
I), hence I is a P-ideal (resp., PMP-ideal) if and only if

√
I is

a P-ideal (resp., PMP-ideal). Moreover, if J ⊆ I, then D(J) ⊆ D(I)
and consequently I is a P-ideal (resp., PMP-ideal) if and only if every
ideal contained in I is too, and this is equivalent to the fact that aR is
a P-ideal for any a ∈ I.

Proposition 2.5. The sum of any family of P-ideals (resp., PMP-ideals)
of a ring R is a P-ideal (resp., PMP-ideal).

Proof. By the inclusionD(


λ∈Λ Iλ) ⊆ ∪λ∈ΛD(Iλ), the proof is clear. 
The previous remark follows that the largest P-ideal (resp., PMP-ideal)
of R exists. We denote this largest ideal by P(R) (resp., PMP(R)). It is
obvious to see that if I is an ideal of R, then I\P(R), (resp., I\PMP(R))
is the largest P-ideal (resp., PMP-ideal) contained in I. Also, J is the
largest P-ideal of a ring R if and only if J is a P-ideal (resp., PMP-ideal)
and R/J has no nonzero P-ideal (resp., PMP-ideal).
Here, a natural question arises: Is the largest P-ideal (resp., PMP-ideal)
in a ring R (or in an ideal of R) a prime ideal? The answer is no. To
see this, suppose that the topological space X has no P-point. It is
enough to prove PMP(C(X)) = (◦). Assume that I is a nonzero ideal
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of C(X). By our hypothesis, there exists ◦ = f ∈ I. Thus, there exists
x ∈ Coz(f). Clearly, I  Mx(X); i.e., Mx(X) ∈ D(I). Since x is not a
P-point, we infer that Mx(X) is not a minimal prime ideal and hence
I is not a PMP-ideal. This example, also, shows that if I is a P-ideal
(resp., PMP-ideal) and P ∈ Min(I), then P is not necessarily a P-ideal
(resp., PMP-ideal).

Proposition 2.6. Let R be a ring. Then
(a) P(R) = \P∈Min(R) Max(R)P .
(b) PMP(R) = \P∈Spec(R) Min(R)P .

Proof. (a).We show that J0 = \P∈Min(R) Max(R)P is a P-ideal. Clearly,
D(J0) ⊆ Max(R) and so by part (a) of Theorem 2.2, J0 is a P-ideal. Now,
suppose that I is a P-ideal. Thus, D(I) ⊆ Max(R). It follows that
Min(R) \Max(R) ⊆ V (I) and so I ⊆ \P∈Min(R) Max(R)P = J0.
(b). It is similar to the proof of part (a). 

Remark 2.7. Let I and J be two ideals of R. Then
(a) IJ = (0) if and only if D(J) ⊆ V (I).
(b) If M1, · · · ,Mn ∈ Max(R), then A(\ni=1Mi) is a P-ideal.

Corollary 2.8. If R/A(I) is a regular ring, then I is a P-ideal.

Proof. SinceR/A(I) is a regular ring, it follows that V (A(I)) ⊆ Max(R)
and so by part (a) of the above remark we are done. 
The converse of Corollary 2.8 is not true. Note that if R =

n
i=1Ri and

Ii is an ideal of Ri for every i = 1, · · · , n, then I =
n

i=1 Ii is a P-ideal
of R if and only if Ii is so in Ri for every i = 1, · · · , n. Now assume
that R = F × F × Z where F be a field. If we let I = (◦)× F × Z and
J = F × (◦) × Z, then K = A(I \ J) is a P-ideal, but R

A(K) is not a
regular ring.

The following result shows that the converse of the above corollary is
true, if I is a summand.

Corollary 2.9. Suppose that an ideal I of R is summand. Then the
following statements are equivalent:
(a) I is a P-ideal.
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(b) R/A(I) is a regular ring.
(c) I is a regular ideal.

Proof. Since I is summand, it follows that I  R/A(I). Thus, it suffices
to show that (a) and (b) are equivalent. To see this, by our hypothesis,
there exists an ideal J of R such that R = I⊕J . Clearly, D(I) = V (J) =
V (A(I)) and by this fact the proof is evident. 

Corollary 2.10 Let R be a reduced ring. If R has a maximal ideal
which is a PMP-ideal, then every prime ideal is a minimal or maximal
ideal. (i.e., dim(R)  1).

Now, we investigate some connections between annihilator ideals and
P-ideals. First, we recall the following well-known fact, see [12, Lemma
11. 40].

Lemma 2.11. Let R be a reduced ring and I be an ideal of R, then
A(I) =


P∈Min(R)∩D(I)

P =

P∈D(I)

P .

Proposition 2.12. Let R be a ring and I be an ideal of R.
(a) If A(I) is the intersection of finitely many maximal ideals, then I is
a P-ideal.
(b) If R is reduced and I is a P-ideal, then A(I) is the intersection of
a family of maximal ideals.

Proof. (a). Suppose that A(I) = \ni=1Mi where Mi ∈ Max(R) for any
i = 1, · · · , n. Let P ∈ D(I), since A(I) = \ni=1Mi ⊆ P , there exists
1  i  n, such that Mi ⊆ P . Hence by the maximality of Mi, it follows
that P =Mi. Therefore, by part (a) of Theorem 2.2, I is a P-ideal.
The proof of part (b) is clear, by the above lemma. 

Corollary 2.13. Suppose that R is a semilocal (i.e., ring which has
only finitely many maximal ideals) reduced ring, then I is a P-ideal if
and only if A(I) is the intersection of finitely many maximal ideals.

The converse of part (a) of Proposition 2.12 is not true in general (even
if A(I) is also an intersection of finitely many minimal prime ideal). For
instance assume that I is a nonzero ideal of the ring Z. Then A(I) = (◦)
is a minimal prime ideal and also is the intersection of infinitely many
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maximal ideals; while I is not a P-ideal.

3. Von Neumann Regularity, Pure Ideals and
P -Ideals (PMP -Ideals)

In this section we observe that in every reduced ring, P-ideals and regular
ideals coincide. We also show that every P-ideal in a reduced ring is a
z◦-ideal. Finally, we prove that an ideal I in a reduced ring is a P-ideal
if and only if it is a pure PMP-ideal.

Proposition 3.1. For a reduced ring R the following statements are
equivalent:
(a) R is a regular ring.
(b) Every ideal I of R is a P-ideal and R

I is a regular ring.
(c) There exists an ideal I such that I is a P-ideal and R

I is a regular
ring.

Proof. It is evident. 

Proposition 3.2. Let R be a ring, a ∈ R and S = {an : n ∈ N0}. Then
the ideal aR is a P-ideal if and only if Spec(S−1R) = Max(S−1R).

Proof. Since there exists an order isomorphism between D(aR) and
Spec(S−1R), the proof is obvious. 
Let P ∈ Spec(R), we define O(P ) = {a ∈ R : A(a)  P}. The following
theorem shows that this concept is closely related to the concept of pure
ideal.

Theorem 3.3. Suppose that R is a ring, Q ∈ Spec(R) and B = {P ∈
Min(R) : P ⊆ Q}. Then
(a) m(Q) ⊆ O(Q) ⊆ \P∈BP .
(b) If Q is a pure ideal, then Q ∈ Min(R).
(c) If Q is a maximal ideal, then m(Q) = O(Q).
Furthermore, if R is reduced, then
(d) O(Q) = \P∈BP .
(e) If Q ∈ Max(R), then m(Q) = O(Q) = \P∈BP .
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(f) If Q ∈ Max(R), then Q is a pure ideal if and only if Q ∈ Min(R).

Proof. (a). Let a ∈ m(Q), then there exists q ∈ Q such that a = aq,
hence a(1−q) = ◦. Therefore, A(a)  Q and so a ∈ O(Q). Now, suppose
that a ∈ O(Q), hence A(a)  P for any P ∈ B. This implies that a ∈ P

for any P ∈ B, and consequently a ∈ \P∈BP .
(b). By part (a), it is clear.
(c). Suppose that Q ∈ Max(R) and a ∈ O(Q). Clearly

a ∈ O(Q)⇔ A(a)  Q⇔ Q+A(a) = R⇔ a ∈ m(Q).

(d). Let a ∈ \P∈BP and S = R\Q. It is clear that a
1 ∈ Rad(S

−1R). This
implies that there exists a natural number n such that (a1 )

n = ◦. Hence
there exists s ∈ S such that san = ◦. Therefore, A(a) = A(an)  Q and
so a ∈ O(Q).
(e). and (f) are obvious. 
The next proposition is a counterpart of Theorem 2.4 in [3], which we
use it in the sequel.

Proposition 3.4. An element a ∈ R is regular if and only if for every
M ∈ Max(R) with a ∈M , we have a ∈ m(M).

Recall that an ideal in a ring R is called z-ideal (resp., z◦-ideal) whenever
Ma ⊆ I (resp., Pa ⊆ I) for any a ∈ I. For more details and examples
of z-ideals and z◦-ideals in reduced commutative rings and in C(X) the
reader is referred to [4], [6] and [7]. In the following theorem, we show
that in reduced rings, regular ideals and P-ideals coincide.

Theorem 3.5.Let R be a reduced ring and I is an ideal of R. Consider
the following conditions:
(a) I is a P-ideal.
(b) I is a regular ideal.
(c) aR is a semiprime ideal for any a ∈ I.
(d) Pa = aR for any a ∈ I.
(e) aR is a z◦-ideal for any a ∈ I.
(f) Ma = aR for any a ∈ I.
(g) aR is an intersection of maximal ideals for any a ∈ I.
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(h) aR is a z-ideal for any a ∈ I.
Then parts (a), (b), (c), (d) and (e) are equivalent, and if Jac(R) =
(◦), then all of the above conditions are equivalent.

Proof. By Proposition 1.8 and definitions of z-ideal and z◦-ideal, it
suffices to prove that (a) and (b) are equivalent.
(a) ⇒ (b). Suppose that M ∈ Max(R) and a ∈ I \M . By Proposition
3.4, it suffices to show that a ∈ m(M). On the other hand, by Theorem
3.3, we have m(M) = O(M) = \{P ∈ Min(R) : P ⊆ M}. Thus, it is
enough to show that a ∈ \{P ∈ Min(R) : P ⊆M}. Let P ∈ Min(R) and
P ⊆M , we must show that a ∈ P . This is clear, for on the contrary, we
have P ∈ D(I) and consequently P ∈ Max(R) which is a contradiction.
(b) ⇒ (a). Suppose that P ∈ D(I), by Theorem 2.2, we must show
that P ∈ Max(R). Let a /∈ P ; since P ∈ D(I), there exists an i ∈
I \ P . Clearly, ai ∈ I \ P and by assumption, there exists r ∈ R such
that ai = (ai)2r. Hence, ai(1− air) = ◦ ∈ P and so 1− air ∈ P which
imlies that P + aR = R. .

Corollary 3.6. Every P-ideal in a reduced ring is a z◦-ideal.

The following proposition and theorem show the connection between
P-ideals, PMP-ideals and pure ideals.

Proposition 3.7. Let R be a reduced ring. Then
(a) a ∈ R is regular if and only if aR is a pure ideal.
(b) I is a P-ideal if and only if every ideal contained in I is a pure ideal.

Proof. (a⇒). Suppose that x = ar ∈ I = aR. By our hypothesis, there
exists s ∈ R such that a = a2s and so x = ar = a2sr ∈ aI.
(a ⇐). Since I = aR is pure and a ∈ I, it follows that a = a(ar) = a2r

for some r ∈ R.
(b). By part (a), it is easy. 

Theorem 3.8. Let R be a reduced ring and I be an ideal of R. Then I

is a P-ideal if and only if it is a pure PMP-ideal.

Proof. (⇒). It is clear.
(⇐). By Theorem 3.5, it is enough to show that I is a regular ideal. To see
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this, let a ∈ I, by Proposition 3.4, it is enough to show that whenever a ∈
M ∈ Max(R) then a ∈ m(M). For this, let a ∈M . IfM ∈ D(I), then by
Theorem 2.2, we have M ∈ Min(R) and so by part (f) of Theorem 3.3,
M is a pure ideal. Hence, a ∈ M = m(M). If M /∈ D(I), then I ⊆ M

and so by the purity of I, we have a ∈ I = m(I) ⊆ m(M). 

It is clear that a reduced ring R is regular if and only if every ideal
of R is a P-ideal. In the next theorem we give a similar assertion for
PMP-ideals.

Theorem 3.9. Every proper ideal in a reduced ring R is a PMP-ideal
if and only if R is regular or a local ring with dim(R) = 1.

Proof. (⇒). Assume that R is not regular. Hence, there exist M0 ∈
Max(R) and P ∈ Spec(R) such that P  M0. It is enough to show
that Max(R) = {M0} and P ∈ Min(R). Let M ∈ Max(R), since M

is a PMP-ideal, by part (b) of Theorem 2.2, we have M ⊆ M0 and
hence M = M0. This implies that Max(R) = {M0}. Now, suppose that
Q ∈ Spec(R) and Q ⊆ P . Since M0 is a PMP-ideal, by part (b) of
Theorem 2.2, we conclude that P = Q. This implies that P ∈ Min(R).
(⇐). It is clear. 

The following result shows that the existence of a maximal P-ideal or a
pure maximal PMP-ideal in a reduced ring R implies that R is a regular
ring.

Theorem 3.10. Let R be a reduced ring. Then the following statements
are equivalent:
(a) R is a regular ring.
(b) There exists an ideal M ∈ Max(R) which is a P-ideal.
(c) There exists a pure ideal M ∈ Max(R) which is a PMP-ideal.

Proof. The implications (a) ⇒ (b) ⇒ (c) are clear.

(c⇒ a). Suppose that M ∈ Max(R) is a pure PMP-ideal and M = N ∈
Max(R). Clearly, N ∈ D(M) and so N ∈ Min(R). 
Hematics and physical sciences.
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