Journal of Mathematical Extension Vol. 10, No. 3, (2016), 63-76 ISSN: 1735-8299 URL: http://www.ijmex.com

Two-Parameter σ -C^{*}-Dynamical Systems and Application

M. Mosadeq

Behbahan Branch, Islamic Azad University

Abstract. Let \mathcal{A} be a C^* -algebra and σ be a bounded linear *endomorphism on \mathcal{A} . Introducing the notions of *- σ -derivations and two-parameter σ - C^* -dynamical systems, we correspond to each so-called two-parameter σ - C^* -dynamical system a pair of σ -derivations, named as its infinitesimal generator. Using the computation formula for σ derivations, we deal with the converse under mild conditions. Finally, as an application, we characterize each so-called two parameter σ - C^* dynamical system on the concrete C^* -algebra $\mathcal{A} := B(\mathcal{H}) \times B(\mathcal{H})$, where \mathcal{H} is a Hilbert space and σ is the linear *-endomorphism $\sigma(S,T) =$ (0,T).

AMS Subject Classification: 47D03; 46L55; 46L57 Keywords and Phrases: σ -C*-Dynamics, (inner) σ -derivation, σ inner endomorphism, σ -two parameter group

1. Introduction

Let \mathcal{A} be a Banach space and $\sigma : \mathcal{A} \to \mathcal{A}$ be a bounded linear operator. A σ -one parameter group of bounded linear operators on \mathcal{A} is a group homomorphism $t \mapsto \varphi_t$ from the additive group \mathbb{R} of real numbers into the set $\mathbf{B}(\mathcal{A})$ of all bounded linear operators on \mathcal{A} satisfying $\varphi_0 = \sigma$. The σ -one parameter group $\{\varphi_t\}_{t\in\mathbb{R}}$ is called uniformly (resp. strongly) continuous if $\lim_{t\to 0} || \varphi_t - \sigma || = 0$ (resp. $\lim_{t\to 0} \varphi_t(a) = \sigma(a)$, for each $a \in \mathcal{A}$).

Received: October 2015; Accepted: December 2015

The infinitesimal generator δ of the σ -one parameter group $\{\varphi_t\}_{t\in\mathbb{R}}$ is a mapping $\delta: D(\delta) \subseteq \mathcal{A} \to \mathcal{A}$ such that $\delta(a) = \lim_{t \to 0} \frac{\varphi_t(a) - \sigma(a)}{t}$ where $D(\delta) = \{a \in \mathcal{A}: \lim_{t \to 0} \frac{\varphi_t(a) - \sigma(a)}{t} \ exists\}.$

If $\{\varphi_t\}_{t\in\mathbb{R}}$ is a σ -one parameter group with the generator δ , then one can easily see that

(i) $\sigma^2 = \sigma$ and for each $t \in \mathbb{R}$, $\sigma \varphi_t = \varphi_t \sigma = \varphi_t$.

(*ii*) for each $t \in \mathbb{R}$, φ_t is σ -bijective in the sense that $\varphi_t(\mathcal{A}) = \sigma(\mathcal{A})$ and $ker(\varphi_t) = ker(\sigma)$.

(*iii*) for each $a \in D(\delta)$, $\sigma\delta(a) = \delta\sigma(a) = \delta(a)$.

 $(iv) \sigma(\mathcal{A})$ is a closed subspace of \mathcal{A} .

This notion was introduced by Janfada in 2008. We refer the reader to [7] for more details.

The classical C^* -dynamical systems are expressed by means of uniformly continuous one parameter groups of *-automorphisms on C^* algebras. On the other hand, the infinitesimal generator of C^* -dynamical systems are *-derivations which play essential role in the operator algebras.

Due to the Gelgand-Naimark-Segal representation, each non-commutative C^* -algebra can be regarded as a C^* -subalgebra of $B(\mathcal{H})$, for some Hilbert space \mathcal{H} . If A is a self adjoint element in the C^* -algebra $B(\mathcal{H})$, then by Stone's theorem, ([14], Theorem 1.10.8) iA is the infinitesimal generator of a uniformly continuous group $\{u_t\}_{t\in\mathbb{R}}$ of unitaries in $B(\mathcal{H})$, such that $u_t = e^{itA}$, and further D(T) = i[A, T], as an inner *-derivation, is the infinitesimal generator of the uniformly continuous group of inner *-automorphisms $\{u_t a u_t^*\}_{t\in\mathbb{R}}$. It is now a pleasant surprise that each uniformly continuous group of *-automorphisms on $B(\mathcal{H})$ is of this form, i.e., it is implemented by a unitary group on \mathcal{H} , ([4], Theorem. 1.3.16)

Recently, various generalized notions of derivations have been investigated in the context of Banach algebras. For instance, it can be pointed to " σ -derivations" as follows. Let \mathcal{A} be a *-Banach algebra and σ be a *-linear operator on \mathcal{A} . It is recalled that a *-linear map δ from the *-subalgebra $D(\delta)$ of \mathcal{A} into \mathcal{A} is called a σ -derivation if $\delta(ab) = \delta(a)\sigma(b) + \sigma(a)\delta(b)$, for all $a, b \in$ $D(\delta)$. For instance, let σ be a linear *-endomorphism and h be an arbitrary self-adjoint element of \mathcal{A} . Then, the mapping $\delta_h^{\sigma} : \mathcal{A} \to \mathcal{A}$ defined by $\delta_h^{\sigma}(a) = i[h, \sigma(a)]$, where $[h, \sigma(a)]$ is the commutator $h\sigma(a) - \sigma(a)h$, is a σ -derivation which is called inner, (see [5, 9, 10, 11, 12] and references therein).

In order to construct an extension of a C^* -dynamical system associated to σ -derivation, as its infinitesimal generator, note that each *endomorphism on a C^* -algebra is norm decreasing. This specific property, provides the possibility that σ is regarded as a linear *-endomorphism and the desired extension is based on a class of σ -one parameter groups. Let $\{\varphi_t\}_{t\in\mathbb{R}}$ be a uniformly continuous σ -one parameter group of linear *-endomorphisms on the C^* -algebra \mathcal{A} . An immediate consequence of the σ -bijective feature of $\{\varphi_t\}_{t\in\mathbb{R}}$ is that by substituting $\sigma = I$, we obtain a classical C^* -dynamical system. In 2013, the author demonstrated the mentioned extension of C^* -dynamical systems and called it a σ - C^* dynamics which had a σ -derivation as its infinitesimal generator.

Assume that $\{\varphi_t\}_{t\in\mathbb{R}}$ is a σ - C^* -dynamics on \mathcal{A} with the infinitesimal generator δ . Then, the one parameter family $\{\psi_t\}_{t\in\mathbb{R}}$ of bounded linear operators on $\sigma(\mathcal{A})$ defined by $\psi_t(\sigma(a)) = \varphi_t(a)$ is a C^* -dynamics and the mapping $\widetilde{\delta} : \sigma(D(\delta)) \subseteq \sigma(\mathcal{A}) \to \sigma(\mathcal{A})$ defined by $\widetilde{\delta}(\sigma(a)) = \delta(a)$ is its generator, (see [12]).

Let σ be a *-linear endomorphism on the C^* -algebra \mathcal{A} . By a σ -inner endomorphism, we mean a linear endomorphism $\varphi : \mathcal{A} \to \mathcal{A}$ such that $\varphi(a) = u\sigma(a)u^*$, for every $a \in \mathcal{A}$ and some unitary element $u \in \mathcal{A}$. In order to construct a σ -inner endomorphism, let c be a self-adjoint element of the C^* -algebra \mathcal{A} . Then, the mapping $\varphi : \mathcal{A} \to \mathcal{A}$ given by $\varphi(a) = e^{ic}\sigma(a)e^{-ic}$ is a *- σ -inner endomorphism.

In this paper, two parameter σ - C^* -dynamical systems are studied. In particular, we correspond to each so-called two parameter σ - C^* -dynamical systems a pair of σ -derivations, named as its infinitesimal generator. Also, using the computation formula for σ -derivations, we deal with the con-

verse under mild conditions. More precisely, suppose that σ is an idempotent linear *-endomorphism and δ_j is a bounded *- σ -derivation on \mathcal{A} in which $\delta_j \sigma = \sigma \delta_j = \delta_j$ (j = 1, 2). We prove that if $\delta_1 \delta_2 = \delta_2 \delta_1$, then (δ_1, δ_2) induces a two parameter σ - C^* -dynamical system on \mathcal{A} . Finally, as an application, we characterize each so-called two parameter σ - C^* -dynamical system on the concrete C^* -algebra $\mathcal{A} := B(\mathcal{H}) \times B(\mathcal{H})$, where \mathcal{H} is a Hilbert space and σ is the linear *-endomorphism $\sigma(S, T) = (0, T)$ on \mathcal{A} .

The reader is referred to [1, 3] and [13] for more details on Banach(resp. C^* -) algebras and to [2, 15] for more information on dynamical systems.

2. Main Results

Definition 2.1. Let \mathcal{A} be a Banach space and $\sigma : \mathcal{A} \to \mathcal{A}$ be a bounded linear operator. By a σ -two parameter group of bounded linear operators on \mathcal{A} , we mean a mapping $\varphi : \mathbb{R} \times \mathbb{R} \to \mathbf{B}(\mathcal{A})$ which fulfills $\varphi_{0,0} = \sigma$ and $\varphi_{s+s',t+t'} = \varphi_{s,t}\varphi_{s',t'}$, for each $s, s', t, t' \in \mathbb{R}$.

As in σ -one parameter case, the σ -two parameter group $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ is called uniformly (resp. strongly) continuous if $\lim_{(s,t)\to(0,0)} \|\varphi_{s,t}-\sigma\|=0$ (resp. $\lim_{(s,t)\to(0,0)} \varphi_{s,t}(a) = \sigma(a)$, for each $a \in \mathcal{A}$).

To any σ -two parameter group $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$, we associate two σ -one parameter groups $\{u_s\}_{s\in\mathbb{R}}$ and $\{v_t\}_{t\in\mathbb{R}}$ defined by $u_s := \varphi_{s,0}$ and $v_t := \varphi_{0,t}$. One can see that the σ -two parameter group $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ is uniformly (rep. strongly) continuous if and only if so are $\{u_s\}_{s\in\mathbb{R}}$ and $\{v_t\}_{t\in\mathbb{R}}$. The σ -one parameter group property implies that

 $u_s v_t = \alpha_{s,0} \varphi_{0,t} = \varphi_{s,t} = \varphi_{0+s,t+0} = \varphi_{0,t} \varphi_{s,0} = v_t u_s.$

The infinitesimal generators of $\{u_s\}_{s\in\mathbb{R}}$ and $\{v_t\}_{t\in\mathbb{R}}$ are denoted by δ_1 and δ_2 , respectively. We denote the pair (δ_1, δ_2) as the infinitesimal generator of $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$.

In the case that $\sigma = I$, the uniformly (resp. strongly) continuous σ two parameter group $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ is in fact a uniformly (resp. strongly) continuous two parameter group in the usual sense. Some applied results about two parameter groups can be observed in [6].

Example 2.2. Let M be a closed subspace of Hilbert space H, M^{\perp} be the set

$$\{x \in H : \langle x, m \rangle = 0 \text{ for every } m \in M\},\$$

and let $\{\psi_{s,t}\}_{s,t\in\mathbb{R}}$ be a continuous two parameter group on H. If σ is the first projection operator on M, then for $x = y + z \in M \oplus M^{\perp} = H$, the two parameter family $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ defined by $\varphi_{s,t}(x) = \psi_{s,t}(y)$ forms a σ -two parameter group on H with the same continuity of $\{\psi_{s,t}\}_{s,t\in\mathbb{R}}$.

The following lemma provides the sufficient and necessary condition under which the product of two σ -one parameter groups be a σ -two parameter group.

Lemma 2.3. Let $\{u_s\}_{s\in\mathbb{R}}$ and $\{v_t\}_{t\in\mathbb{R}}$ be two uniformly continuous σ one parameter groups of bounded linear operators on \mathcal{A} with the generators δ_1 and δ_2 , respectively. Then, the two parameter family $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ defined by $\varphi_{s,t} := u_s v_t$ forms a σ -two parameter group if and only if $\delta_1 \delta_2 = \delta_2 \delta_1$.

Proof. Consider the associated uniformly continuous one parameter group $\{\widetilde{u}_s\}_{s\in\mathbb{R}}$ (resp. $\{\widetilde{v}_t\}_{t\in\mathbb{R}}$) on $\sigma(\mathcal{A})$ defined by $\widetilde{u}_s(\sigma(a)) := u_s(a)$ (resp. $\widetilde{v}_t(\sigma(a)) := v_t(a)$) with the generator $\widetilde{\delta}_1$ (resp. $\widetilde{\delta}_2$), fulfilling $\widetilde{\delta}_j(\sigma(a))$ $:= \delta_j(a), j = 1, 2$. Assume that $\{\phi_{s,t}\}_{s,t\in\mathbb{R}}$ is a two parameter family on $\sigma(\mathcal{A})$ which is defined by $\phi_{s,t} = \widetilde{u}_s \widetilde{v}_t$. Applying the property (*i*) for σ -one parameter groups which stated in the first part of introduction, one can obtain that $\sigma(\widetilde{v}_t(\sigma(a)) = \widetilde{v}_t(\sigma(a)))$. This fact implies that $\varphi_{s,t}(a) = \phi_{s,t}(\sigma(a))$.

If $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ is a σ -two parameter group, then $\{\phi_{s,t}\}_{s,t\in\mathbb{R}}$ is a two parameter group on $\sigma(A)$ with the generator $(\tilde{\delta}_1, \tilde{\delta}_2)$. It follows from the part (b) of Theorem 2.2 in [6] that $\tilde{\delta}_1 \tilde{\delta}_2 = \tilde{\delta}_2 \tilde{\delta}_1$. But

$$\sigma(\widetilde{\delta}_j(\sigma(a))) = \sigma(\delta_j(a)) = \delta_j(a) = \widetilde{\delta}_j(\sigma(a)) \quad (j = 1, 2),$$

and consequently $\delta_1 \delta_2(a) = \delta_2 \delta_1(a)$, for each $a \in \mathcal{A}$.

Conversely, suppose that $\delta_1 \delta_2 = \delta_2 \delta_1$. Therefore

$$\widetilde{\delta}_1 \widetilde{\delta}_2(\sigma(a)) = \widetilde{\delta}_1(\delta_2(a)) = \widetilde{\delta}_1 \sigma(\delta_2(a)) = \delta_1 \delta_2(a) = \delta_2 \delta_1(a) = \delta_2 \widetilde{\delta}_1(\sigma(a))) = \widetilde{\delta}_2 \sigma(\widetilde{\delta}_1(\sigma(a))) = \widetilde{\delta}_2 \widetilde{\delta}_1(\sigma(a)).$$

Using [6] (the part (b) of Theorem 2.2) once more, we conclude that $\{\phi_{s,t}\}_{s,t\in\mathbb{R}}$ is a two parameter group on $\sigma(\mathcal{A})$ and consequently, $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ is a σ -two parameter group. \Box

The following result gives us a version of the uniqueness ([14], Theorem 1.1.3) in the setting of σ -two parameter groups.

Lemma 2.4. Let $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ and $\{\psi_{s,t}\}_{s,t\in\mathbb{R}}$ be two uniformly continuous σ -two parameter groups of bounded linear operators on \mathcal{A} with the same generator (δ_1, δ_2) . Then, $\varphi_{s,t} = \psi_{s,t}$.

Proof. Consider the associated uniformly continuous two parameter group $\{\widetilde{\varphi}_{s,t}\}_{s,t\in\mathbb{R}}$ (resp. $\{\widetilde{\psi}_{s,t}\}_{s,t\in\mathbb{R}}$) on $\sigma(\mathcal{A})$ defined by $\widetilde{\varphi}_{s,t}(\sigma(a)) := \varphi_{s,t}(a)$ (resp. $\widetilde{\psi}_{s,t}(\sigma(a)) := \psi_{s,t}(a)$) with the generator $(\widetilde{\delta}_1, \widetilde{\delta}_2)$ fulfilling $\widetilde{\delta}_j(\sigma(a)) := \delta_j(a), \ j = 1, 2$. Since $\widetilde{\delta}_1$ is the generator for the uniformly continuous one parameter groups $\{\widetilde{\varphi}_{s,0}\}_{s\in\mathbb{R}}$ and $\{\widetilde{\psi}_{s,0}\}_{s\in\mathbb{R}}$, hence, by the uniqueness ([14], Theorem 1.1.3) it follows that $\widetilde{\varphi}_{s,0} = \widetilde{\psi}_{s,0}$. A similar argument for $\widetilde{\delta}_2$ implies the equality of $\widetilde{\varphi}_{0,t}$ and $\widetilde{\psi}_{0,t}$. Furthermore, since $\widetilde{\varphi}_{s,t}(\sigma(a)) \in \sigma(\mathcal{A})$ and σ is idempotent, thus, $\sigma(\widetilde{\varphi}_{s,t}(\sigma(a))) = \widetilde{\varphi}_{s,t}(\sigma(a))$, for all $s, t \in \mathbb{R}$ and therefore

$$\begin{aligned}
\varphi_{s,t}(a) &= \varphi_{s,0}(\varphi_{0,t}(a)) \\
&= \widetilde{\varphi}_{s,0}\sigma(\widetilde{\varphi}_{0,t}(\sigma(a))) \\
&= \widetilde{\psi}_{s,0}\sigma(\widetilde{\varphi}_{0,t}(\sigma(a))) \\
&= \widetilde{\psi}_{s,0}(\widetilde{\varphi}_{0,t}(\sigma(a))) \\
&= \widetilde{\psi}_{s,0}(\widetilde{\psi}_{0,t}(\sigma(a))) \\
&= \widetilde{\psi}_{s,0}\widetilde{\psi}_{0,t}(\sigma(a)) \\
&= \widetilde{\psi}_{s,t}(\sigma(a)) \\
&= \psi_{s,t}(a). \quad \Box
\end{aligned}$$

From now on, \mathcal{A} is a C^* -algebra and σ is a *-linear endomorphism on \mathcal{A} .

Definition 2.5. A two parameter σ -C*-dynamical system, is a uniformly continuous σ -two parameter group $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ of linear *-endomorphisms on the C*-algebra \mathcal{A} .

68

According the notations which mentioned in Definition 2.1, to any two parameter σ -C^{*}-dynamical system $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$, we associate two σ -C^{*}dynamical systems $\{u_s\}_{s\in\mathbb{R}}$ and $\{v_t\}_{t\in\mathbb{R}}$ defined by $u_s := \varphi_{s,0}$ and $v_t := \varphi_{0,t}$.

The infinitesimal generators of $\{u_s\}_{s\in\mathbb{R}}$ and $\{v_t\}_{t\in\mathbb{R}}$ are denoted by δ_1 and δ_2 , respectively. We denote the pair (δ_1, δ_2) as the infinitesimal generator of $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$.

Theorem 2.6. Let $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ be a two parameter σ - C^* -dynamical system on \mathcal{A} with the generator (δ_1, δ_2) . Then, δ_j is an everywhere defined bounded *- σ -derivation, j = 1, 2.

Proof. First note that, since $\{u_s\}_{s\in\mathbb{R}}$ and $\{v_t\}_{t\in\mathbb{R}}$ are uniformly continuous, so δ_j (j = 1, 2) is an everywhere defined bounded operators by Theorem 1.1.2 of [14]. Consider the σ -one parameter groups $\{u_s\}_{s\in\mathbb{R}}$ and $\{v_t\}_{t\in\mathbb{R}}$ associated to $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$. Let $a, b \in \mathcal{A}$, we have

$$\lim_{s \to 0} \frac{u_s(ab) - \sigma(ab)}{s} = \lim_{s \to 0} \frac{u_s(a)u_s(b) - \sigma(a)\sigma(b)}{s}$$
$$= \lim_{s \to 0} \frac{(u_s(a) - \sigma(a))\sigma(b)}{s} + \lim_{s \to 0} \frac{u_s(a)(u_s(b) - \sigma(b))}{s}$$
$$= \delta_1(a)\sigma(b) + \sigma(a)\delta_1(b).$$

Therefore, $ab \in D(\delta_1)$ and $\delta_1(ab) = \delta_1(a)\sigma(b) + \sigma(a)\delta_1(b)$. Furthermore,

$$\varphi_{s,0}(a^*) - \sigma(a^*) = \left(\varphi_{s,0}(a) - \sigma(a)\right)^*$$

and since the conjugation operation is norm continuous, so

$$\lim_{s \to 0} \frac{u_s(a^*) - \sigma(a^*)}{s} = \lim_{s \to 0} (\frac{u_s(a) - \sigma(a)}{s})^* = \delta_1(a)^*.$$

Therefore $a^* \in D(\delta_1)$ and $\delta_1(a^*) = \delta_1(a)^*$ which shows that δ_1 is a $*-\sigma$ -derivation. A similar argument can be stated for δ_2 . \Box

We are going to establish some conditions making the converse of the above theorem be held. More precisely, we like to investigate some restrictions under which a pair of bounded $*-\sigma$ -derivations induces a two

parameter σ -C^{*}-dynamical system. To show this, we need the following useful lemma which can be found in [10].

Lemma 2.7. Suppose that $\sigma : \mathcal{A} \to \mathcal{A}$ is an idempotent linear operator and δ is a σ - derivation such that $\delta \sigma = \sigma \delta = \delta$. Then,

$$\delta^{n}(ab) = \sum_{k=0}^{n} {n \choose k} \delta^{n-k}(\sigma(a)) \delta^{k}(\sigma(b)), \qquad (a, b \in \mathcal{A} \text{ and } n \in \mathbb{N}).$$

Theorem 2.8. Let σ be an idempotent linear *-endomorphism and δ_j be a bounded *- σ -derivation on \mathcal{A} fulfilling $\delta_j \sigma = \sigma \delta_j = \delta_j$ (j = 1, 2). If moreover, $\delta_1 \delta_2 = \delta_2 \delta_1$, then (δ_1, δ_2) induces a two-parameter σ - C^* -dynamical system on \mathcal{A} .

Proof. For each $s, t \in \mathbb{R}$ and $a \in \mathcal{A}$, define $\varphi_{s,t}(a) = e^{s\delta_1 + t\delta_2}(\sigma(a))$. Since $\delta_1\delta_2 = \delta_2\delta_1$, it follows from Lemma ?? that $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ is a σ -two parameter group. Also, similar the method as stated in the proof of Theorem 1.2.1 of [14], it can be shown that the associated σ -one parameter groups $\{u_s\}_{s\in\mathbb{R}}$ and $\{v_t\}_{t\in\mathbb{R}}$ are uniformly continuous with the generators δ_1 and δ_2 , respectively. Hence, $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ is uniformly continuous. Finally, for each $a, b \in \mathcal{A}$, we have

$$\begin{split} u_{s}(ab) &= e^{s\delta_{1}}(\sigma(ab)) \\ &= \sum_{k=0}^{\infty} \frac{s^{k}}{k!} \delta_{1}^{k}(\sigma(ab)) \\ &= \sum_{k=0}^{\infty} \sum_{r=0}^{k} \frac{s^{(k-r)+r}}{k!} \frac{k!}{r!(k-r)!} \delta_{1}^{r}(\sigma(a)) \delta_{1}^{k-r}(\sigma(b)) \\ &= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{s^{m} \cdot s^{n}}{n!m!} \delta_{1}^{n}(\sigma(a)) \delta_{1}^{m}(\sigma(b)) \\ &= \sum_{n=0}^{\infty} \frac{s^{n}}{n!} \delta_{1}^{n}(\sigma(a)) \cdot \sum_{m=0}^{\infty} \frac{s^{m}}{m!} \delta_{1}^{m}(\sigma(b)) \\ &= u_{s}(a) \cdot u_{s}(b). \end{split}$$

That is u_s (and similarly v_t) is an endomorphism. Therefore,

$$\begin{aligned} \varphi_{s,t}(ab) &= u_s v_t(ab) \\ &= u_s (v_t(a)v_t(b)) \\ &= u_s (v_t(a)).u_s (v_t(b)) \\ &= \varphi_{s,t}(a).\varphi_{s,t}(b). \end{aligned}$$

Which means $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ is a two-parameter σ -C^{*}-dynamical system on \mathcal{A} with the generator (δ_1, δ_2) . \Box

The following theorem investigates the relationship between inner $*-\sigma$ -derivations and two parameter σ - C^* -dynamical systems of $*-\sigma$ -inner endomorphisms.

Theorem 2.9. Let h_1 and h_2 be self-adjoint elements in the C^* -algebra \mathcal{A} satisfying $h_1h_2 = h_2h_1$. If σ is a linear *-endomorphism such that $\sigma(h_j) = h_j$ (j = 1, 2), then the pair $(\delta^{\sigma}_{h_1}, \delta^{\sigma}_{h_2})$ of inner *- σ -derivations induces the two parameter

 σ -C*-dynamical system $\varphi_{s,t}(a) = e^{i(sh_1+th_2)}\sigma(a)e^{-i(sh_1+th_2)}$ of *- σ -inner endomorphisms.

Proof. By using induction on the aforementioned assumption $\sigma(h_j) = h_j$, we obtain that $\sigma(h_j^n) = h_j^n$ for each $n \in \mathbb{N}$ and j = 1, 2.

Taking $u_{s,t} := e^{i(sh_1+th_2)}$, it follows that for each $s, t \in \mathbb{R}$, $u_{s,t}$ is a unitary element of \mathcal{A} . Also, $h_1h_2 = h_2h_1$, so by Lemma 2.3 we obtain $\{u_{s,t}\}_{s,t\in\mathbb{R}}$ is a uniformly continuous two parameter groups of unitaries in \mathcal{A} .

Furthermore, the continuity feature of σ implies that for each $s', t' \in \mathbb{R}$,

$$\sigma(u_{s',t'}a) = \sigma(e^{i(s'h_1 + t'h_2)}a) = e^{is'h_1}\sigma(e^{it'h_2}a) = e^{i(s'h_1 + t'h_2)}\sigma(a) = u_{s',t'}\sigma(a)$$

and similarly, $\sigma(au_{s',t'}^*)=\sigma(a)u_{s',t'}^*.$

Hence, $\varphi_{s,t}$ is a *- σ -inner endomorphism satisfying $\varphi_{0,0} = \sigma$ and

$$\begin{aligned} \varphi_{s,t}(\varphi_{s',t'}(a)) &= u_{s,t}\sigma(u_{s',t'}\sigma(a)u_{s',t'}^*)u_{s,t}^* \\ &= u_{s,t}.u_{s',t'}\sigma(\sigma(a)u_{s',t'}^*)u_{s,t}^* \\ &= u_{s+s',t+t'}\sigma^2(a)u_{s',t'}^*.u_{s,t}^* \\ &= u_{s+s',t+t'}\sigma(a)u_{s+s',t+t'} \\ &= \varphi_{s+s',t+t'}(a). \end{aligned}$$

Moreover, $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ is uniformly continuous since

$$\| \varphi_{s,t}(a) - \sigma(a) \| = \| u_{s,t}\sigma(a)u_{s,t}^* - \sigma(a) \| = \| (u_{s,t}\sigma(a) - \sigma(a)u_{s,t})u_{s,t}^* \| \leq \| u_{s,t}\sigma(a) - \sigma(a)u_{s,t} \| \leq \| u_{s,t}\sigma(a) - \sigma(a) \| + \| \sigma(a) - \sigma(a)u_{s,t} \| \leq 2 \| u_{s,t} - I \| \| \sigma \| \| a \|$$

and consequently

$$\|\varphi_{s,t} - \sigma \| \leq 2 \| u_{s,t} - I \| \| \sigma \|.$$

Finally, applying the L'Hopital rule we have

$$\delta_{1}(a) = \lim_{s \to 0} \frac{e^{ish_{1}}\sigma(a)e^{-ish_{1}} - \sigma(a)}{s} \\ = \lim_{s \to 0} (ih_{1}e^{ish_{1}}\sigma(a)e^{-ish_{1}} - ie^{ish_{1}}\sigma(a)h_{1}e^{-ish_{1}}) \\ = i(h_{1}\sigma(a) - \sigma(a)h_{1}).$$

Therefore, δ_1 (and similarly δ_2) is an inner σ -derivation. \Box

In this step, we apply the C^* -algebra $B(\mathcal{H})$ to construct the new C^* algebra $\mathcal{A} := B(\mathcal{H}) \times B(\mathcal{H})$, where \mathcal{H} is a Hilbert space. For this aim, suppose that \mathcal{A}_j (j = 1, 2) is a C^* -algebra. It is easy to observe that, $\mathcal{A} := \mathcal{A}_1 \times \mathcal{A}_2$ is also a C^* -algebra by regarding the following algebraic structure

- (i) (a,b) + (c,d) = (a+c,b+d),
- (ii) $\lambda(a,b) = (\lambda a, \lambda b)$
- (iii) $(a,b).(c,d) = (ac,bd), (a,b)^* = (a^*,b^*)$
- (iv) $|| (a, b) ||_{\mathcal{A}} = \max\{|| a ||_{\mathcal{A}_1}, || b ||_{\mathcal{A}_2}\}.$

Now, consider \mathcal{A}_j (j = 1, 2) as the concrete C^* -algebra $B(\mathcal{H})$, and define $\sigma : \mathcal{A} \to \mathcal{A}$ by $\sigma(S,T) := (0,T)$. Trivially, σ is an idempotent norm decreasing linear *-endomorphism on \mathcal{A} . We are going to characterize each so-called two parameter σ - C^* -dynamical system on \mathcal{A} . Before this,

we need the following useful representation for bounded *-derivations on $B(\mathcal{H})$ which is demonstrated in Lemma 1.3 of [4].

Lemma 2.10. Let \mathcal{H} be a Hilbert space and d be a bounded *-derivation on $B(\mathcal{H})$. Then, there exists a self-adjoint operators A in $B(\mathcal{H})$ such that d(T) = i(AT - TA), for all $T \in B(\mathcal{H})$,.

We are ready to state and prove the following main result.

Theorem 2.11. Let \mathcal{H} be a Hilbert space. The following assertions are equivalent.

(i) $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ is a two parameter σ -C*-dynamical system on $\mathcal{A} := B(\mathcal{H}) \times B(\mathcal{H})$.

(ii) There exists a uniformly continuous two parameter group $\{u_{s,t}\}_{s,t\in\mathbb{R}}$ of unitary elements in \mathcal{A} satisfying $\sigma(u_{s,t}) = u_{s,t}$ and for each $T \in B(\mathcal{H})$, $\varphi_{s,t}(S,T) = u_{s,t}\sigma(S,T)u_{s,t}^*$.

Proof. Suppose that $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ is a two parameter σ - C^* -dynamical system on \mathcal{A} with the generator (δ_1, δ_2) . Then, for each $S, T \in B(\mathcal{H})$, there exists a pair $(S', T') \in \mathcal{A}$ such that $\delta_j(S, T) = (S', T'), j = 1, 2$. But, $\delta_j(\sigma(S,T)) = \delta_j(S,T) = \sigma(\delta_j(S,T))$ and therefore, S' = 0 and $\delta_j(0,T) = \delta_j(S,T) = (0,T')$. Define $d_j : B(\mathcal{H}) \to B(\mathcal{H})$ by $d_j(T) := T'$. Hence, for each $S, T \in B(\mathcal{H}), \delta_j(S,T) = (0,d_j(T))$. Trivially, d_j (j = 1, 2) is a *-linear mapping. Also, by Theorem 2.6, δ_j (j = 1, 2) is an everywhere defined bounded *- σ -derivation. Then, for each $T_1, T_2 \in B(\mathcal{H})$ we have

$$\begin{aligned} (0, d_j(T_1T_2)) &= \delta_j(0, T_1T_2) \\ &= \delta_j((0, T_1).(0, T_2)) \\ &= \delta_j(0, T_1).\sigma(0, T_2) + \sigma(0, T_1).\delta_j(0, T_2) \\ &= (0, d_j(T_1)).(0, T_2) + (0, T_1).(0, d_j(T_2)) \\ &= (0, d_j(T_1).T_2 + T_1.d_j(T_2)) \end{aligned}$$

which means that d_j (j = 1, 2) is an everywhere defined bounded *derivation. It follows from Lemma 2.10 that, there exist self-adjoint operators A_1 and A_2 in $B(\mathcal{H})$ such that for each $T \in B(\mathcal{H}), d_j(T) =$ $i(A_jT - TA_j), \ j = 1, 2.$

Therefore, for each $S, T \in B(\mathcal{H})$,

$$\delta_j(S,T) = (0, i(A_jT - TA_j)) = (0, iA_j)(0,T) - (0,T)(0, iA_j) = i((0,A_j)\sigma(S,T) - \sigma(S,T)(0,A_j)) = i[(0,A_j), \sigma(S,T)].$$

That is δ_j (j = 1, 2) is the inner *- σ -derivation $\delta^{\sigma}_{(0,A_j)}$. Further, $\sigma(0, A_j) = (0, A_j), j = 1, 2$.

It remains to show that $A_1A_2 = A_2A_1$. For this aim, since δ_1 and δ_2 are the infinitesimal generators of $\{\varphi_{s,0}\}_{s\in\mathbb{R}}$ and $\{\varphi_{0,t}\}_{t\in\mathbb{R}}$, respectively, so by Lemma 2.3 we have $\delta_1\delta_2 = \delta_2\delta_1$. This means that for each $S, T \in$ $B(\mathcal{H})$ we have $\delta^{\sigma}_{(0,A_1)}(\delta^{\sigma}_{(0,A_2)}(S,T)) = \delta^{\sigma}_{(0,A_2)}(\delta^{\sigma}_{(0,A_1)}(S,T))$ which follows that

$$-A_1A_2T + A_1TA_2 + A_2TA_1 - TA_2A_1 = -A_2A_1T + A_2TA_1 + A_1TA_2 - TA_1A_2.$$

So, $(A_1A_2 - A_2A_1)T = T(A_1A_2 - A_2A_1)$, for all $T \in B(\mathcal{H})$. But the center of $B(\mathcal{H})$ is $\mathbb{C}I$, hence, there exists an element $\lambda \in \mathbb{C}$ for which $A_1A_2 - A_2A_1 = \lambda I$. Since B_1 is self-adjoint and λI is in the center of $B(\mathcal{H})$, by Exercise 4.6.34 of [8], $\lambda I = 0$. Thus, $\lambda = 0$ and consequently $A_1A_2 = A_2A_1$. Whence, $(0, A_1).(0, A_2) = (0, A_2).(0, A_1)$. Applying Theorem 2.9, we conclude that $(\delta^{\sigma}_{(0,A_1)}, \delta^{\sigma}_{(0,A_2)})$ induces the two parameter σ -C*-dynamical system $\varphi_{s,t}(S,T) = e^{i(0,sA_1+tA_2)}\sigma(S,T)e^{-i(0,sA_1+tA_2)}$ of *- σ -inner endomorphisms. Take $u_{s,t} := e^{i(0,sA_1+tA_2)}$. Applying the same method as mentioned in the proof of Theorem ??, we observe that $\sigma(u_{s,t}) = u_{s,t}$. Also, since A_j (j = 1, 2) is a self-adjoint element in $B(\mathcal{H})$, so $(0, A_i)$ is a self-adjoint element in \mathcal{A} . By Stone's Theorem ([14], Theorem 1.10.8) $\{u_{s,0}\}_{s\in\mathbb{R}}$ and $\{u_{0,t}\}_{t\in\mathbb{R}}$ are one parameter group of unitary elements in \mathcal{A} with the infinitesimal generators $i(0, A_1)$ and $i(0, A_2)$, respectively. Moreover, following the method as stated in the proof of Theorem 1.2.1 of [14], it can be shown that $\{u_{s,0}\}_{s\in\mathbb{R}}$ and $\{u_{0,t}\}_{t\in\mathbb{R}}$ are uniformly continuous one parameter groups and the fact that $(0, A_1).(0, A_2) = (0, A_2).(0, A_1)$ implies by Lemma 2.3 that $\{u_{s,t}\}_{s,t\in\mathbb{R}}$ is a uniformly continuous two parameter group and $\varphi_{s,t}(S,T) = u_{s,t}\sigma(S,T)u_{s,t}^*$ which completes the proof.

Conversely, let $\{u_{s,t}\}_{s,t\in\mathbb{R}}$ be a uniformly continuous two parameter group of unitary elements in \mathcal{A} and $\varphi_{s,t}(S,T) = u_{s,t}\sigma(S,T)u_{s,t}^*$. Therefore $\{u_{s,0}\}_{s\in\mathbb{R}}$ and $\{u_{0,t}\}_{t\in\mathbb{R}}$ are uniformly continuous one parameter groups of unitaries in \mathcal{A} . Applying Stone's theorem once more, we obtain that there are self-adjoint elements A_1, A_2, B_1 and B_2 in $B(\mathcal{H})$ such that $u_{s,0} = e^{is(B_1,A_1)}$, and $u_{0,t} = e^{it(B_2,A_2)}$. Consequently, $u_{s,t} = e^{is(B_1,A_1)+it(B_2,A_2)}$ and

 $\varphi_{s,t}(S,T) = e^{is(B_1,A_1)+it(B_2,A_2)}\sigma(S,T)e^{-is(B_1,A_1)-it(B_2,A_2)}$. Finally, using the method as stated in the proof of Theorem 2.9, one can conclude that $\{\varphi_{s,t}\}_{s,t\in\mathbb{R}}$ is a two parameter σ -C*-dynamical system on \mathcal{A} . \Box

Acknowledgment

This work is partially supported by Grant-in-Aid from the Behbahan Branch, Islamic Azad University, Behbahan, Islamic Republic of Iran.

References

- F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, 1973.
- [2] O. Bratteli and D. R. Robinson, Operator Algebras and Quantom Statistical Mechanics, Vol 1, Springer-Verlag, New York, 1987.
- [3] G. Dales, P. Aiena, J. Eschmeier, K. Laursen, and G. Willis, Introduction to Banach Algebras, Operators and Harmonic Analysis, Cambridge. Univ. Press, 2003.
- [4] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.
- [5] A. Hosseini, M. Hassani, A. Niknam, and S. Hejazian, Some results on σ -derivations, Ann. Funct. Anal., 2 (2011), 75-84.

- [6] M. Janfada and A. Niknam, On two parameter dynamical systems and applications, J. Sci. Islam. Repub. Iran, 15 (2) (2004), 163-169.
- [7] M. Janfada, σ -One parameter semigroup of bounded operators on Banach spaces, J. Anal. Appl., 6 (2) (2008), 129-137.
- [8] R. V. Kadison and J. R. Ringrose, Fundamentals of Theory of Operator Algebras, Academic Press, Vol. 1, 1983.
- [9] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ derivations in C^{*}-algebras, proc. Amer. Math. Soc., 11 (5) (2006), 805-813.
- [10] M. Mirzavaziri and M. S. Moslehian, σ-derivations in Banach algebras, Bull. Iranian Math. Soc., 32 (1) (2006), 65-78.
- [11] M. Mosadeq, M. Hassani, and A. Niknam, Closability of module σ -derivations, J. Math. Ext., 6 (1) (2012), 81-93.
- [12] M. Mosadeq, On σ-C*-Dynamics, J. Dyn. Syst. Geom. Theor., 11
 (1) (2013), 13-22.
- [13] G. J. Murphy, C^{*}-Algebras and Operator Theory, Academic Press, London, 1990.
- [14] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
- [15] S. Sakai, Operator Algebras in Dynamical Systems, Cambridge. Univ. Press, New York, 1991.

Maysam Mosadeq

Department of Mathematics Assistant Professor of Mathematics Behbahan Branch, Islamic Azad University Behbahan, Iran E-mail: maysammosaddegh@yahoo.com