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Abstract. We investigate the fundamental inequalities for convex
functions on the bounded closed interval of real numbers. Using the
theory of positive linear functionals, we obtain the functional forms
of inequalities as generalizations of the well-known inequalities. Our
consideration includes the Jensen, Jensen-Mercer, Fejér and Hermite-
Hadamard inequality.
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1. Introduction

Let us remind the initial notions of convexity which refers to convex sets and
functions. Let X be a real linear space.

A set C C X is said to be convex if the inclusion
aa+ Bbe C (1)

holds for all points a,b € C and all coefficients «, 5 € [0, 1] satisfying o +
06 = 1. The sum aa + Fb fulfilling the above requirements is called a convex
combination.

A function f: C — R is said to be convex if the inequality

f(aa+ Bb) < af(a) + Bf(b) (2)
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holds for all convex combinations aa + (b of points a,b € C.

Throughout the paper, we consider convex functions on the bounded closed
interval [a,b] C R, where a < b. Each point € [a,b] can be represented by
the unique binomial convex combination

_b-z T—a

a+ ——b, (3)

v b—a b—a

where numbers a = (b — z)/(b — a) and = (z — a)/(b — a) are coeflicients.
Assume that we have a convex function f : [a,b] — R. The secant line of f
passes through the corresponding graph points of ¢ and b, and its equation is

cec _b—ux r—a
) = f )+

f(0). (4)

Let ¢ € (a,b) be an interior point. A support line of f passing through
the corresponding graph point of ¢ is specified by the slope coefficient \ €
[f'(c—), f'(c+)], and its equation is

fe (@) = Mz — ) + f(c). (5)
The support-secant line inequality
fe (@) < flo) < £ (2) (6)

holds for every x € [a,b]. The above inequality applies to each support line
at c.

2. Positive Linear Functionals on the Space of
Real Functions

Let X be a nonempty set, and let F = F(X) be a subspace of the linear space
of all real functions on the domain X. We assume that the space F contains the
unit function u defined by u(z) = 1 for every x € X. Such space contains every
real constant A\ within the meaning of A = Au. The space F also contains every
composite function f(g) of a function g € F, and an affine function f : R — R.
Namely, using the equation f(x) = A\z+ A2, where \; and A, are real constants,
we get

f(g) = g+ AueF. (7)

Let L = L(F(X)) be the space of all linear functionals on the space F.

A functional L € L is said to be unital (normalized) if L(u) = 1. Such functional
has the property L(Au) = X for every real constant A. We have the following
equality referring to unital functionals and affine functions.
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Lemma 2.1. Let g € F be a function, and let L € L be a unital functional.
Then each affine function f : R — R satisfies the equality

f(L(g)) = L(f(9))- (8)

Proof. Using the affine equation f(z) = Az + \g, and the unital property of
L, we obtain

f(L(9)) = ML(g) + A2 = L(Arg + A2u) = L(f(9)),
proving the equality in formula (8). O
A functional L € L is said to be positive (nonnegative) if the inequality L(g) > 0

holds for every nonnegative function g € F. Then it follows that

L(g1) < L(g2), (9)
for every pair of functions g1, g2 € F satisfying ¢1(z) < g2(z) for every x € X.

Lemma 2.2. Let g € F be a function with the image in the closed interval
ICR.
Then each positive unital functional L € 1L satisfies the inclusion

L(g) € 1. (10)

Proof. If I = [a,b], then acting with the positive and unital functional L to
the image assumption
au < g < bu, (11)

we get
a < L(g) <b. (12)

If I = (—o0,b], we leave out the first terms of formulae (11) and (12). If
I = [a, +00), we leave out the last terms. If I = R, then it must be L(g) € I. O

The functional form of Jensen’s inequality is as follows.

Lemma 2.3. Let g € F be a function with the image in the closed interval
I CR, andlet L € IL be a positive unital functional.

Then each continuous convex function f : I — R such that f(g) € F satisfies
the inequality

f(L(g)) < L(f(9))- (13)
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In 1931, Jessen (see [7] and [8]) stated the functional form of Jensen’s inequality.
In 1988, Raga (see [12]) pointed out that I must be closed, otherwise it could
happen that L(g) ¢ I, and that f must be continuous, otherwise it could
happen that the inequality in formula (13) does not apply.

Some generalizations of the functional form of Jensen’s inequality can be found
n [10]. The book in [1] can be recommended as a concise book on functional
analysis indicating the importance of positive functionals.

3. Main Results

Taking I = [a, b], we can extend the inequality in formula (13) to the right side
by using the secant line.

Lemma 3.1. Let g € F be a function with the image in [a,b], and let L € L be
a positive unital functional.

Then each continuous convez function f : [a,b] — R such that f(g) € F satisfies
the double inequality

F(L(9)) < L(f(9)) < fap (L(9))- (14)

Proof. The point | = L(g) is in [a, b] by Lemma 2.2. We realize the proof in

two steps depending on the position of [.
If I € (a,b), we take a support line f;"" of f at l. Applying the positive
functional L to the support-secant inequality in formula (6) with g(x) instead
of =, we get

L(fi""(9)) < L(f(9)) < L(f2°(9))-

sup

By utilizing the affinity of functions f;"" and f3¢ according to formula (8), the
above inequality takes the form

1 (L(g)) < L(f(9) < fap' (L(g)), (15)

where the first term

1 D (L(g)) = f(L(g))-
If | € {a,b}, we explore the continuity of f using a support line at a point of
the open interval (a,b) that is close enough to . Given ¢ > 0, we can find
¢ € (a,b) so that

J(l) —e < f2 ().

Combining the above inequality, and the inequality in formula (15) with the
support line at ¢, we obtain

f) —e < f2%(1) < L(f(9)) < fap° () = £ (D).
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Letting € to zero, we attain the equality L(f(g)) = f(I). In this case, the trivial
inequality f(1) < f(I) < f(I) represents formula (14). O

The famous integral form of Jensen’s inequality (see [6]) can be generalized and
extended by exploring Lemma 3.1.

Theorem 3.2. Let X be a measurable set respecting a positive measure (1 so
that p(X) is the positive number. Let g : X — R be a p-integrable function with
the image in [a,b], and let h : X — R be a positive u-integrable function.

Then each convex function f : [a,b] — R satisfies the double inequality

Jxghdp, [ f(g hdu<fX(b—g)hdu Jxlg—a)hdp
Jxhdp Jxhdp Jx(b—a)hdp Jx(b—a)hdp

Proof. Let F be the space of all u-integrable functions over the domain X. The
convex function f is bounded on [a, ], and may be discontinued only at end-
points a or b. Therefore, the composition f(g) is bounded and measurable, and
as such is p-integrable over X.

We define the integrating linear functional

A ) < fa) + fb). (16)

Jx qhdp
Jx hdn”

for every function ¢ € F. The functional L is positive and unital. Applying the
functional L to the given functions g and f, we have the following. The first
term of formula (16) is equal to f(L(g)), the second term is equal to L(f(g)),
and the third term is equal to f53°(L(g)). As regards the third term, using the
equation of the secant line, we obtain

L(q) = L(g; h) = (17)

sole) = D g Mg,
~ Jx(b—g)hdp [x(g—a)hdu
- @+ i)

If we suppose that the function f is continuous, then formula (16) fits into the
frame of formula (14).

Let us verify that the inequality in formula (16) applies to a convex function
which is not continuous at endpoints. We observe the position of the point

Jx ghdp
Jx hdp

If | € (a,b), then we may utilize the continuous extension f of f/(a,b) to [a,b]
in formula (16). Applying the left-hand side of the inequality in formula (14)

I =L(g) = (18)
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to the continuous function f, and using the inequality f < f < f55°, we obtain

< L(f(9) < L(f25°(9) = fab" (L(9))-

Thus, formula (16) applies to f in this case.
If I € {a,b}, then either g(z) —1 > 0 or g(z) — 1 < 0 for every z € X. By
rearranging formula (18) to the integral equation

[ o= vhau=o.
X

it follows that g(x) = I for almost every « € X, and therefore f(g(z)) = f(I)
for almost every € X. The trivial inequality f(I) < f(I) < f(I) represents
formula (16) in this case.

Respecting all considerations, we may conclude that the inequality in formula
(16) applies to any convex function f. O

Using h(z) =1 in formula (16), we get the extended integral form of Jensen’s
inequality,

fngu)<fo(g)du< Jx(b—g)dp [x(g —a)hdu
p(X) p(X) (b —a)p(X) (b= a)u(X)
We now return to the inequality in formula (14). Relying on the fact that the

point a + b — x belongs to the interval [a,b] if € [a,b], we have the following
version of Lemma 3.1.

I fla) + f@). (19)

Lemma 3.3. Let g € F be a function with the image in [a,b], and let L € L be
a positive unital functional.

Then each continuous convex function f : [a,b] — R such that f(g) € F satisfies
the double inequality

fla+b—L(g) < fiay (a+b—L(g)) < fla) + f(b) — L(f(g)).  (20)

Proof. The point a + b — g(x) belongs to [a,b] for every z € X, and so the
point a + b — L(g) also belongs to [a,b] by Lemma 2.2.

Since f < f{sffb , the left-hand side of the inequality in formula (20) is valid.
Applying the affinity of ffsz}, and using the right-hand side of the inequality
in formula (14), we get

Fiawy (a+b—Lig)) = f(a) + f(b) — [y (L(9) < f(a) + f(b) — L(f(9))
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proving the right-hand side of the inequality in formula (20). O

The geometric presentation of the inequalities in formulae (14) and (20) can be
seen in Figure 1. The black dots above the point [ represent the terms of the
inequality in formula (14), and black dots above the point a 4+ b — [ represent
the terms of the inequality in formula (20). The shaded triangles are congruent.

? \
e T
N —

y = f(z)

o O
a 1 a+b—1 b

Figure 1. Geometric image of inequalities in formulae (14) and (20)

Using Lemma 3.3, we can generalize and refine the Jensen-Mercer inequality
(see [5] and [9]). The point evaluations g(z;) and h(z;) will be shortened by g;
and h;, respectively.

Corollary 3.4. Let g : X — R be a function with the image in [a,b], and let
h: X — R be a positive function. Let x1,...,x, € X be points.
Then each convex function f : [a,b] — R satisfies the double inequality

Z?:l gihi Z?:1(9i —a)h; Z?:1(b — gi)hi
Z;L:l hl (b — a) Z?:l hl (b — a) Z;L:l hl
E?:l f(gz)hz
Z?:l hi

Proof. We use F as the space of all real functions on the domain X, and take
the summarizing linear functional defined by

fla+b- ) < fla) + ()
(21)

< fla) + f(b) -

Lig) = L(g: h) = Zz—qhh (22)

for every g € F. To verify the inequality in formula (21), we can reuse the proof
of Theorem 3.2 relying on Lemma 3.3. O

If X = [a,b], then using points z; = g; and coefficients \; = h;/ > h; in
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formula (21), we obtain the refinement of the Jensen-Mercer inequality,

flatb =Y A < B M gy DZ T it
i=1

n

< fla)+ f(0) = > Nif ().

i=1

(23)

Namely, the Jensen-Mercer inequality was originally made up of the first and
last term of the above inequality.

4. Inequalities Depending on Integral Means

Let X be a measurable set of some measure space respecting a positive measure
wu so that p(X) is the positive number. Let g : X — R be a p-integrable
function, and let h : X — R be a positive u-integrable function. The u-integral
arithmetic mean of g respecting h can be defined by the number

Jx ghdp

Jx hdp

Taking h = 1, we get the p-integral arithmetic mean of g as fng,u/u(X).
Using the measure v on X defined by v(S) = |, g hdp for every p-measurable
set S C X, we have that

(24)

Jxg9dv _ [y ghdp
v(X) Jx hdp
If X is the set of real numbers, and g is the identity function on X, then the

number in formula (24) represents the p-barycenter of X respecting h. Taking
h =1, we get the p-barycenter of the set X as [ xdu/u(X).

(25)

The inequality in formula (16) can be directed to the Fejér (see [2]) and Hermite-
Hadamard (see [4] and [3]) inequality. In this regard, we have the following
corollary of Theorem 3.2.

Corollary 4.1. Let X be a measurable set respecting a positive measure (i So
that 1(X) is the positive number. Let g : X — R be a p-integrable function with
the image in [a,b], and let h : X — R be a positive p-integrable function such

that
Jxghdp [ gdu

Jxhdp  w(X)

(26)
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Then each convex function f : [a,b] — R satisfies the double inequality

fngu)< JxI(@hdp _ [(b—g)du Jxlg—a)hdu
w(X) © T [xhdu T (b= a)u(X) (b —a)u(X)

Using the Lebesgue measure on the interval X = [a, b], and taking the identity
function g(x) = x, the condition in formula (26) yields

I(

fla) + f0). (27)

fabxhdx fabxdm a-+b

= = 28
[Phde  b—a 2 =)
and so the inequality in formula (27) turns into the Fejér inequality
b
b hd b
2 [ hdx 2

Fejér was originally used a positive integrable function h(z) satisfying the equa-
tion h(z) = h(a + b — x) that represents the symmetry with the center at the
midpoint (a 4 b)/2. Namely, as a consequence of this symmetry we have

[Pahde [0 (z— ) hdx . [P et hdr  atb

[P hdx 1P hdx [P hdx 2

/b< a+b
o
o 2

Putting the unit function A = 1 in formula (29), we get the Hermite-Hadamard
inequality

because

>hd:c0.

a+b _ Jofdr _ f(a)+ ()
fl5) <5 <

—a 2
The above discussion indicates that the Fejér inequality depends on the barycen-
ter of the interval [a,b] respecting the function h, and that the Hermite-
Hadamard inequality depends on the barycenter of the interval [a, b].
The refinements of the Hermite-Hadamard inequality in formula (30), as well
as the refinements of some standard means were obtained in [11].
In the light of applications of Corollary 4.1, the section will be completed by
the following symmetrical form of Theorem 3.2.

. (30)

Corollary 4.2. Let X be a measurable set respecting a positive measure p so
that p(X) is the positive number. Let g : X — R be a p-integrable function
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with the image in [a, ], let h : X — R be a positive u-integrable function, and
let aa + Bb be the convex combination such that

Jx ghdp

= . 1
[ hdu aa+ Bb (31)
Then each convex function f : [a,b] — R satisfies the double inequality
hd
flaa+ o) < LSO ey 450, 3
Jxhdp
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