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Abstract. Hepatitis C is the leading cause of death among individu-
als infected with human. Here, we present a deterministic model for
HCV and HIV infections transmission and use the model to assess
the potential impact of antiviral therapy. The model is based on the
susceptible-infective-removed-susceptible (SIRS) compartmental struc-
ture with chronic primary infection and possibility of reinfection. Impor-
tant epidemiologic thresholds such as the basic and control reproduction
numbers and a measure of treatment impact are derived. We find that if
the control reproduction number is greater than unity, there is a locally
unstable infection-free equilibrium and a unique, globally asymptoti-
cally stable endemic equilibrium. If the control reproduction number is
less than unity, the infection-free equilibrium is globally asymptotically
stable.
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1 Introduction

Infection with hepatitis C virus (HCV) is a major global public health
problem. According to theWorld Health Organization statistics, 3-4
million people are infected every year and the number of people cur-
rently infected with HCV worldwide is approximately 150 million [10].
However, the study of infectious disease co-epidemics is critical to under-
standing how the diseases are related, and how prevention and treatment
eforts can be most efective. Mathematical models can provide insight
into the complicated infection dynamics, and into efective control mea-
sures. Most mathematical epidemic models evaluate a single disease [8,
11], although a growing number of studies have considered co-epidemics
[7, 13]. Mathematical studies of co-infection models are not very com-
mon. On the other hand, the huge public health burden inflicted by
HIV and HCV necessitates the use of mathematical modeling to gain
insights into their transmission dynamics and to determine efective con-
trol strategies. Co-infection with HIV has been associated with a more
rapid progression of liver disease as well as a higher prevalence of cirrho-
sis [1, 6, 9, 12, 16, 17]. The paper is organized as follows: In section 2,
we present a HCV/HIV model that allows for the incorporation of both
infections. In section 3, the basic reproduction numbers of each infec-
tious disease and the overall reproduction number for the full system are
computed. Furthermore, we study the existence of equilibria and their
stabilities. Section 4 is devoted to discussing the results of our analysis
using selected numerical solutions.

2 Model Formulation

Based on the individuals epidemiological status, the total population N
has been subdivided into the following classes or subgroups: Suscepti-
ble individuals to both diseases S(t), HIV positive-only individuals not
yet showing AIDS symptoms Ih(t), hepatitis C infected only individu-
als Ic(t), AIDS patients not yet on antiretroviral therapy Ah(t), AIDS
patients on antiretroviral therapy At(t), HIV positive not yet showing
AIDS symptoms dually infected with HCV Ihc(t), AIDS patients not yet
on antiretroviral therapy dually infected with HCV Ahc(t), AIDS pa-
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tients on antiretroviral therapy dually infected with HCV Atc(t). AIDS
patients in this model are assumed to be sexuallyinactivestudy. Thus,
the total popula-tion size is given by

N(t) = S(t)+Ih(t)+Ic(t)+Jh(t)+Ah(t)+At(t)+Ihc(t)+Jhc(t)+Ahc(t)+Atc(t)
(1)

Suppose that Λ is constant recruitment rate, Furthermore, natural mor-
tality rate, µ, is assumed to be constant in all classes. The forces of
infection associated with HCV or HIV infection denoted by λc, λh, re-
spectively, take the form

λh(t) =
βh[Ih(t) + ϕIhc(t)]

N(t)
, λc(t) =

βc[Ic(t) + ηIhc(t)]

N(t)
. (2)

Parameters βc and βh denotes the probability of getting infected with
either HCV or HIV, respectively. The parameter η > 1 and ϕ > 1 cap-
tures the assumed increased probability for individuals dually infected
with HCV and HIV to infect their partners. Susceptible individuals are
infected with HIV and HCV at rates λh and λc, respectively.
Once an individual have been infected with HCV, they enter the class Ic.
Individuals in Ic move back into the susceptible class following treatment
at a rate r1, since previous infection does not confer immunity. Suscep-
tibles infected with HIV enters symptomless HIV class Ih move in to
class Jh at a rate k, peopel in class Jh where they progress to the AIDS
class Ah at a rate ρ. Individuals in the AIDS stage Jh are detected
and put on treatmentat a rate θ to enter the class At. HIV infected
individuals not yet in the AIDS stage of disease progression,Ih are in-
fected with HCV at rates σλc to enter Ihc class, Jh are infected with
HCV at rates σλc to enter Jhc class, It is worth noting that σ > 1 is the
modification parameter accounting for the increased risk of getting HCV
infection for someone already infected with HIV (since most co- infec-
tions potentially promote transmission and faster progression to AIDS).
HCV infected individuals (Ic; Ihc; Jhc;Ahc;Atc) have an additional HCV
induced death rate dc. Individuals in the AIDS stages of disease pro-
gression (Ah;At;Ahc;Atc) have an additional AIDS-induced death rate
da. HCV only infected individuals Ic are infected with HIV at a rate
σλ(σ > 1) to move into the class Ihc. Here, δ > 1 accounts for the
increased susceptibility to HIV infection for HCV infected people, since



4 H. kheiri, M. Zerehpoush

Figure 1: Structure of the model.

HCV exerts a cofactor efect, leading to accelerated decline in immune
function and increased vulnerability to other infections. Individuals in
Ihc enter Jhc at a rate k, People in Jhc progress to their respective AIDS
stage Ahc at a rate ρ, AIDS patients dually infected with HCV are de-
tected and put on antiretroviral therapy at a rate θ2 to get into Atc

class. Dually infected people in the classes Ihc, Ahc and Atc are treated
for HCV at rates r2, r3, r4 and r5 to move back into the classes Ih, Jh, Ah

and At, respectively. The parameters k1 and k2 represent the rate at
which HIV Latent-infected individuals and Latent-infected individuals
dually infected with HCV move to HIV-positive class and HIV-positive
class dually infected with HCV, respectively. The parameters α1 and
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α1 are the transmission rate of Jh and Jhc classes to Ih and Ihc classes.
The population is assumed to be uniform and homogeneously mixing.
The structure of the model is presented in Fig. 1. Motivated by Bhunu
and Mushayabasa in [3], our HCV/HIV model is given by the following
systems of ten ordinary diferential equations:

Ṡ(t) = Λ− (λc + λh + µ)S + r1Ic,

İc(t) = λcS − (µ+ dc + r1 + δλh)Ic,

İh(t) = λhS + r2Ihc − (µ+ k1 + σλc − α1)Ih,

J̇h(t) = k1Ih + r3Jhc − (µ+ α1 + ρ1 + σλc)Jh,

Ȧh(t) = ρ1Jh + r4Ahc − (µ+ θ + da + σλc)Ah, (3)

Ȧt(t) = θ1Ah + r5Atc − (µ+ da + σλc)At,

İhc(t) = δλhIc + σλcIh − (µ+ r2 + k2 + dc − α2)Ihc,

J̇hc(t) = σλcJh − (µ+ r3 − k2 + dc + ρ2 + α2)Jhc,

Ȧhc(t) = ρ2Jhc + σλcAh − (µ+ θ2 + da + dc + r4)Ahc,

Ȧtc(t) = θ2Ahc + σλcAt − (µ+ r5 + da + dc)Atc.

3 Model properties

In this section, we study the basic properties of the solutions of model
system (3), which are essential for the proofs of stability.

3.1 Invariant Region

The following Lemmas show that the solution of system (3), remains
bounded (and hence exists for all time) and is nonnegative for all t > 0.

Lemma 3.1. The region Ω defined by Ω =
{
S, Ic, Ih, Jh, Ah, At, Ihc, Jhc, Ahc, Atc ∈

R10
+ : N ≤ Λ

µ

}
is positively invariant and attracting with respect to model

system (3).
Proof. Let (S, Ic, Ih, Jh, Ah, At, Ihc, Jhc, Ahc, Atc) ∈ R10

+ be any solution
of system (1.3) with given non-negative initial condition
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(S(0), Ic(0), Ih(0), Jh(0), Ah(0), At(0), Ihc(0), Jhc(0), Ahc(0), Atc(0)) . Since

Ṅ(t) = Ṡ(t)+İh(t)+J̇h(t)+İc(t)+Ȧh(t)+Ȧt(t)+ ˙Ihc(t)+ ˙Jhc(t)+ ˙Ahc(t)+Ȧtc(t),

In the absence of infection, the system reduces to

N(t) = S(t) =⇒ Ṅ(t) = Ṡ(t) = Λ− µS,

Applying the Birkhoff-Rotas (1982) theorem on differential inequality
into last equation above equation, it becomes:

Ṅ(t) ≤ Λ− µS, (4)

Integrating (4) and applying initial conditions, we obtain

N(t) ≤ Λ

µ
−N0e

−µt, (5)

As t −→ ∞, the inequality (5), becomes 0 ≤ N(t) ≤ Λ
µ which implies

that N(t) −→ Λ
µ . Hence, the feasible solution set of system (3) enters

in the region

Ω =
{
S(t), Ic(t), Ih(t), Jh(t), At(t), Ihc(t), Jhc(t), Ahc(t), Atc ∈ R10

+ : N ≤ Λ

µ

}
(6)

Thus for all t > 0, every solution of system (3) with initial conditions
in remains there and the solutions of system equation (3) are always
positive. �

Lemma 3.2. All solutions of system (3) are bounded.
Proof. Using system (3) we have Ṅ ≤ Λ−µN . Assume that N(t) ≤ M
for all t ≥ 0 where M = Λ

µ + ε, ε > 0. Solutions to the equation

Ṁ = Λ− µM are monotone increasing and bounded by Λ
µ if M(0) < Λ

µ .

They are monotone decreasing and bounded above if M(0) ≥ Λ
µ . Since

Ṅ ≤ Ṁ , the claim follows. �
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3.2 Positivity

Lemma 3.3. The equations preserve positivity of solutions.
Proof. We need to show that for all t > 0, the solutions of system are
always positive. From the second equation of model system (3), we have:

İc(t) = λcS − (µ+ dc + r1 + δλh)Ic, (7)

Since λcS > 0, then

dIc(t)

dt
≥ −(µ+ dc + r1 + δλh)Ic. (8)

integrating with respect t, yields

Ic(t) ≥ I0c(t)e
−(µ+dc+r1+δλh). (9)

The right side of the inequality (9) is always positive, hence Ic is positive
for all t > 0.
Using Birkhoff-Rotas (1982) theorem, the second equation can be solved
for Ihc as follows

dIhc
dt

≥ −(µ+ dc + r2 + ρ)Ic. (10)

Integrating with respect to t yields

Ihc ≥ I0hc(t)e
−(µ+r2+ρ+dc). (11)

Here again, it is clear that the right side of the last inequality in (11) is
always positive, hence Ihc is positive for all t ≥ 0. From above results,
we can conclude that whenever t ≥ 0, the solutions of the system (3) are
positive. �

3.3 Infection-free equilibrium and reproduction numbers.

The model (3) has a disease-free equilibrium given by

ε0 = (S∗, I∗c , I
∗
h, J

∗
h, A

∗
h, A

∗
t , I

∗
hc, J

∗
hc, A

∗
hc, A

∗
tc) = (

Λ

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(12)
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A commonly used measures of the severity of an epidemic is the ba-
sic reproduction number Rhc. It is defined as the expected number of
new infections generated by a single infected person during his/her en-
tire period of infectiousness when introduced in a completely susceptible
population [4, 18, 26]. However, in the proposed model, infectious indi-
viduals can be in one of the nine classes Ic, Ih, Jh, Ac, At, Ihc, Jhc, Ahc, Atc

and the expected number of secondary infections depend on the class.
By the next generation method, the Jacobian for systems (3) for the
new infections and transfer from one compartment to another is given
by:

F =


βc 0

0 βh

 , V =


µ+ dc + r1 0

0 µ+ k1 − α1

 ,

By the next generation method, we have

FV −1 =


βc

µ+ r1 + dc
0

0
βh

µ+ k1 − α1

 ,

From which we obtain the eigenvalues

Rc =
βc

µ+ r1 + dc
, Rh =

βh
µ+ k1 − α1

. (13)

R0 is equal to the spectral radius of the matrix FV−1 :

R0 = max{Rc, Rh} = max{ βc
µ+ r1 + dc

,
βh

µ+ k1 − α1
}. (14)

A threshold condition for endemicity is given by R0 = 1 : the disease
dies out if R0 < 1, and becomes endemic if R0 > 1. Thus we conclude
with the following theorem and follows from theorem 2 of [23].

Theorem 3.4. If ε0 is a DFE of the model (3), then ε0 is locally asymp-
totically stable if R0 < 1, but unstable if R0 > 1.
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4 The Existence and Stability Analysis of En-
demic Equilibrium Point (EEP)

This is a case when there is infection in the study population. To explore
the existence of endemic equilibrium, we set the right hand side of system
(3) to zero and solve it.

HCV-only equilibrium

This occurs when Ih = Ah = At = Ihc = Ahc = Atc = 0 and is given by
ε∗c = (S∗

c , I
∗
c , 0, 0, 0, 0, 0, 0, 0, 0)

from (3), with ε∗c ,

Λ− (λc + µ)S∗
c + r1I

∗
c = 0, (15)

λcS
∗
c − (µ+ dc + r1 + δλh)I

∗
c = 0, (16)

From (21),

µ+ r1 + dc =
βc
Rc

, (17)

With applying (17) in (16), we get

λcS
∗
c −

βcI
∗
c

Rc
= 0 =⇒ I∗c =

S∗
cRcλc

βc
, (18)

From (18), with λc(t) =
βc[I∗c (t)]
N(t) ,

I∗c = S∗
c (Rc − 1). (19)

In the same way we can show that S∗
c = βc[1− 1

Rc
],

Using the next generation method, the reproductive number for system
(3) is given by:

Rch =
βh[(δRc(r2 + (ρ+ µ)ϕ) + ϕσβc[δ(Rc − 1) + 1])(Rc − 1) +Rc(µ+ dc + r2 + ρ)]

Rc[βcσ(µ+ dc + ρ)(Rc − 1) +Rc(µ+ dc + r2 + ρ)]
.

(20)
In order to derive an expression for the region of stability of the boundary
equilibrium ε∗c , we measure the capacity of HIV to invade and persist in
a population where HCV is endemic.
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5 HIV-Only Submodel

Consider the HIV-only submodel (obtained by setting Ic = Ihc = Jhc =
Ahc = Atc = 0) in system (2.3), so that we have

Ṡ(t) = Λ− (λc + λh + µ)S,

İh(t) = λhS − (µ+ k1 − α1)Ih,

J̇h(t) = k1Ih − (µ+ α1 + ρ1)Jh,

Ȧh(t) = ρ1Jh − (µ+ θ + da)Ah, (21)

Ȧt(t) = θ1Ah − (µ+ da)At,

HCV-free endemic equilibrium given by

S∗
h =

Λ(µ+ k1 + da)(µ+ da + ρ1)

µ(µ+ k1 + da)(µ+ da + ρ1) +A

I∗h =
(µ+ da)(µ+ ρ1 + α1)[(µ+ k1)(Rh − 1) + α1k1

µ+α1+ρ1
]Λ(µ+ k1 + da)

((µ+ k1)− α1k1
µ+α1+ρ1

)µ(µ+ k1 + da)(µ+ da + ρ1) +A

J∗
h =

k1(µ+ da)[(µ+ k1)(Rh − 1) + α1k1
µ+α1+ρ1

]Λ(µ+ k1 + da)

((µ+ k1)− α1k1
µ+α1+ρ1

)µ(µ+ k1 + da)(µ+ da + ρ1) +A

A∗
h =

ρ1k1(µ+ da)[(µ+ k1)(Rh − 1) + α1k1
µ+α1+ρ1

]Λ(µ+ k1 + da)

(µ+ θ + da)((µ+ k1)− α1k1
µ+α1+ρ1

)µ(µ+ k1 + da)(µ+ da + ρ1) +A

A∗
t =

θ1ρ1k1(µ+ da)[(µ+1)(Rh − 1) + α1k1
µ+α1+ρ1

]Λ(µ+ k1 + da)

(µ+ da)(µ+ θ + da)((µ+ k1)− α1k1
µ+α1+ρ1

)µ(µ+ k1 + da)(µ+ da + ρ1) +A

where

A = (µ+ da)(µ+ α1 + ρ1)[((µ+ k1)(Rh − 1)) +
α1k1

µ+ α1 + ρ1
].

Now we explore the potential of HCV to invade a population in which
HIV is already endemic (Rh > 1). This requires us to find the invasion
reproduction number of model system (3) around ε∗h, which is given by

Rhc = δηβc

Rhn
( βc(µ+da)(µ+ρ+α1)(µ+k+da)(Rh+1)+mnRh

mgRh+δβh(µ+da)(µ+ρ+α1)(µ+k+da)(Rh−1)

+ (µ+da)(µ+ρ+α1)(µ+k+da)(Rh−1)
m ).
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m = (µ+ da + k1)(µ+ da + ρ1), n = (µ+ r2 + k2 + dc − α2), g = (µ+ dc + r1).

This formalism permits the derivation of a threshold condition for coexis-
tence, now equivalent to a threshold condition for HIV endemicity in a popu-
lation where HCV is at equilibrium, Rhc = 1: only HIV persists for Rhc < 1
, while for Rhc > 1 HCV can invade a population where HIV state are fixed,
that is, to say coexistence is possible.

Theorem 5.1. This endemic equilibrium ε∗h exists and is unique if and only
if Rh > 1 and Rhc < 1. Proof. See the reference[3] �

6 Numerical simulations

In this section, we use numerical illustrations to asses the effects of HCV treat-
ment and antiretroviral therapy and the demographic impact of the epidemic.
The parameters that we use for numerical simulations of the model system (3)
are given in Table 1. We use a fourth order RungeKutta numerical scheme
coded in matlab programming language for the numerical simulations of model
system (3).
We assume S0 = 4000000, Ic0 = 10, Ih0 = 10, Jc0 = 10, Jh0 = 10, Ah0 =
10, At0 = 10, Ihc0 = 1, Ahc0 = 1 and Atc0 = 1 be the initial population propor-
tions of individuals in each compartment at the start of the epidemic.
In the presence of antiretroviral therapy for people in the AIDS stage and HCV
treatment, susceptibles decline to their corresponding asymptotic state as noted
in Fig. 2(a) and the HIV only infected people increase to their corresponding
asymptotic state(see Fig. 2(b)).

7 Conclusion

In this paper we have discussed the asymptotic behaviour of antiretroviral
therapy for AIDS cases and HCV treatment model with a time delay due to
the long incubation period of the disease. We have established the conditions
under which the equilibria for the model are locally and globally stable. The
dynamics behavior of the ODE treatment model (3) can be determined by its
basic reproduction number R0, i.e., If R0 is less than unitythere is a unique
infection free equilibrium which is globally asymptotically stable. If R0 greater
than unity, the disease persists and the unique endemic equilibrium is globally
asymptotically stable
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Table 1: Variables and parameters for viral spread

Parameter Value (range) Source

Λ 50000 [7]

µ 0.02yr−1 [3]

βc(t) 0.015− 0.90yr−1 [3]

βh(t) 0.011− 0.95yr−1 [2]

(r1, r2, r3, r4, r5) 0.30yr−1 [3]

(σ1, σ2, σ3, σ4) 0.30yr−1 [3]

(θ1, θ2) 0.33yr−1 [2]

ϕ1 1.02 [4]

ϕ2 1.05 [3]

ρ1 0.5 Assume

da 0.333yr−1 [2]

dc 0.25yr−1 [3]

δ 1.0001 [3]

η 1.0002 [3]

k1 0.4 Assume

α1 0.009 Assume
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Figure 2: Effects of HCV treatment and antiretroviral therapy.
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