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Abstract. Hepatitis C is the leading cause of death among indi-
viduals infected with human. Here, we present a deterministic model
for HCV and HIV infections transmission and use the model to as-
sess the potential impact of antiviral therapy. The model is based on
the Susceptible-Infective-Removed-Susceptible (SIRS) compartmental
structure with chronic primary infection and possibility of reinfection. Im-
portant epidemiologic thresholds such as the basic and control reproduc-
tion numbers and a measure of treatment impact are derived. We find
that if the control reproduction number is greater than unity, there is a
locally unstable infection-free equilibrium and a unique, globally asymp-
totically stable endemic equilibrium. If the control reproduction number
is less than unity, the infection-free equilibrium is globally asymptoti-
cally stable.
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1. Introduction

we propose a class of HIV infection models incorporating both HIV positive
(only individuals not yet showing AIDS) and direct HIV positive to HIV posi-
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tive transmission. According to recent studies, the direct HIV positive to HIV
positive transfer of HIV is a significantly more efficient mode of retroviral dis-
semination. Infection with hepatitis C virus (HCV) is a major global public
health problem. According to the Word Health Organization (WHO) statistics,
3-4 million people are infected every year and the number of people currently
infected with HCV worldwide is approximately 130-150 million [10]. However,
the study of infectious disease co-epidemics is critical to understanding how
the diseases are related, and how prevention and treatment efforts can be most
effective. Mathematical models can provide insight into the complicated in-
fection dynamics, and into effective control measures. Most mathematical epi-
demic models evaluate a single disease [8, 11], although a growing number
of studies have considered co-epidemics [7, 13]. Mathematical studies of co-
infection models are not very common. On the other hand, the huge public
health burden inflicted by HIV and HCV necessitates the use of mathematical
modeling to gain insights into their transmission dynamics and to determine
effective control strategies. Co-infection with HIV has been associated with a
more rapid progression of liver disease as well as a higher prevalence of cirrhosis
[1, 6, 12, 16, 17]. The paper is organized as follows; In Section 2, we present
an HCV/HIV model that allows for the incorporation of both infections. In
Section 3, the basic reproduction numbers of each infectious disease and the
overall reproduction number for the full system are computed. Furthermore,
we study the existence of equilibria and their stabilities. Section 4 is devoted
to discussing the results of our analysis using selected numerical solutions.

2. Model Formulation

Based on the individuals epidemiological status, the total population N has
been subdivided into the following classes or subgroups: Susceptible individu-
als to both diseases S(t), HIV positive-only individuals not yet showing HIV
symptoms Jp, (), I (t) represent positive-only individuals not yet showing HIV
that cannot produce virions but are ready to do so once they are activated
by their recall antigens. individuals infected just with hepatitis C I.(¢), AIDS
patients not yet on antiretroviral therapy Ay (t), AIDS patients on antiretrovi-
ral therapy A;(t). We consider HIV positive not yet showing AIDS symptoms
dually infected with HCV in two classes called Ij.(¢) and Jy.(t), AIDS patients
not yet on antiretroviral therapy dually infected with HCV Ap.(t), AIDS pa-
tients on antiretroviral therapy dually infected with HCV A,.(¢t). AIDS patients
in this model are assumed to be sexually inactive study. Thus, the total popu-
lation size is given by

N@t) = S@)+ In(t) + I.(t) + Ju(t) + Ap(t) + As(2)
+ Ine(t) + Jne(t) + Ape(t) + Age(t). (1)
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Suppose that A is constant recruitment rate. Furthermore, natural mortality
rate, p, is assumed to be constant in all classes. The forces of infection asso-
ciated with HCV or HIV infection denoted by ., A, respectively, have the
form

BrlIn(t) + dInc(t)]
N(t) ’

Belle(t) + nlne(t)]

Ac(t) =

Parameters G, and 3, denotes the probability of getting infected with either
HCV or HIV, respectively. The parameter n > 1 and ¢ > 1 captures the
assumed increased probability for individuals dually infected with HCV and
HIV to infect their partners. Susceptible individuals are infected with HIV and
HCV at rates A\, and ., respectively.

Once an individual have been infected with HCV, they enter the class I.. Indi-
viduals in I, move back into the susceptible class following treatment at a rate
71, since previous infection does not confer immunity. Susceptible infected with
HIV enters symptomless HIV class I, move in to class J;, at a rate k, people
in class J;, where they progress to the AIDS class Ay at a rate p. Individuals
in the AIDS stage J;, are detected and put on treatment at rate 6 to enter
the class A;. HIV infected individuals not yet in the AIDS stage of disease
progression, I are infected with HCV at rates oA, to enter thc class, J, are
infected with HCV at rates o\, to enter Jy. class. It is worth noting that o > 1
is the modification parameter accounting for the increased risk of getting HCV
infection for someone already infected with HIV (since most co-infections po-
tentially promote transmission and faster progression to AIDS). HCV infected
individuals (I.; Ine; Jhe; Ane; Ate) have an additional HCV induced death rate
d.. Individuals in the AIDS stages of disease progression (Ap; A¢; Ape; Aie)
have an additional AIDS-induced death rate d,. HCV only infected individuals
I, are infected with HIV at a rate oA(oc > 1) to move into the class Ij.. Here,
0 > 1 accounts for the increased susceptibility to HIV infection for HCV in-
fected people, since HCV exerts a cofactor effect, leading to accelerated decline
in immune function and increased vulnerability to other infections. Individuals
in I, enter Jy. at a rate k, People in Jy. progress to their respective AIDS
stage Ay at a rate p. AIDS patients dually infected with HCV are detected and
put on antiretroviral therapy at a rate 62 to get into Ay, class. Dually infected
people in the classes Ip., Ap. and A;. are treated for HCV at rates ro, 73,74
and 75 to move back into the classes Iy, Jy, Ap and A;, respectively.
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The parameters k1 and ko represent the rate at which HIV Latent-infected
individuals and Latent-infected individuals dually infected with HCV move to
HIV-positive class and HIV-positive class dually infected with HCV, respec-
tively. The parameters a; and s are the transmission rate of J, and Jp.
classes to I, and Ij. classes. The population is assumed to be uniform and
homogeneously mixing. The structure of the model is presented in Fig. 1. Mo-
tivated by Bhunu and Mushayabasa in [3], our HCV/HIV model is given by
the following systems of ten ordinary differential equations:

S(t) = A— (o + A+ p)S + 111,
I(t) = XS — (u+ de + 11+ 0Mn) L,

0 (t) = MS + rolne — (1 + o1 e + E1) I + arJn,
Jh(t) =kiIp +r3Jpe — (0 + a1 + p1 4+ 02Ae) T,
{n(t) = prJh + T4Ane — (1t + do + 01 + 03X Ap,
Ay(t) = 01 Ap + 15 A — (0 + do + Tade) Ay,
Ine(t) = 01 + o1 XDy — (p+ de + 72 + ko) + a2 Jhe,
Jne(t) = oo — (4 de + 73 + p2 + a2) Jne + kalpe,
Ape(t) = pane + 03AAp — (pt+ do + de + 02 + 74) Ape,
Atc(t) = 03Anc + oA AL — (4 dg +de +75) Ase.

~.

A
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3. Model Properties

In this section, we study the basic properties of the solutions of system (3),
which are for the proofs of stability.
3.1 Invariant region

The following Lemmas show that the solution of system (3), remains bounded
(and hence exists for all time) and is nonnegative for all ¢ > 0.

Lemma 3.1.1. The region Q) defined by
A
Q= {57 IC7Ih7Jh7Ah7At7IhC7 JhchhcaAtc € R}ro N < E}a

is positively invariant and attracting with respect to model (3).

Proof. Let (S, I, In, Jn, An, Aty Ine, Jhe, Ane, Ate) € R4 be any solution of sys-
tem (3) with given nonnegative initial condition

(S(O)a Ic(o)7 Ih(o)a Jh(o)a Ah(o)a At(0)7 Ihc(0)7 Jhc(o)a Ahc(o)a Atc(o))
Since

N@t) = S(t)+ In(t) + Ju(t) + L.(t) + Au(t)
+ A(t) F Tne(t) + Tne(t) + Apc(t) + Are(2),

in the absence of infection, the system reduces to
N(t) = S(t) = N(t) = S(t) = A — uS.

Applying the Birkhoff-Rota’s (1982) theorem on differential inequality into last
equation, it becomes:

integrating (4) and applying initial conditions, we obtain
A —put
N(t) < — — Noe #*. (5)
I

As t — oo, the inequality (5), becomes 0 < N(¢) < % which implies that

N(t) — % Hence, the feasible solution set of system (3) enters in the region

Q = {S(0). 1u(0). 1), (1), Au(t). Inct), Jnelt), Arelt). Are € Ry N < %}
(6)
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Thus for all ¢ > 0, every solution of system (3) with initial conditions in remains
there and the solutions of system equation (3) are always positive. O

Lemma 3.1.2. All solutions of system (3) are bounded.

Proof. Using system (3) we have N < A — uN. Assume that N(t) < M for

all ¢ > 0 where M = % + ¢, € > 0. Solutions to the equation M = A — uM
are monotone increasing and bounded by % if M(0) < % They are mono-
tone decreasing and bounded above if M(0) > % Since N < M, the claim
follows. O

3.2 Positivity

Lemma 3.2.1. The equations preserve positivity of solutions.

Proof. We need to show that for all ¢ > 0, the solutions of system (3) are
always positive. From the second equation of model system (3), we have:

Ie(t) = XS — (4 de + 11+ 6Xp) I, (7)
Since A.S > 0, then

dL.()
t

> —(p+de+ 11+ 0. (8)

integrating with respect t, yields
I(t) > [Oc(t)e—(u+dc+r1+5kh). (9)

The right side of the inequality (9) is always positive, hence I. is positive for
all ¢t > 0.
Using Birkhoff-Rota’s (1982) theorem, the second equation can be solved for

I, as follows
dIhc

dt
Integrating with respect to t yields

> *(u+dc+7’2+p)]‘c- (10)

Ine = Iope(t)e™ (Htratptde) (11)

Here again, it is clear that the right side of the last inequality in (11) is always
positive, hence I}, is positive for all t > 0. From above results, we can conclude
that whenever ¢t > 0, the solutions of the system (3) are positive. O
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3.3 Infection-free equilibrium and reproduction numbers.

The model (3) has a disease-free equilibrium given by
A
eo=(S*, I I}, Jp AL AL Ty I Ab ey As) = (570,0,0,0,070,0,0,0) (12)

A commonly used measures of the severity of an epidemic is the basic repro-
duction number Rp.. It is defined as the expected number of new infections
generated by a single infected person during his/her entire period of infec-
tiousness when introduced in a completely susceptible population. However, in
the proposed model, infectious individuals can be in one of the nine classes
I, In, JIn, Acy Agy Ine, Jhe, Ane, Age and the expected number of secondary in-
fections depend on the class. By the next generation method, the Jacobian
for systems (3) for the new infections and transfer from one compartment to
another is given by:

Be O W+ de + 11 0

=10 5 | 0 ik |

By the next generation matrix method, we have

Be 0
p+ry+de
-1 _
FV— = B
12 + ]Cl — X7
From which we obtain the eigenvalues
. = L7 R, = L (13)
w+ry+de w+ki—ag
Ry is equal to the spectral radius of the matrix FV !
/Bc ﬁh
Ro = max{R., Ry} = max , . 14
° ¢ 2 {H+7“1+dc M+k1—041} (14)

A threshold condition for endemicity is given by Ry = 1 : the disease dies out if
Ry < 1, and becomes endemic if Ry > 1. Thus we conclude with the following
theorem and follows from Theorem 2 of [14].

Theorem 3.3.1. If eq is a DFE of the model (3), then eq is locally asymptot-
ically stable if Ry < 1, but unstable if Ry > 1.
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4. The Existence and Stability Analysis of En-
demic Equilibrium Point (EEP)
This is a case when there is infection in the study population. To explore the

existence of endemic equilibrium, we set the right hand side of system (3) to
zero and solve it.

HCV-only Equilibrium

This occurs when I, = A, = Ay = I, = Ape = Aye = 0 and is given by
e* = (8¥,1*,0,0,0,0,0,0,0,0)

from (3), with &7,

A= Ac+p)S; +mli =0, (15)
XSy — (p4de +11 4+ 0M)I = 0. (16)
From (14),
u—l—rl—i—dc:%, (17)
with applying (17) in (16), we get
I SER:A
ASi— 2 =0 = [} = —=° 18
- e (18)
: _ BelIZ(®)]
From (18), with A.(t) = N
I =S:(R.—1). (19)

In the same way we can show that S} = B:[1 — +].
Using the next generation method, the reproductive number for system (3) is
given by:

R = AR =1) + Re(u+de+ 1+ p)
Ch R([ﬁcg(ﬂ+dc+p)(Rc_ 1)+RC(:U’+dc+T2+p)]

where A = (§R.(r2 + (p+ 1)@) + ¢poB:[6(R. — 1) + 1]).

In order to derive an expression for the region of stability of the boundary
equilibrium ¥, we measure the capacity of HIV to invade and persist in a
population where HCV is endemic.

(20)
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5. HIV-Only Submodel

Consider the HIV-only submodel (obtained by setting I. = In. = Jpe = Ape =
Aie = 0) in system (2.3), so that we have

wn-

(t) = A — (e + Mn + 1),
h(t) = )\hS — (,u+ kl — Otl)Ih,

In(t) = k1lp — (e + o + p1)Ja,

Ah(t) = leh - (M +0+ da)A}u (21)

Ap(t) = 01 An — (1 + da) Ay,

~

HCV-free endemic equilibrium given by

g5 — A+ k1 4+ do)(pp+ da + p1)

P (A R+ do) (0t da + 1) + A
I = (1 +da)(p+ p1+ o1) BA(p + ki + dy)
(4 k1) = 228 (i + b+ do) (p+ do + p1) + A
. ket da) [+ k) (Br — 1) + S A (e by + da)
" (k) = 2B+ b+ da)(p+ do 1) + A
A7 = prky(p+da) BA(p + k1 + do)
(1 01+ do) (1 + 1) = 28O + A
Ar = O1p1ki(p + da) BA(p + k1 + da)
(1 + da) (i + 01+ da) (1 + k1) — 729-)C + A
where
A= (ueda) e+ o p2)[((+ by By — 1)+ — M
Bt o1+ pr
a1k
B = [(u+Fk)(Rp—1)+ ot
C = plp+ki+da)(p+da+p1)

Now we explore the potential of HCV to invade a population in which HIV is
already endemic (Ry, > 1). This requires us to find the invasion reproduction
number of model system (3) around ¢}, which is given by

R, = 577@:(ﬁc(u+da)(u+ﬂ+0¢1)(H+k+da)(Rh+1)+mnRh
he Rpn \mgRp+0Bn (p+da)(pt+ptar)(ptk+da) (Rr—1)

(p+da) (ptptar)(ptk+dy) (Ry—1)
+ 24 Hrp 1m# h )




28 M. ZEREHPOUSH AND H. KHEIRI

where

= (p+do+k1)(p+da+p1),
n = (p+re+ks+d.—an),
g = (,U/—f—dc—i-’l"1)

This formalism permits the derivation of a threshold condition for coexistence,
now equivalent to a threshold condition for HIV endemicity in a population
where HCV is at equilibrium, Rj, = 1: only HIV persists for R, < 1, while
for Ry, > 1 HCV can invade a population where HIV state are fixed, that is,
to say coexistence is possible.

Theorem 5.1. This endemic equilibrium e}, exists and is unique if and only if
Ry > 1 and Rhc < 1.

Proof. See [4]. O

6. Numerical Simulations

In this section, we use numerical illustrations to asses the effects of HCV treat-
ment and antiretroviral therapy and the demographic impact of the epidemic.

Table 1: Variables and parameters for viral spread

Parameter Value (range) Source
A 50000 ]
1 0.02yr—1 7]
B.() 0.015 — 0.90yr— L || 2]
Br(t) 0.011 — 0.95yr ¢ 7]
(r1,72,73,74,75) 0.30yr~! [
(01,02,03,04) 0.30yr~! [
(64, 02) 0.33yr—1 7]
o1 1.02 7]
b 1.05 7]

o1 0.5 Assume
da 0.333yr ! [?]
de 0.25yr— ! [?7]
5 1.0001 7]
n 1.0002 ]

k1 0.4 Assume

a1 0.009 Assume
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The parameters that we use for numerical simulations of the model system
(3) are given in Table 1. We use a fourth order RungeKutta numerical scheme
coded in matlab programming language for the numerical simulations of model
system (3).

We assume Sy = 4000000, = 10,159 = 10,J9 = 10,Jp0 = 10, Apg =
10, Ay = 10, Ipeo = 1, Apeo = 1 and A;g = 1 be the initial population propor-
tions of individuals in each compartment at the start of the epidemic.

In the presence of antiretroviral therapy for people in the AIDS stage and HCV
treatment, susceptibles decline to their corresponding asymptotic state as noted
in Fig. 2 and the HIV only infected people increase to their corresponding
asymptotic state (see Fig. 3), and we assume Sy = 4000000, I.o = 2000, I},p =
200, Jo = 200, Jpo = 20000, Ape = 10000, Ayg = 100, Iy = 1, Apep = 10000
and As.p = 1 be the initial population proportions of individuals in each com-
partment at the start of the epidemic (see Fig. 4 and Fig. 5).

Infected Population

oF

(] 20

40 60
Time (Year)

Figure 2 Figure 3

Infected Population

RS

0 60
Time (Year)

40 60
Time (Year)

Figure 4 Figure 5

7. Conclusion

In this paper we have discussed the asymptotic behaviour of antiretroviral
therapy for AIDS cases and HCV treatment model with a time delay due to
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the long incubation period of the disease. We have established the conditions
under which the equilibria for the model are locally and globally stable. The
dynamics behavior of the ODE treatment proposed model can be determined
by its basic reproduction number Ry, i.e., If Ry is less than unitythere is a
unique infection free equilibrium which is globally asymptotically stable. If Ry
greater than unity, the disease persists and the unique endemic equilibrium is
globally asymptotically stable.

1]

2]

=
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