Fuglede-Putnam Type Theorems Via the Moore-Penrose Inverse and Aluthge Transform

M. Sohrabi Chegeni*
Lorestan University

N. Abbasi
Lorestan University

H. Emamalipour
Faculty of Mathematical Sciences, University of Tabriz

Abstract. Let $A, B \in B(H)$, where H is a Hilbert space. Let \tilde{T} and T^\dagger denote the Aluthge transform and the Moore-Penrose inverse of T, respectively. We show that (i) if A^* is quasinormal, then $((\tilde{A})^\dagger, (\tilde{B})^\dagger)$ has the FP-property; (ii) if (A^\dagger, B^\dagger) has the FP-property, then so has $((\tilde{A})^\dagger, (\tilde{B})^\dagger)$. In general, $(T)^\dagger \neq \tilde{T}^\dagger$. Finally, we give some applications to the Lambert multiplication operator M_wEM_u on $L^2(\Sigma)$, where E is the conditional expectation operator.

AMS Subject Classification: 47B20; 47B47
Keywords and Phrases: Fuglede-Putnam, aluthge transformation, moore-penrose inverse, polar decomposition, conditional expectation, partial isometry

1. Introduction

In this section our purpose is to investigate some Fuglede-Putnam properties (shortened to FP-properties) for operators acting on Hilbert spaces.
The classical Fuglede-Putnam commutativity theorem says that if A, B are normal (see, e.g., [14, p. 84]), then the pair (A, B) has the FP-property.

Given a complex separable Hilbert space H, let $B(H)$ denotes the linear space of all bounded linear operators on H. Let $T = U|T|$ be the polar decomposition of T. An operator T is said to be binormal, if $[[T], [T^*]] = 0$, where $[A, B] = AB - BA$ for operators A and B. T is said to be quasinormal, if $(T^*T)T = T(T^*T)$. Associated with $T \in B(H)$, there is a useful related operator $\tilde{T} = |T|^{1/2}U|T|^{1/2}$, called the Aluthge transform of T. Let $CR(H)$ be the set of all bounded linear operators on H with closed range. For $T \in CR(H)$, the Moore-Penrose inverse of T, denoted by T^\dagger, is the unique operator $T^\dagger \in CR(H)$ which satisfies

$$TT^\dagger T = T, \quad T^\dagger TT^\dagger = T^\dagger, \quad (TT^\dagger)^* = TT^\dagger, \quad (T^\dagger T)^* = T^\dagger T.$$ (1)

We recall that T^\dagger exists if and only if $T \in CR(H)$. The Moore-Penrose inverse is designed as a measure for the invertibility of an operator. If $T = U|T|$ is invertible, then U is unitary and so $|T| = (T^*T)^{1/2}$ is invertible. It is a classical fact that the polar decomposition of T^* is $U^*|T^*|$. It is easy to check that $U^*|T^*|^\dagger$ and $|T^*|^\dagger U^*|T^*|^\dagger$ are the polar decomposition and Aluthge transform of T^\dagger, respectively. It is sufficient to show that $(T^*)^\dagger = |T^*|^\dagger U$, because $T^\dagger = ((T^*)^\dagger)^*$.

$$T^*(T^*)^\dagger T^* = U^*|T^*|(|T^*|^\dagger U)U^*|T^*|$$
$$= U^*|T^*| |T^*|^\dagger |T^*|$$
$$= U^*|T^*| = T^*,$$

$$(T^*)^\dagger T^*(T^*)^\dagger = |T^*|^\dagger UU^*|T^*||T^*|^\dagger U$$
$$= |T^*|^\dagger |T^*| |T^*|^\dagger U$$
$$= |T^*|^\dagger U = (T^*)^\dagger.$$

Since $T^* = U^*|T^*|$ is polar decomposition for T^*, so $N(T^*) = N(U^*)$. But $N(T^*) = N(T^\dagger)$. Hence $N(U^*) = N(T^\dagger)$. Also it is easy to check that $T^*(T^*)^\dagger$ and $(T^*)^\dagger T^*$ are self-adjoint operators. Therefore, we have $T^\dagger = U^*|T^*|^\dagger$ is polar decomposition. Similarly it can be shown $|T^\dagger|^{1/2}U^*|T^\dagger|^{1/2}$
is Aluthge transform of T^\dagger. We shall make use of the following general properties of T^*, \tilde{T}, T^\dagger, parts of their projections and polar decompositions. For proofs and discussions of some of these facts see [1, 2, 3, 7, 12, 13, 15, 19].

1. $P(\tilde{T}^\dagger = |T^\dagger|^{\frac{1}{2}}U^*|T^\dagger|^\frac{1}{2} , (\tilde{T}^\dagger)^\dagger = \tilde{T}(t)$;
2. $P(\text{If } T \text{ is binormal then } \tilde{T}^\dagger = (|T^\dagger|^{\frac{1}{2}}U^*(|T^\dagger|^\frac{1}{2}));$
3. $P(\text{If } T \text{ is binormal then so is } T^\dagger \text{ and } (T^\dagger)^* = (T^\dagger)^\dagger$;
4. $P(\text{If } |T^\dagger| = |T^\dagger|^\dagger \text{ and } |T^\dagger|^\frac{1}{2} = (|T^\dagger|^\frac{1}{2})^\dagger$;
5. $P(U^*(|T^\dagger|\frac{1}{2})^2 = (|T^\dagger|^\frac{1}{2})U^*$;
6. $P(|(T^\dagger)^\dagger| = |T|^\dagger$;
7. $P(U^*|T^\dagger|^\dagger \text{ and } U^*|T^\dagger|^\dagger \text{ are the polar decompositions of } T^*$ and T^\dagger, respectively;
8. $P(UU^*|T^\dagger|^\dagger = |T^\dagger|^\dagger$;
9. $P(|(T^\dagger)^*|^\dagger = U^*$.

The next lemmas are concerned with the Fuglede-Putnam theorem and we need them in the future.

Lemma 1.1. [18, 16] Let $A, B \in B(H)$. Then the following assertions are equivalent:

(i) The pair (A, B) has the FP-property.
(ii) If $X \in \text{Com}(A,B)$, then $\overline{R(X)}$ reduces A, $(ker X)^\perp$ reduces B and $A_{\overline{R(X)}}, B_{(ker X)^\perp}$ are unitarily equivalent normal operators.

Lemma 1.2. If $A, B \in B(H)$ are invertible, then

(i) $X \in \text{Com}(A^\dagger, B^\dagger) \Leftrightarrow |A^\dagger|^\dagger X|B^\dagger|^{-1} = UXV^*$.
(ii) $X \in \text{Com}(A^\dagger, B^\dagger) \cap \text{Com}((A^\dagger)^*, (B^\dagger)^*) \Leftrightarrow |A^\dagger|^\dagger X|B^\dagger|^{-1} = UXV^* = X$.

Proof.

(i) It is clear by definition.

(ii) Let $X \in \text{Com}(A^\dagger, B^\dagger) \cap \text{Com}((A^\dagger)^*, (B^\dagger)^*)$. Then $A^\dagger X = XB^\dagger, (A^\dagger)^* X = X(B^\dagger)^*$, thus we get that $U^*|A^\dagger|^\dagger X = XV^*|B^\dagger|^\dagger, |A^\dagger|^\dagger VX = X|B^\dagger|^\dagger V$. Hence, $UXV^* = |A^\dagger|^\dagger X|B^\dagger|^{-1}, (|A^\dagger|^\dagger)^2 X = (A^\dagger)^* A^\dagger X = (A^\dagger)^* (XB^\dagger) = X(B^\dagger)|B^\dagger = X(|B^\dagger|^\dagger)^2$. Then $(|A^\dagger|^\dagger)^2 X = X(|B^\dagger|^\dagger)^2$. Utilizing a sequence of polynomials uniformly converging to $f(t) = \sqrt{t}$ on $SP(|A^\dagger|^\dagger)^2 \cup SP(|B^\dagger|^\dagger)^2$ and the functional calculus we get $|A^\dagger|^\dagger X = X|B^\dagger|^\dagger$, that
is $|A^\dagger|X(|B^\dagger|)^{-1} = X$. Hence from (i) we have $UXV^* = X$. The reverse direction is trivial. □

In the following, we try to provide some results concerning this problem that we call it the Fuglede-Putnam-Moore-Penrose problem. More precisely, we prove that if (A^\dagger, B^\dagger) has the FP-property, then $\text{Com}(A, B) \subseteq \text{Com}(A^\dagger, B^\dagger)$ and if, moreover, A is invertible operator then, $\text{Com}(A^\dagger, B^\dagger) = \text{Com}((A)^\dagger, (B)^\dagger)$. Note that if $A = U|A|$ is invertible then U is unitary and $|A|$ is also invertible.

2. Fuglede-Putnam Theorem for Moore-Penrose Inverse and Aluthge Transforms

As mentioned above, in this section we present some results concerning the Fuglede-Putnam-Moore-Penrose problem.

Lemma 2.1. If $A, B \in CR(H)$ are binormal, then

(i) $X \in \text{Com}(A^\dagger, B^\dagger) \Leftrightarrow (|A^\dagger|\frac{1}{2}U^*X(|B^\dagger|)^{\frac{1}{2}} \in \text{Com}((\tilde{A})^\dagger, (\tilde{B})^\dagger)$.

(ii) $X \in \text{Com}((A)^\dagger*, (B)^\dagger*) \Leftrightarrow (|A^\dagger|\frac{1}{2}XV(|B^\dagger|)^{\frac{1}{2}} \in \text{Com}(((A)^\dagger)^*, ((B)^\dagger)^*)$.

Proof. (i) If $A^\dagger = U^*|A^\dagger|^\frac{1}{2}, B^\dagger = V^*|B^\dagger|^\frac{1}{2}$ be polar decompositions, since $U^*(|T^\dagger|^\frac{1}{2}) = (|T^\dagger|U^*)$ then we have,

$$X \in \text{Com}(A^\dagger, B^\dagger) \Rightarrow U^*|A^\dagger|^\frac{1}{2}X = XV^*|B^\dagger|^\frac{1}{2} \Rightarrow |A^\dagger|U^*X = X|B^\dagger|V^*.$$

Hence,

$$(\tilde{A})^\dagger(|A|\frac{1}{2}U^*X|B|^\frac{1}{2}) = |A|\frac{1}{2}U^*(|A|\frac{1}{2}U^*X|B|^\frac{1}{2})$$

$$= |A|\frac{1}{2}U^*(X|B|^\frac{1}{2}V^*)|B|^\frac{1}{2}$$

$$= (|A|\frac{1}{2}U^*X|B|^\frac{1}{2})(\tilde{B})^\dagger.$$

The converse obviously holds.

(ii) It could be proved in a similar way (i). □

Corollary 2.2. If $A, B, \tilde{A}, \tilde{B} \in CR(H)$ and A, B are binormal. Then
\(|A^\dagger|^{\frac{1}{2}} XV (|B^\dagger|)^{\frac{1}{2}} \in \text{Com}(\tilde{A}^\dagger, \tilde{B}^\dagger) \) if and only if \(|A^\dagger|^{\frac{1}{2}} U^* X (|B^\dagger|)^{\frac{1}{2}} \in \text{Com}(\tilde{A}^\dagger, (\tilde{B}^\dagger)^\dagger)\).

Proof. It follows from P(3) and Lemma 2.1. \(\Box\)

Theorem 2.3. Let \(A, B, \tilde{A}, \tilde{B} \in CR(H)\) and \(A, B\) are binormal, \(A^*\) is quasinormal. Then the pair \(((\tilde{A})^\dagger, (\tilde{B})^\dagger)\) has the FP-property.

Proof. Let \(A = U|A|\) and \(B = V|B|\) be the polar decompositions. We show that \(\text{Com}((\tilde{A})^\dagger, (\tilde{B})^\dagger) \subseteq \text{Com}(((\tilde{A})^\dagger)^*, ((\tilde{B})^\dagger)^*)\) if and only if \(U^2 X = XV^2\), for any \(X \in \text{Com}(A^\dagger, B^\dagger)\). First, we prove that the FP-property for \(\text{Com}((\tilde{A})^\dagger, (\tilde{B})^\dagger)\) is equivalent to following requirement,

\[
U^* X V^* \in \text{Com}((A^\dagger)^*, (B^\dagger)^*), \quad (X \in \text{Com}(A^\dagger, B^\dagger)). \tag{2}
\]

Let \(((\tilde{A})^\dagger, (\tilde{B})^\dagger)\) have the FP-property and \((X \in \text{Com}(A^\dagger, B^\dagger))\). By Lemma 2.1(i), \(|A^*|^\frac{1}{2} U^* X (|B^*|^\frac{1}{2}) \in \text{Com}(((\tilde{A})^\dagger)^*, ((\tilde{B})^\dagger)^*)\).

Since \(\text{Com}((\tilde{A})^\dagger, (\tilde{B})^\dagger)\) has the FP-property then, \(|A^*|^\frac{1}{2} U^* X (|B^*|^\frac{1}{2}) \in \text{Com}((\tilde{A})^\dagger, (\tilde{B})^\dagger)\)). By Lemma 2.1(ii),

\[
(|A^\dagger|^\frac{1}{2} (|A^\dagger|^{\frac{1}{2}} U^* X (|B^\dagger|)^{\frac{1}{2}} (|B^\dagger|)^{\frac{1}{2}} (|B^\dagger|)^{\frac{1}{2}} V^* \in \text{Com}((A^\dagger)^*, (B^\dagger)^*). \]

Then, \(U^* X V^* \in \text{Com}((A^\dagger)^*, (B^\dagger)^*)\).

To prove the reverse, assume that (2.1) holds and let \(X \in \text{Com}((\tilde{A})^\dagger, (\tilde{B})^\dagger)\).

It follows from Lemma 2.1(i), that \(U(|A^\dagger|^{\frac{1}{2}} X (|B^\dagger|)^{\frac{1}{2}} \in \text{Com}(A^\dagger, B^\dagger)\).

Then by (2.1) we have \(U^* U(|A^\dagger|^{\frac{1}{2}} X (|B^\dagger|)^{\frac{1}{2}} V^* \in \text{Com}((A^\dagger)^*, (B^\dagger)^*))\).

and by Lemma 2.1(ii), implies that \(X \in \text{Com}((A^\dagger)^*, (B^\dagger)^*)\), therefore \(\text{Com}(A^\dagger, B^\dagger)\) has the FP-property.

Let (2.1) hold, then by Lemma 2.1(i) for any \(X \in \text{Com}(A^\dagger, B^\dagger)\), it follows that the \(|A^*|^\dagger X (|B^*|^\dagger)^{-1} = UXV^*\). By using (2.1), we obtain

\[
(A^\dagger) U^* X V^* = U^* X V^* (B^\dagger)^* \Rightarrow |A^*|^\dagger X V^* = U^* X V^* |B^*|^\dagger V =
\]

\[
(U^2)^2 U^* X V^* |B^*|^\dagger V.
\]

Then by Lemma 2.1(i) we get that, \(|A^*|^\dagger X (V^*)^2 = (U^*)^2 |A^*|^\dagger X\). Since \(A^*\) is quasinormal then, \(X (V^*)^2 = (U^*)^2 X\). Thus \(XV^2 = U^2 X\). The converse can be proved in the same way. \(\Box\)
Corollary 2.4. If \((A^\dagger, B^\dagger)\) has the FP-property, then so has \(((\tilde{A})^\dagger, (\tilde{B})^\dagger)\).

Proof. If \((A^\dagger, B^\dagger)\) has the FP-property, then by Lemma 2.1(ii), \(UX = XV\) for any \(X \in (A^\dagger, B^\dagger)\). Thus \(U^2X = U(XV) = (UX)V = XV^2\). Therefore by the theorem 2.3, \(((\tilde{A})^\dagger, (\tilde{B})^\dagger)\) has the FP-property. □

Corollary 2.5. If \((A, B)\) has the FP-property, then so has \((\tilde{A}(\dagger), \tilde{B}(\dagger))\).

Proof. By corollary 2.4 and P(1) the proof is completes. □

Corollary 2.6. If \(A, B\) be binormal, \((A, B)\) has the FP-property, then so has \((\tilde{A}(\ast), \tilde{B}(\ast))\).

Proof. By corollary 2.4 and P(3) the proof is completes. □

Theorem 2.7. Let \(A, B \in CR(H)\) and let \((A^\dagger, B^\dagger)\) have the FP-property. Then \(\text{Com}(A^\dagger, B^\dagger) \subseteq \text{Com}((\tilde{A})^\dagger, (\tilde{B})^\dagger)\).

Proof. Let \(A^\dagger = U^\ast|A^\ast|^\dagger, B^\dagger = V^\ast|B^\ast|^\dagger\) be the polar decomposition and let \(\{f_n\}\) be a sequence of polynomials with no constant term such that \(\{f_n(t)\} \to t^{\frac{1}{2}}\) as \(t \to \infty\). Now let \(X \in \text{Com}(A^\dagger, B^\dagger)\), then by the hypothesis, \((A^\dagger)X = X(B^\dagger),(A^\dagger)^\ast X = X(B^\dagger)^\ast\), thus \(|A|^2X = X(|B|^2)^{\frac{1}{2}}\). Using the same argument we get \(|A|^2X = X(|B|^2)^{\frac{1}{2}}\). Also \(U^\ast|A^\ast|^\dagger X = XV^\ast|B^\ast|^\dagger\), then \(|A|^\dagger U^\ast X = X(|B|^\dagger)^{\frac{1}{2}} V^\ast\), and the same argument above show that, \(|A|^\dagger \frac{1}{2} U^\ast X = X(|B|^\dagger)^{\frac{1}{2}} V^\ast\).

Therefore,

\[
(\tilde{A})^\dagger X = (|A|^\dagger)^{\frac{1}{2}} U^\ast (|A|^\dagger)^{\frac{1}{2}} X = X(|B|^\dagger)^{\frac{1}{2}} V^\ast (|B|^\dagger)^{\frac{1}{2}} = X(\tilde{B})^\dagger.
\]

Lemma 2.8. Let \(A \in CR(H)\), then

(i) \(|(A)^\dagger|^q = U^\ast(|A^\ast|^\dagger)^q U^\ast\).

(ii) \(A^\dagger\) is quasinormal if and only if \(U^\ast|A^\ast|^\dagger = |A^\ast|^\dagger U^\ast\).

Proof. (i) By P(4), P(7), P(8) and P(9) we have

\[
(|A|^\dagger)^2 = (|A^\ast|^\dagger)^2 = (|A^\dagger|^\ast)^2 = A^\dagger (A^\dagger)^\ast = U^\ast |A^\ast|^\dagger |A^\ast|^\dagger U
\]

\[
= U^\ast |A^\ast|^\dagger U U^\ast |A^\ast|^\dagger U = (U^\ast |A^\ast|^\dagger U)^2.
\]
Let \(\{p_n\} \) be a sequence of polynomials with no constant term such that
\[p_n(t) \to \sqrt{t} \quad \text{uniformly on a certain compact subset of } \mathbb{R}^+ \quad \text{as } n \to \infty. \]
It follows that
\[p_n((|A|)^2) = p_n((U^*|A^*|U)^2), \]
and so
\[|A|^t = U^*|A^*|^t U. \]
By induction,
\[(|A|^t)^m = U^*(|A^t|^t)^m U \]
holds for each \(m, n \in \mathbb{N} \). Now, by using of the functional calculus,
\[(|A|^t)^q = U^*(|A^t|^q)^q U. \]
(ii) It is a classical fact that \(A \) is quasinormal if and only if \(U|A| = |A|U \)
(see [7, Theorem 3]. Now, the desired conclusion follows from this and \(P(7) \). \(\square \)

Theorem 2.9. Let \(A \in B(H) \) be onto. Then the following statements are equivalent:

(i) \(A^* \) is quasinormal.

(ii) \(A^\dagger \) is quasinormal.

Proof. (i)\(\iff \) (ii) By (1.1) we have
\[|A^*||A^\dagger|A^*| = |A^*|, \]
then we get that
\[A^* \text{is quasinormal} \iff U^*|A^*| = |A^*|U^* \]
\[\iff U^*|A^*||A^\dagger|A^*| = |A^*||A^\dagger|U^*|A^*|U^* \]
\[\iff |A^*|U^*|A^\dagger|A^*| = |A^*||A^\dagger|U^*|A^*| \]
\[\iff |A^*|(U^*|A^\dagger| - |A^\dagger|U^*)|A^*| = 0. \]
By hypothesis, \(N(|A^*|) = N(A^*) = \{0\} \). Hence \((U^*|A^\dagger| - |A^\dagger|U^*)|A^*| = 0 \), and so
\[U^*|A^\dagger| = |A^\dagger|U^* \quad \text{on } R(|A^*|) \]
On the other hand, \(U^*|A^\dagger| = |A^\dagger|U^* \quad \text{on } N(|T^*|^t) = N(U^*). \)
Thus, \(U^*|A^\dagger| = |A^\dagger|U^* \) on \(H \). Consequently, by Lemma 2.8, (i)\(\iff \) (ii) holds. \(\square \)

Theorem 2.10. Let \(A, B \in CR(H) \) be onto and \(A^*, B^* \) be quasinormal.
If \((A^\dagger, B^\dagger)\) has the FP-property then
\(Com(A^\dagger, B^\dagger) = Com((\tilde{A})^\dagger, (\tilde{B})^\dagger) \).

Proof. According to Theorem 2.7, it is sufficient to prove
\(Com(A^\dagger, B^\dagger) \supseteq \)
\(Com((\tilde{A})^\dagger, (\tilde{B})^\dagger) \). Let
\(X \in Com((\tilde{A})^\dagger, (\tilde{B})^\dagger) \),
\(\Lambda = (|A|^t)^{\frac{1}{2}} X (|B|^t)^{\frac{1}{2}}. \)
Since \((\tilde{A})^\dagger X = X(\tilde{B})^\dagger \) Then,
\[(|A|^t)^{\frac{1}{2}} (\tilde{A})^\dagger X (|B|^t)^{\frac{1}{2}} = (|A|^t)^{\frac{1}{2}} X (\tilde{B})^\dagger (|B|^t)^{\frac{1}{2}}. \]
\[\Rightarrow U^* (|A|^t)^{\frac{1}{2}} X (|B|^t)^{\frac{1}{2}} = (|A|^t)^{\frac{1}{2}} X (|B|^t)^{\frac{1}{2}} V^* B^\dagger. \]
\[\Rightarrow U^* (|A|^t)(|A|^t)^{\frac{1}{2}} X (|B|^t)^{\frac{1}{2}} = \Lambda V^* B^\dagger. \]
\[\Rightarrow U^* |A|^t \Lambda = \Lambda V^* B^\dagger. \]
Therefore, $A \in \text{Com}(A^\dagger, B^\dagger)$. Also by the Lemma 1.1, and hypothesis, $\mathcal{R}(\Lambda)$ reduces A^\dagger, $(\ker \Lambda)^\perp$ reduces B^\dagger and $A^{\dagger}_{\mathcal{R}(\Lambda)}, B^\dagger_{(\ker \Lambda)^\perp}$ are unitarily equivalent normal operators. Thus,

$$A^\dagger = A_1^\dagger \oplus A_2^\dagger \quad \text{on } \mathcal{R}(\Lambda) \oplus R(\Lambda)^\perp,$$

and

$$B^\dagger = B_1^\dagger \oplus B_2^\dagger \quad \text{on } N(\Lambda)^\perp \oplus N(\Lambda),$$

where A_1^\dagger, B_1^\dagger are unitarily equivalent normal operators. Since A is invertible and A_1^\dagger, B_1^\dagger are unitarily equivalent then, B_1^\dagger is invertible. Let,

$$X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}$$

and

$$\Lambda = \begin{pmatrix} \Lambda_1 & 0 \\ 0 & 0 \end{pmatrix}.$$

It follows from $\Lambda = (|A|^\dagger)^{-\frac{1}{2}} X (|B|^\dagger)^{\frac{1}{2}}$, that,

$$\Lambda = \begin{pmatrix} \Lambda_1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} (|A_1|^\dagger)^{-\frac{1}{2}} X_1 (|B_1|^\dagger)^{\frac{1}{2}} & (|A_1|^\dagger)^{-\frac{1}{2}} X_2 (|B_1|^\dagger)^{\frac{1}{2}} \\ (|A_2|^\dagger)^{-\frac{1}{2}} X_3 (|B_1|^\dagger)^{\frac{1}{2}} & (|A_2|^\dagger)^{-\frac{1}{2}} X_4 (|B_2|^\dagger)^{\frac{1}{2}} \end{pmatrix}.$$

Therefore, $X_2 (|B_1|^\dagger)^{\frac{1}{2}} = 0$, $X_3 = X_4 (|B_2|^\dagger)^{\frac{1}{2}} = 0$, then as the result, $X_2 (B_2)^\dagger = 0$, $X_4 (B_2)^\dagger = 0$. Thus $(\tilde{A})^\dagger X = X(\tilde{B})^\dagger$, implies that,

$$\begin{pmatrix} A_1^\dagger X_1 & A_1^\dagger X_2 \\ 0 & A_2^\dagger X_4 \end{pmatrix} = \begin{pmatrix} X_1 B_1^\dagger & 0 \\ 0 & 0 \end{pmatrix}.$$

Then, $X_2 = 0$, $X_4 = 0$, $A_1^\dagger X_1 = X_1 B_1^\dagger$, and since

$$X = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix} = X_1 \oplus 0.$$

Therefore, $A^\dagger X = XB^\dagger$ and the proof is completed. □
Corollary 2.11. Let A^*, B^* be quasinormal. If (A, B) have the FP-property. Then $\text{Com}(A, B) = \text{Com}(\tilde{A}^{(1)}, \tilde{B}^{(1)})$.

3. Moore-Penrose Inverse of Lambert Multiplication Operators

Let (X, Σ, μ) be a σ-finite measure space. For any σ-finite subalgebra $\mathcal{A} \subseteq \Sigma$ the Hilbert space $L^2(X, \mathcal{A}, \mu|_{\mathcal{A}})$ is abbreviated to $L^2(\mathcal{A})$. The support of a measurable function f is defined by $\sigma(f) = \{ x \in X : f(x) \neq 0 \}$. All sets and functions statements are to be interpreted as being valid almost everywhere with respect to μ. For each $f \in L^2(\Sigma)$, by the Radon-Nikodym theorem, there exists a unique \mathcal{A}-measurable function $E^A(f)$ such that $\int_A f d\mu = \int_A E^A(f) d\mu$, where A is any \mathcal{A}-measurable set for which $\int_A f d\mu$ exists. Put $E = E^A$. The mapping E is a linear orthogonal projection. For more details on the properties of E see [9, 17].

Let $w, u \in L^0(\Sigma)$, the linear space of all complex-valued Σ-measurable functions on X. The mapping $T : L^2(\Sigma) \to L^0(\Sigma)$ defined by $T(f) = M_w E M_u(f) = wE(uf)$ is called Lambert multiplication operator. It is easy to check that for each $f \in L^2(\Sigma)$, $\|Tf\| = \|E M_u f\|$, where $v := u(E(|w|^2))^{1/2}$. Thus, $M_w E M_u$ is bounded (has closed range) if and only $E M_u$ is bounded (has closed range). Interesting articles related to this topic are [5, 6, 9]. A combination of conditional expectation operators and multiplication operators appears more often in the service of the study of other operators, such as operators generated by random measures and Markov operators. A good article related to the conditional type operators is [8].

Here we recall some results of [11] that state our results is valid for $T = M_w E M_u$.

Proposition 3.1. Let $T : L^2(\Sigma) \to L^0(\Sigma)$ defined by $T = M_w E M_u$ is a Lambert multiplication operator.

(i) $T \in B(L^2(\Sigma))$ if and only if $E(|w|^2)E(|u|^2) \in L^\infty(\mathcal{A})$, and in this case $\|T\| = \|E(|w|^2)E(|u|^2)\|^{1/2}_{\infty}$.

(ii) Let $T \in B(L^2(\Sigma))$, $0 \leq u \in L^0(\Sigma)$ and $v = u(E(|w|^2))^{1/2}$. If $E(v)$ is
δ on σ(ν), then T has closed range.

Put
\[A(f) = \frac{u\chi_{G}}{E(u^2)E(w^2)}E(wf), \quad f \in L^2(\Sigma), \quad G = \sigma(E(w)). \quad (3) \]

Then by Proposition 3.1, \(A \in B(L^2(\Sigma)) \). Also, it is easy to check that
\[TAT = T, \quad ATA = A, \quad (TA)^* = TA, \quad (AT)^* = AT. \]

Thus, \(A = T^\dagger \). We now turn to the computation of \(T^\dagger \), \(\widetilde{T} \), \((\widetilde{T})^\dagger \) and \(\widetilde{T}^\dagger \). Direct computations give the following proposition.

Proposition 3.2. Let \(T, \widetilde{T} \in CR(L^2(\Sigma)) \) with \(u, w \geq 0 \). Then

\[(a) \quad T^\dagger = M \frac{u\chi_{\sigma(E(w))}}{E(u^2)E(w^2)} EM_w. \]
\[(b) \quad \widetilde{T} = M \frac{uE(uw)}{E(u^2)} EM_u. \]
\[(c) \quad (\widetilde{T})^\dagger = M \frac{u\chi_{\sigma(E(uw))}}{E(u^2)E(uw)} EM_u. \]
\[(d) \quad \widetilde{T}^\dagger = M \frac{\chi_{G(wu)E(w^2)}}{E(u^2)E(w^2)^2} EM_w. \]

Note that, if \(w \) or \(u \) is not \(A \)-measurable, then \((\widetilde{T})^\dagger \neq \widetilde{T}^\dagger \). Moreover, if \(T \in CR(L^2(\Sigma)) \), then by Proposition 3.1(ii), \(\widetilde{T} \in CR(L^2(\Sigma)) \) whenever \((E(uw))^2 \geq E(u^2)E(w^2) \).

Proposition 3.3. Let for \(i = 1, 2 \), \(T_i = M_{w_i}EM_{u_i} \in B(L^2(\Sigma)) \) and \((E(w_i^2))^{1/2}w_i = u_i(E(u_i^2))^{1/2} \). Then \((T_1, T_2) \) has the FP-property.

Proof. We know that if \(T_1 \) and \(T_2 \) are normal, then \((T_1, T_2) \) has the FP-property. Thus it is sufficient to prove that \(T_1 \) and \(T_2 \) are normal. Since \(T_i^* = M_{u_i}EM_{w_i} \), it is easy to check that \(T_i^*T_i = M_{u_iE(w_i^2)}EM_{u_i} \) and \(T_iT_i^* = M_{w_iE(u_i^2)}EM_{w_i} \). So \(T_i^*T_i - T_iT_i^* = M_{u_iE(w_i^2)}EM_{u_i} - M_{w_iE(u_i^2)}EM_{w_i} \). Then by hypothesis we obtain
\[\langle (T_i^*T_i - T_iT_i^*)f, f \rangle = \int_X \{ (E(w_i^2))E(u_if)uf - E(u_i^2)E(w_if)wf \}d\mu \]
\[= \int_X \{ (E(u_i(E(w_i^2))^{1/2}f))^2 - (E((E(u_i^2))^{1/2}w_if))^2 \}d\mu = 0, \]
for each \(f \in L^2(\Sigma) \). This implies that \(T_i \) are normal. \qed
In [5], Estaremi show that the Aluthge transform of $M_u EM_u$ is always normal. So we have the following corollary.

Corollary 3.4. Let $T, \check{T} \in CR(L^2(\Sigma))$ with $u, w \geq 0$. Then

(a) $(\check{T}_1, \check{T}_2)$ has the FP-property.

(b) $((\check{T}_1)\dagger, (\check{T}_2)\dagger)$ has the FP-property.

(b) $(T_1\dagger, T_2\dagger)$ has the FP-property.

Let $A = \varphi^{-1}(\Sigma), 0 \leq u \in L^0(\Sigma)$ and $\varphi : X \to X$ be a measurable transformation such that $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ. The weighted composition operator W on $L^2(\Sigma)$ induced by the pair (u, φ) is given by $W = M_u \circ C_\varphi$, where C_φ is the composition operator defined by $C_\varphi f = f \circ \varphi$. It is a classical fact that W is a bounded linear operator on $L^2(\Sigma)$, if and only if $J := h E(u^2) \circ \varphi^{-1} \in L^\infty(\Sigma)$. Also, $W \in CR(L^2(\Sigma))$ if and only if J is bounded away from zero on $\sigma(J)$ (see [10]). From now on, we assume that W has closed range. It is easy to check that $W\dagger = M x_{\sigma(J)} W^*$ and $(W\dagger)^* = M x_{\sigma(J\circ \varphi)} W$.

Now, we can compute the polar decomposition and Aluthge transformations of $W = U|W|$ and $W\dagger = U^*|W\dagger|$ as follows:

$$|W| = M \sqrt{J};$$

$$U = M x_{\sigma(J \circ \varphi)} W;$$

$$U^* = M x_{\sigma(J)} W^*;$$

$$|W\dagger| = M \frac{u x_{\sigma(J \circ \varphi)}}{\sqrt{h E(u^2)}} EM_u;$$

$$|W\dagger|^\frac{1}{2} = M \frac{h \sqrt{J} C_{\varphi^{-1}}}{\frac{1}{2} (E(u^2))^\frac{1}{2}} E(u f);$$

Consequently, for each $f \in L^2(\Sigma)$ we get that

$$\tilde{W} (f) = u \left(\frac{J x_{\sigma(E(u))}}{(h \circ \varphi) E(u^2)} \right)^\frac{1}{2} (f \circ \varphi);$$

$$\tilde{W}\dagger (f) = \left(\frac{1}{(h \circ \varphi)(E(u^2))^\frac{1}{2}} \right)^\frac{1}{2} u E \left(\frac{u \sqrt{h} C_{\varphi^{-1}}}{(E(u^2) \circ \varphi^{-1})^\frac{1}{2}} E(u f) \circ \varphi^{-1} \right);$$

$$\check{W} (f) = \left(\frac{x_{\sigma(J)}}{\sqrt{h} E(u^2) \circ \varphi^{-1}} \right)^\frac{1}{2} E(u \sqrt{J} f) \circ \varphi^{-1};$$

$$\check{W}\dagger (f) = \left(\frac{x_{\sigma(J)}}{\sqrt{h} E(u^2) \circ \varphi^{-1}} \right)^\frac{1}{2} E(u f) \circ \varphi^{-1},$$

$$\check{W}\dagger (f) = \left(\frac{x_{\sigma(J)}}{\sqrt{h} E(u^2) \circ \varphi^{-1}} \right)^\frac{1}{2} E(u f) \circ \varphi^{-1},$$
where $C = \chi_{\sigma(E(u^2) \circ \varphi^{-1})}$.

Acknowledgements
The authors would like to thank the anonymous referee(s) for their helpful comments and valuable suggestions.

References

Morteza Sohrabi Chegeni
Department of Mathematics
Assistant Professor of Mathematics
Lorestan University
Khoramabad, Iran
E-mail: mortezasohrabi021@gmail.com

Naser Abbasi
Department of Mathematics
Associate Professor of Mathematics
Lorestan University
Khoramabad, Iran
E-mail: abasi.n@lu.ac.ir
Hossein Emamalipour
Faculty of Mathematical Sciences
Assistant Professor of Mathematics
University of Tabriz
Tabriz, Iran
E-mail: hemamali@tabrizu.ac.ir