Fuglede-Putnam Type Theorems Via the Moore-Penrose Inverse and Aluthge Transform

M. Sohrabi Chegeni*
Lorestan University

N. Abbasi
Lorestan University

H. Emamalipour

Faculty of Mathematical Sciences, University of Tabriz

Abstract

Let $A, B \in B(H)$, where H is a Hilbert space. Let \widetilde{T} and T^{\dagger} denote the Aluthge transform and the Moore-Penrose inverse of T, respectively. We show that (i) if A^{*} is quasinormal, then $\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$ has the $F P$-property; (ii) if $\left(A^{\dagger}, B^{\dagger}\right)$ has the $F P$-property, then so has $\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$. In general, $(\widetilde{T})^{\dagger} \neq \widetilde{T^{\dagger}}$. Finally, we give some applications to the Lambert multiplication operator $M_{w} E M_{u}$ on $L^{2}(\Sigma)$, where E is the conditional expectation operator.

AMS Subject Classification: 47B20; 47B47
Keywords and Phrases: Fuglede-Putnam, aluthge transformation, moore-penrose inverse, polar decomposition, conditional expectation, partial isometry

1. Introduction

In this section our purpose is to investigate some Fuglede-Putnam properties (shortened to $F P$-properties) for operators acting on Hilbert spaces.

[^0]The classical Fuglede-Putnam commutativity theorem says that if A, B are normal (see, e.g., $[14$, p. 84$]$), then the pair (A, B) has the $F P$ property.
Given a complex separable Hilbert space H, let $B(H)$ denotes the linear space of all bounded linear operators on H. Let $T=U|T|$ be the polar decomposition of T. An operator T is said to be binormal, if $\left[|T|,\left|T^{*}\right|\right]=0$, where $[A, B]=A B-B A$ for operators A and $B . T$ is said to be quasinormal, if $\left(T^{*} T\right) T=T\left(T^{*} T\right)$. Associated with $T \in B(H)$, there is a useful related operator $\widetilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$, called the Aluthge transform of T. Let $C R(H)$ be the set of all bounded linear operators on H with closed range. For $T \in C R(H)$, the Moore-Penrose inverse of T, denoted by T^{\dagger}, is the unique operator $T^{\dagger} \in C R(H)$ which satisfies

$$
\begin{equation*}
T T^{\dagger} T=T, \quad T^{\dagger} T T^{\dagger}=T^{\dagger}, \quad\left(T T^{\dagger}\right)^{*}=T T^{\dagger}, \quad\left(T^{\dagger} T\right)^{*}=T^{\dagger} T \tag{1}
\end{equation*}
$$

We recall that T^{\dagger} exists if and only if $T \in C R(H)$. The Moore-Penrose inverse is designed as a measure for the invertibility of an operator. If $T=U|T|$ is invertible, then U is unitary and so $|T|=\left(T^{*} T\right)^{1 / 2}$ is invertible. It is a classical fact that the polar decomposition of T^{*} is $U^{*}\left|T^{*}\right|$. It is easy to check that $U^{*}\left|T^{*}\right|^{\dagger}$ and $\left|T^{\dagger}\right|^{\frac{1}{2}} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}}$ are the polar decomposition and Aluthge transform of T^{\dagger}, respectively. It is sufficient to show that $\left(T^{*}\right)^{\dagger}=\left|T^{*}\right|^{\dagger} U$, because $T^{\dagger}=\left(\left(T^{*}\right)^{\dagger}\right)^{*}$.

$$
\begin{aligned}
T^{*}\left(T^{*}\right)^{\dagger} T^{*} & =U^{*}\left|T^{*}\right|\left(\left|T^{*}\right|^{\dagger} U\right) U^{*}\left|T^{*}\right| \\
& =U^{*}\left|T^{*}\right|\left|T^{*}\right|^{\dagger}\left|T^{*}\right| \\
& =U^{*}\left|T^{*}\right|=T^{*},
\end{aligned}
$$

$$
\begin{aligned}
\left(T^{*}\right)^{\dagger} T^{*}\left(T^{*}\right)^{\dagger} & =\left|T^{*}\right|^{\dagger} U U^{*}\left|T^{*}\right|\left|T^{*}\right|^{\dagger} U \\
& =\left|T^{*}\right|^{\dagger}\left|T^{*}\right|\left|T^{*}\right|^{\dagger} U \\
& =\left|T^{*}\right|^{\dagger} U=\left(T^{*}\right)^{\dagger}
\end{aligned}
$$

Since $T^{*}=U^{*}\left|T^{*}\right|$ is polar decomposition for T^{*}, so $N\left(T^{*}\right)=N\left(U^{*}\right)$. But $N\left(T^{*}\right)=N\left(T^{\dagger}\right)$. Hence $N\left(U^{*}\right)=N\left(T^{\dagger}\right)$. Also it is easy to check that $T^{*}\left(T^{*}\right)^{\dagger}$ and $\left(T^{*}\right)^{\dagger} T^{*}$ are self-adjoint operators. Therefore, we have $T^{\dagger}=$ $U^{*}\left|T^{*}\right|^{\dagger}$ is polar decomposition. Similarly it can be shown $\left|T^{\dagger}\right|^{\frac{1}{2}} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}}$
is Aluthge transform of T^{\dagger}. We shall make use of the following general properties of $T^{*}, \widetilde{T}, T^{\dagger}$, parts of their projections and polar decompositions. For proofs and discussions of some of these facts see $[1,2,3,7$, $12,13,15,19]$.

$$
\mathrm{P}(1) \widetilde{T^{\dagger}}=\left|T^{\dagger}\right|^{\frac{1}{2}} U^{*}\left|T^{\dagger}\right|^{\frac{1}{2}},\left(\widetilde{T_{\sim}^{\dagger}}\right)^{\dagger}=\widetilde{T}^{(\dagger)}
$$

$\mathrm{P}(2)$ If T is binormal then $\widetilde{T}^{\dagger}=\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*}\left(|T|^{\dagger}\right)^{\frac{1}{2}}$;
$\mathrm{P}(3)$ If T is binormal, then so is T^{\dagger} and $\left(\widetilde{T^{*}}\right)^{*}=\left(\widetilde{T^{\dagger}}\right)^{\dagger}$;
$\mathrm{P}(4)\left|T^{\dagger}\right|=\left|T^{*}\right|^{\dagger}$ and $\left|T^{\dagger}\right|^{\frac{1}{2}}=\left(\left|T^{*}\right|^{\frac{1}{2}}\right)^{\dagger}$;
$\mathrm{P}(5) U^{*}\left(\left|T^{*}\right|^{\dagger}\right)^{\frac{1}{2}}=\left(|T|^{\dagger}\right)^{\frac{1}{2}} U^{*}$;
$\mathrm{P}(6)\left|\left(T^{*}\right)^{\dagger}\right|=|T|^{\dagger}$;
$\mathrm{P}(7) U^{*}\left|T^{*}\right|$ and $U^{*}\left|T^{*}\right|^{\dagger}$ are the polar decompositions of T^{*} and T^{\dagger}, respectively;

$$
\begin{aligned}
& \mathrm{P}(8) U U^{*}\left|T^{*}\right|^{\dagger}=\left|T^{*}\right|^{\dagger} \\
& \mathrm{P}(9)\left(T^{\dagger}\right)^{*}=\left|T^{*}\right|^{\dagger} U
\end{aligned}
$$

The next lemmas are concerned with the Fuglede-Putnam theorem and we need them in the future.

Lemma 1.1. $[18,16]$ Let $A, B \in B(H)$. Then the following assertions are equivalent:
(i) The pair (A, B) has the FP-property.
(ii) If $X \in \operatorname{Com}(A, B)$, then $\overline{R(X)}$ reduces $A,(\operatorname{ker} X)^{\perp}$ reduces B and $A_{\left.\right|_{\overline{R(X)}}}, B_{\left.\right|_{(k e r X)^{\perp}}}$ are unitarily equivalent normal operators.

Lemma 1.2. If $A, B \in B(H)$ are invertible, then
(i) $X \in \operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right) \Leftrightarrow\left|A^{*}\right|^{\dagger} X\left(\left|B^{*}\right|^{\dagger}\right)^{-1}=U X V^{*}$.
(ii) $X \in \operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right) \cap \operatorname{Com}\left(\left(A^{\dagger}\right)^{*},\left(B^{\dagger}\right)^{*}\right) \Leftrightarrow\left|A^{*}\right|^{\dagger} X\left(\left|B^{*}\right|^{\dagger}\right)^{-1}=U X V^{*}=X$.

Proof.

(i). It is clear by definition.
(ii) Let $X \in \operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right) \cap \operatorname{Com}\left(\left(A^{\dagger}\right)^{*},\left(B^{\dagger}\right)^{*}\right)$. Then $A^{\dagger} X=X B^{\dagger},\left(A^{\dagger}\right)^{*} X=$ $X\left(B^{\dagger}\right)^{*}$, thus we get that $U^{*}\left|A^{*}\right|^{\dagger} X=X V^{*}\left|B^{*}\right|^{\dagger},\left|A^{*}\right|^{\dagger} V X=X\left|B^{*}\right|^{\dagger} V$. Hence, $U X V^{*}=\left|A^{*}\right|^{\dagger} X\left(\left|B^{*}\right|^{\dagger}\right)^{-1},\left(\left|A^{*}\right|^{\dagger}\right)^{2} X=\left(A^{\dagger}\right)^{*} A^{\dagger} X=\left(A^{\dagger}\right)^{*}\left(X B^{\dagger}\right)=$ $X\left(B^{\dagger}\right)^{*} B^{\dagger}=X\left(\left|B^{*}\right|^{\dagger}\right)^{2}$. Then $\left(\left|A^{*}\right|^{\dagger}\right)^{2} X=X\left(\left|B^{*}\right|^{\dagger}\right)^{2}$. Utilizing a sequence of polynomials uniformly converging to $f(t)=\sqrt{t}$ on $S P\left(\left(\left|A^{*}\right|^{\dagger}\right)^{2}\right) \cup$ $S P\left(\left(\left|B^{*}\right|^{\dagger}\right)^{2}\right)$ and the functional calculus we get $\left|A^{*}\right|^{\dagger} X=X\left|B^{*}\right|^{\dagger}$, that
is $\left|A^{*}\right|^{\dagger} X\left(\left|B^{*}\right|^{\dagger}\right)^{-1}=X$. Hence from (i) we have $U X V^{*}=X$. The reverse direction is trivial.

In the following, we try to provide some results concerning this problem that we call it the Fuglede-Putnam-Moore-Penrose problem. More precisely, we prove that if $\left(A^{\dagger}, B^{\dagger}\right)$ has the FP-property, then $\operatorname{Com}(A, B) \subseteq$ $\operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right)$ and if, moreover, A is invertible operator then, $\operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right)=$ $\operatorname{Com}\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$. Note that if $A=U|A|$ is invertible then U is unitary and $|A|$ is also invertible.

2. Fuglede-Putnam Theorem for Moore-Penrose Inverse and Aluthge Transforms

As mentioned above, in this section we present some results concerning the Fuglede-Putnam-Moore-Penrose problem.

Lemma 2.1. If $A, B \in C R(H)$ are binormal, then
(i) $X \in \operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right) \Leftrightarrow\left(|A|^{\dagger}\right)^{\frac{1}{2}} U^{*} X\left(|B|^{\dagger}\right)^{\frac{1}{2}} \in \operatorname{Com}\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$.
(ii) $X \in \operatorname{Com}\left(\left(A^{\dagger}\right)^{*},\left(B^{\dagger}\right)^{*}\right) \Leftrightarrow\left(|A|^{\dagger}\right)^{\frac{1}{2}} X V\left(|B|^{\dagger}\right)^{\frac{1}{2}} \in \operatorname{Com}\left(\left((\widetilde{A})^{\dagger}\right)^{*},\left((\widetilde{B})^{\dagger}\right)^{*}\right)$.

Proof. (i) If $A^{\dagger}=U^{*}\left|A^{*}\right|^{\dagger}, B^{\dagger}=V^{*}\left|B^{*}\right|^{\dagger}$ be polar decompositions, since $U^{*}\left(\left|T^{*}\right|^{\dagger}\right)=\left(|T|^{\dagger}\right) U^{*}$ then we have,

$$
\begin{aligned}
X \in \operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right) & \Rightarrow U^{*}\left|A^{*}\right|^{\dagger} X=X V^{*}\left|B^{*}\right|^{\dagger} \\
& \Rightarrow|A|^{\dagger} U^{*} X=X|B|^{\dagger} V^{*}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
(\widetilde{A})^{\dagger}\left(|A|^{\dagger \frac{1}{2}} U^{*} X|B|^{\dagger \frac{1}{2}}\right) & =|A|^{\dagger \frac{1}{2}} U^{*}\left(|A|^{\dagger} U^{*} X|B|^{\dagger \frac{1}{2}}\right) \\
& =|A|^{\dagger \frac{1}{2}} U^{*}\left(X|B|^{\dagger} V^{*}\right)|B|^{\dagger \frac{1}{2}} \\
& =\left(|A|^{\frac{1}{2}} U^{*} X|B|^{\dagger \frac{1}{2}}\right)(\widetilde{B})^{\dagger}
\end{aligned}
$$

The converse obviously holds.
(ii) It could be proved in a similar way (i).

Corollary 2.2. If $A, B, \widetilde{A}, \widetilde{B} \in C R(H)$ and A, B are binormal. Then
$\left(\left|A^{\dagger}\right|\right)^{\frac{1}{2}} X V\left(\left|B^{\dagger}\right|\right)^{\frac{1}{2}} \in \operatorname{Com}\left(\widetilde{A^{\dagger}}, \widetilde{B^{\dagger}}\right)$ if and only if $\left(|A|^{\dagger}\right)^{\frac{1}{2}} U^{*} X\left(|B|^{\dagger}\right)^{\frac{1}{2}} \in$ $\operatorname{Com}\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$.
Proof. It follows from $\mathrm{P}(3)$ and Lemma 2.1.
Theorem 2.3. Let $A, B, \widetilde{A}, \widetilde{B} \in C R(H)$ and A, B are binormal, A^{*} is quasinormal. Then the pair $\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$ has the FP-property.

Proof. Let $A=\underset{\widetilde{A}}{U}|A|$ and $B=V|B|$ be the polar decompositions. We show that $\operatorname{Com}\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right) \subseteq \operatorname{Com}\left(\left((\widetilde{A})^{\dagger}\right)^{*},\left((\widetilde{B})^{\dagger}\right)^{*}\right)$ if and only if $U^{2} X=$ $X V^{2}$, for any $X \in \operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right)$. First, we prove that the $F P$-property for $\operatorname{Com}\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$ is equivalent to following requirement,

$$
\begin{equation*}
U^{*} X V^{*} \in \operatorname{Com}\left(\left(A^{\dagger}\right)^{*},\left(B^{\dagger}\right)^{*}\right), \quad\left(X \in \operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right)\right) \tag{2}
\end{equation*}
$$

Let $\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$ have the $F P$-property and $\left(X \in \operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right)\right)$. By Lemma 2.1(i), $\left(\left|A^{*}\right|^{\dagger}\right)^{\frac{1}{2}} U^{*} X\left(|B|^{\dagger}\right)^{\frac{1}{2}} \in \operatorname{Com}\left(\left((\widetilde{A})^{\dagger}\right),\left((\widetilde{B})^{\dagger}\right)\right)$.
Since $\operatorname{Com}\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$ has the $F P$-property then, $\left(\left|A^{*}\right|^{\dagger}\right)^{\frac{1}{2}} U^{*} X\left(|B|^{\dagger}\right)^{\frac{1}{2}} \in$ $\operatorname{Com}\left(\left((\widetilde{A})^{\dagger}\right),\left((\widetilde{B})^{\dagger}\right)\right)$. By Lemma 2.1(ii),

$$
\left(|A|^{\dagger}\right)^{\frac{-1}{2}}\left(|A|^{\dagger}\right)^{\frac{1}{2}} U^{*} X\left(|B|^{\dagger}\right)^{\frac{1}{2}}\left(|B|^{\dagger}\right)^{\frac{1}{2}}\left(|B|^{\dagger}\right)^{\frac{-1}{2}} V^{*} \in \operatorname{Com}\left(\left(A^{\dagger}\right)^{*},\left(B^{\dagger}\right)^{*}\right)
$$

Then, $U^{*} X V^{*} \in \operatorname{Com}\left(\left(A^{\dagger}\right)^{*},\left(B^{\dagger}\right)^{*}\right)$.
To prove the revers, assume that (2.1) holds and let $X \in \operatorname{Com}\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$. It follows from Lemma 2.1(i), that $U\left(|A|^{\dagger}\right)^{\frac{-1}{2}} X\left(|B|^{\dagger}\right)^{\frac{1}{2}} \in \operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right)$. Then by (2.1)we have $U^{*} U\left(|A|^{\dagger}\right)^{\frac{-1}{2}} X\left(|B|^{\dagger}\right)^{\frac{1}{2}} V^{*} \in \operatorname{Com}\left(\left(A^{\dagger}\right)^{*},\left(B^{\dagger}\right)^{*}\right)$ and by Lemma 2.1(ii), implies that $X \in \operatorname{Com}\left(\left(\widetilde{A}^{\dagger}\right)^{*},\left(\widetilde{B}^{\dagger}\right)^{*}\right)$, therefor $\operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right)$ has the $F P$-property.
Let (2.1) hold, then by Lemma 2.1(i) for any $X \in \operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right)$, it follows that the $\left|A^{*}\right|^{\dagger} X\left(\left|B^{*}\right|^{\dagger}\right)^{-1}=U X V^{*}$. By using (2.1), we obtain

$$
\begin{gathered}
\left(A^{\dagger}\right)^{*} U^{*} X V^{*}=U^{*} X V^{*}\left(B^{\dagger}\right)^{*} \Rightarrow\left|A^{*}\right|^{\dagger} X V^{*}=U^{*} X V^{*}\left|B^{*}\right|^{\dagger} V= \\
\left(U^{*}\right)^{2} U X V^{*}\left|B^{*}\right|^{\dagger} V
\end{gathered}
$$

Then by lemma 2.1(i) we get that, $\left|A^{*}\right|^{\dagger} X\left(V^{*}\right)^{2}=\left(U^{*}\right)^{2}\left|A^{*}\right|^{\dagger} X$. Since A^{*} is quasinormal then, $X\left(V^{*}\right)^{2}=\left(U^{*}\right)^{2} X$. Thus $X V^{2}=U^{2} X$. The converse can be proved in the same way.

Corollary 2.4. If $\left(A^{\dagger}, B^{\dagger}\right)$ has the FP-property, then so has $\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$.
Proof. If $\left(A^{\dagger}, B^{\dagger}\right)$ has the $F P$-property, then by Lemma 2.1(ii), $U X=$ $X V$ for any $X \in\left(A^{\dagger}, B^{\dagger}\right)$. Thus $U^{2} X=U(X V)=(U X) V=(X V) V=$ $X V^{2}$. Therefore by the theorem $2.3,\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$ has the $F P$-property.
Corollary 2.5. If (A, B) has the FP-property, then so has $\left(\widetilde{A}^{(\dagger)}, \widetilde{B}^{(\dagger)}\right)$.
Proof. By corollary 2.4 and $\mathrm{P}(1)$ the proof is completes.
Corollary 2.6. If A, B be binormal, (A, B) has the FP-property, then so has $\left(\widetilde{A}^{(*)}, \widetilde{B}^{(*)}\right)$.

Proof. By corollary 2.4 and $\mathrm{P}(3)$ the proof is completes.
Theorem 2.7. Let $A, B \in C R(H)$ and let $\left(A^{\dagger}, B^{\dagger}\right)$ have the $F P$ property. Then $\operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right) \subseteq \operatorname{Com}\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$.

Proof. Let $A^{\dagger}=U^{*}\left|A^{*}\right|^{\dagger}, B^{\dagger}=V^{*}\left|B^{*}\right|^{\dagger}$ be the polar decomposition and let $\left\{f_{n}\right\}$ be a sequence of polynomials with no constant term such that $\left\{f_{n}(t)\right\} \rightarrow t^{\frac{1}{2}}$ as $t \rightarrow \infty$. Now let $X \in \operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right)$, then by the hypothesis, $\left(A^{\dagger}\right) X=X\left(B^{\dagger}\right),\left(A^{\dagger}\right)^{*} X=X\left(B^{\dagger}\right)^{*}$, thus $\left(|A|^{\dagger}\right)^{2} X=X\left(|B|^{\dagger}\right)^{2}$ then $f_{n}\left(|A|^{\dagger}\right)^{2} X=X f_{n}\left(|B|^{\dagger}\right)^{2}$. Using the same argument we get $\left(|A|^{\dagger}\right)^{\frac{1}{2}} X=$ $X\left(|B|^{\dagger}\right)^{\frac{1}{2}}$. Also $U^{*}\left|A^{*}\right|^{\dagger} X=X V^{*}\left|B^{*}\right|^{\dagger}$, then $|A|^{\dagger} U^{*} X=X|B|^{\dagger} V^{*}$, and the same argument above show that, $\left(|A|^{\dagger}\right)^{\frac{1}{2}} U^{*} X=X\left(|B|^{\dagger}\right)^{\frac{1}{2}} V^{*}$. Therefore,

$$
\begin{gathered}
(\widetilde{A})^{\dagger} X=\left(|A|^{\dagger}\right)^{\frac{1}{2}} U^{*}\left(|A|^{\dagger}\right)^{\frac{1}{2}} X=\left(|A|^{\dagger}\right)^{\frac{1}{2}} U^{*} X\left(|B|^{\dagger}\right)^{\frac{1}{2}} \\
=X\left(|B|^{\dagger}\right)^{\frac{1}{2}} V^{*}\left(|B|^{\dagger}\right)^{\frac{1}{2}}=X(\widetilde{B})^{\dagger} . \quad \square
\end{gathered}
$$

Lemma 2.8. Let $A \in C R(H)$, then
(i) $\left(|A|^{\dagger}\right)^{q}=U^{*}\left(\left|A^{*}\right|^{\dagger}\right)^{q} U$.
(ii) A^{\dagger} is quasinormal if and only if $U^{*}\left|A^{*}\right|^{\dagger}=\left|A^{*}\right|^{\dagger} U^{*}$.

Proof. (i) By $\mathrm{P}(4), \mathrm{P}(7), \mathrm{P}(8)$ and $\mathrm{P}(9)$ we have

$$
\begin{aligned}
\left(|A|^{\dagger}\right)^{2}= & \left|\left(A^{*}\right)^{\dagger}\right|^{2}=\left|\left(A^{\dagger}\right)^{*}\right|^{2}=A^{\dagger}\left(A^{\dagger}\right)^{*}=U^{*}\left|A^{*}\right|^{\dagger}\left|A^{*}\right|^{\dagger} U \\
& =U^{*}\left|A^{*}\right|^{\dagger} U U^{*}\left|A^{*}\right|^{\dagger} U=\left(U^{*}\left|A^{*}\right|^{\dagger} U\right)^{2} .
\end{aligned}
$$

Let $\left\{p_{n}\right\}$ be a sequence of polynomials with no constant term such that $p_{n}(t) \rightarrow \sqrt{t}$ uniformly on a certain compact subset of \mathbb{R}^{+}as $n \rightarrow \infty$. It follows that $p_{n}\left(\left(|A|^{\dagger}\right)^{2}\right)=p_{n}\left(\left(U^{*}\left|A^{*}\right|^{\dagger} U\right)^{2}\right)$, and so $|A|^{\dagger}=U^{*}\left|A^{*}\right|^{\dagger} U$. By induction, $\left(|A|^{\dagger}\right)^{\frac{m}{n}}=U^{*}\left(\left|A^{*}\right|^{\dagger}\right)^{\frac{m}{n}} U$ holds for each $m, n \in \mathbb{N}$. Now, by using of the functional calculus, $\left(|A|^{\dagger}\right)^{q}=U^{*}\left(\left|A^{*}\right|^{\dagger}\right)^{q} U$.
(ii) It is a classical fact that A is quasinormal if and only if $U|A|=|A| U$ (see [7, Theorem 3]. Now, the desired conclusion follows from this and $\mathrm{P}(7)$.

Theorem 2.9. Let $A \in B(H)$ be onto. Then the following statements are equivalent:
(i) A^{*} is quasinormal.
(ii) A^{\dagger} is quasinormal.

Proof. (i) \Leftrightarrow (ii) By (1.1) we have $\left|A^{*}\right|\left|A^{*}\right|^{\dagger}\left|A^{*}\right|=\left|A^{*}\right|$, then we get that

$$
\begin{aligned}
A^{*} \text { is quasinormal } & \Longleftrightarrow U^{*}\left|A^{*}\right|=\left|A^{*}\right| U^{*} \\
& \Longleftrightarrow U^{*}\left|A^{*}\right|\left|A^{*}\right|^{\dagger}\left|A^{*}\right|=\left|A^{*}\right|\left|A^{*}\right|^{\dagger}\left|A^{*}\right| U^{*} \\
& \Longleftrightarrow\left|A^{*}\right| U^{*}\left|A^{*}\right|^{\dagger}\left|A^{*}\right|=\left|A^{*}\right|\left|A^{*}\right|^{\dagger} U^{*}\left|A^{*}\right| \\
& \Longleftrightarrow\left|A^{*}\right|\left(U^{*}\left|A^{*}\right|^{\dagger}-\left|A^{*}\right|^{\dagger} U^{*}\right)\left|A^{*}\right|=0 .
\end{aligned}
$$

By hypothesis, $\mathcal{N}\left(\left|A^{*}\right|\right)=\mathcal{N}\left(A^{*}\right)=\{0\}$. Hence $\left(U^{*}\left|A^{*}\right|^{\dagger}-\left|A^{*}\right|^{\dagger} U^{*}\right)\left|A^{*}\right|=$ 0 , and so $U^{*}\left|A^{*}\right|^{\dagger}=\left|A^{*}\right|^{\dagger} U^{*}$ on $\overline{R\left(\left|A^{*}\right|^{\dagger}\right)}$. On the other hand, $U^{*}\left|A^{*}\right|^{\dagger}=$ $\left|A^{*}\right|^{\dagger} U^{*}$ on $N\left(\left|T^{*}\right|^{\dagger}\right)=N\left(U^{*}\right)$. Thus, $U^{*}\left|A^{*}\right|^{\dagger}=\left|A^{*}\right|^{\dagger} U^{*}$ on H. Consequently, by Lemma 2.8 , (i) \Leftrightarrow (ii) holds.

Theorem 2.10. Let $A, B \in C R(H)$ be onto and A^{*}, B^{*} be quasinormal. If $\left(A^{\dagger}, B^{\dagger}\right)$ has the $F P$-property then $\operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right)=\operatorname{Com}\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$.

Proof. According to Theorem 2.7, it is sufficient to prove $\operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right) \supseteq$ $\operatorname{Com}\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right)$. Let $X \in \operatorname{Com}\left((\widetilde{A})^{\dagger},(\widetilde{B})^{\dagger}\right), \Lambda=\left(|A|^{\dagger}\right)^{\frac{-1}{2}} X\left(|B|^{\dagger}\right)^{\frac{1}{2}}$. Since $(\widetilde{A})^{\dagger} X=X(\widetilde{B})^{\dagger}$ Then,
$\left(|A|^{\dagger}\right)^{\frac{-1}{2}}(\widetilde{A})^{\dagger} X\left(|B|^{\dagger}\right)^{\frac{1}{2}}=\left(|A|^{\dagger}\right)^{\frac{-1}{2}} X(\widetilde{B})^{\dagger}\left(|B|^{\dagger}\right)^{\frac{1}{2}}$.
$\Rightarrow U^{*}\left(|A|^{\dagger}\right)^{\frac{1}{2}} X\left(|B|^{\dagger}\right)^{\frac{1}{2}}=\left(|A|^{\dagger}\right)^{\frac{-1}{2}} X\left(|B|^{\dagger}\right)^{\frac{1}{2}} V^{*}|B|^{\dagger}$.
$\Rightarrow U^{*}\left(|A|^{\dagger}\right)\left(|A|^{\dagger}\right)^{\frac{-1}{2}} X\left(|B|^{\dagger}\right)^{\frac{1}{2}}=\Lambda V^{*}|B|^{\dagger}$.
$\Rightarrow U^{*}|A|^{\dagger} \Lambda=\Lambda V^{*}|B|^{\dagger}$.
$\Rightarrow U^{*}\left(U^{*}\left|A^{*}\right|^{\dagger} U\right) \Lambda=\Lambda V^{*}\left(V^{*}\left|B^{*}\right|^{\dagger} V\right)$. by Lemma 2.8(i)
$\Rightarrow U^{*}\left(\left|A^{*}\right|^{\dagger} U^{*} U\right) \Lambda=\Lambda V^{*}\left(\left|B^{*}\right|^{\dagger} V^{*} V\right)$. by Lemma 2.8(ii) and Theorem 2.9
$\Rightarrow U^{*}\left|A^{*}\right|^{\dagger} \Lambda=\Lambda V^{*}\left|B^{*}\right|^{\dagger} \Rightarrow A^{\dagger} \Lambda=\Lambda B^{\dagger}$.
Therefor $\Lambda \in \operatorname{Com}\left(A^{\dagger}, B^{\dagger}\right)$. Also by the Lemma 1.1, and hypothesis, $\overline{R(\Lambda)}$ reduces $A^{\dagger},(\operatorname{ker} \Lambda)^{\perp}$ reduces B^{\dagger} and $A_{\overline{R(\Lambda)}}^{\dagger},\left.B\right|_{(k e r \Lambda)^{\perp}} ^{\dagger}$ are unitarily equivalent normal operators. Thus,

$$
A^{\dagger}=A_{1}^{\dagger} \oplus A_{2}^{\dagger} \quad \text { on } \overline{R(\Lambda)} \oplus R(\Lambda)^{\perp}
$$

and

$$
B^{\dagger}=B_{1}^{\dagger} \oplus B_{2}^{\dagger} \quad \text { on } N(\Lambda)^{\perp} \oplus N(\Lambda)
$$

where $A_{1}^{\dagger}, B_{1}^{\dagger}$ are unitarily equivalent normal operators. Since A is invertible and $A_{1}^{\dagger}, B_{1}^{\dagger}$ are unitarily equivalent then, B_{1}^{\dagger} is invertible. Let,

$$
X=\left(\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right)
$$

and

$$
\Lambda=\left(\begin{array}{cc}
\Lambda_{1} & 0 \\
0 & 0
\end{array}\right)
$$

It follows from $\Lambda=\left(|A|^{\dagger}\right)^{\frac{-1}{2}} X\left(|B|^{\dagger}\right)^{\frac{1}{2}}$, that,

$$
\Lambda=\left(\begin{array}{cc}
\Lambda_{1} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\left(\left|A_{1}\right|^{\dagger}\right)^{\frac{-1}{2}} X_{1}\left(\left|B_{1}\right|^{\dagger}\right)^{\frac{1}{2}} & \left(\left|A_{1}\right|^{\dagger}\right)^{\frac{-1}{2}} X_{2}\left(\left|B_{1}\right|^{\dagger}\right)^{\frac{1}{2}} \\
\left(\left|A_{2}\right|^{\dagger}\right)^{\frac{-1}{2}} X_{3}\left(\left|B_{1}\right|^{\dagger}\right)^{\frac{1}{2}} & \left(\left|A_{2}\right|^{\dagger}\right)^{\frac{-1}{2}} X_{4}\left(\left|B_{2}\right|^{\dagger}\right)^{\frac{1}{2}}
\end{array}\right)
$$

Therefore, $X_{2}\left(\left|B_{1}\right|^{\dagger}\right)^{\frac{1}{2}}=0, X_{3}=0, X_{4}\left(\left|B_{2}\right|^{\dagger}\right)^{\frac{1}{2}}=0$, then as the result, $X_{2}\left(\widetilde{B_{2}}\right)^{\dagger}=0, X_{4}\left(\widetilde{B_{2}}\right)^{\dagger}=0$. Thus $(\widetilde{A})^{\dagger} X=X(\widetilde{B})^{\dagger}$, implies that,

$$
\left(\begin{array}{cc}
A_{1}^{\dagger} X_{1} & A_{1}^{\dagger} X_{2} \\
0 & A_{2}^{\dagger} X_{4}
\end{array}\right)=\left(\begin{array}{cc}
X_{1} B_{1}^{\dagger} & 0 \\
0 & 0
\end{array}\right) .
$$

Then, $X_{2}=0, X_{4}=0, A_{1}^{\dagger} X_{1}=X_{1} B_{1}^{\dagger}$, and since

$$
X=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right)=X_{1} \oplus 0
$$

Therefore, $A^{\dagger} X=X B^{\dagger}$ and the proof is completed.

Corollary 2.11. Let A^{*}, B^{*} be quasinormal. If (A, B) have the $F P$ property. Then $\operatorname{Com}(A, B)=\operatorname{Com}\left(\widetilde{A}^{(\dagger)}, \widetilde{B}^{(\dagger)}\right)$.

3. Moore-Penrose Inverse of Lambert Multiplication Operators

Let (X, Σ, μ) be a σ-finite measure space. For any σ-finite subalgebra $\mathcal{A} \subseteq \Sigma$ the Hilbert space $L^{2}\left(X, \mathcal{A}, \mu_{\mid \mathcal{A}}\right)$ is abbreviated to $L^{2}(\mathcal{A})$. The support of a measurable function f is defined by $\sigma(f)=\{x \in X$: $f(x) \neq 0\}$. All sets and functions statements are to be interpreted as being valid almost everywhere with respect to μ. For each $f \in L^{2}(\Sigma)$, by the Radon-Nikodym theorem, there exists a unique \mathcal{A}-measurable function $E^{\mathcal{A}}(f)$ such that $\int_{A} f d \mu=\int_{A} E^{\mathcal{A}}(f) d \mu$, where A is any \mathcal{A} measurable set for which $\int_{A} f d \mu$ exists. Put $E=E^{\mathcal{A}}$. The mapping E is a linear orthogonal projection. For more details on the properties of E see $[9,17]$.
Let $w, u \in L^{0}(\Sigma)$, the linear space of all complex-valued Σ-measurable functions on X. The mapping $T: L^{2}(\Sigma) \rightarrow L^{2}(\Sigma)$ defined by $T(f)=$ $M_{w} E M_{u}(f)=w E(u f)$ is called Lambert multiplication operator. It is easy to check that for each $f \in L^{2}(\Sigma),\|T f\|=\left\|E M_{v} f\right\|$, where $v:=u\left(E\left(|w|^{2}\right)\right)^{\frac{1}{2}}$. Thus, $M_{w} E M_{u}$ is bounded (has closed range) if and only $E M_{v}$ is bounded (has closed range). Interesting articles related to this topic are $[5,6,9]$. A combination of conditional expectation operators and multiplication operators appears more often in the service of the study of other operators, such as operators generated by random measures and Markov operators. A good article related to the conditional type operators is [8].
Here we recall some results of [11] that state our results is valid for $T=M_{w} E M_{u}$.

Proposition 3.1. Let $T: L^{2}(\Sigma) \rightarrow L^{0}(\Sigma)$ defined by $T=M_{w} E M_{u}$ is a Lambert multiplication operator.
(i) $T \in B\left(L^{2}(\Sigma)\right.$) if and only if $E\left(|w|^{2}\right) E\left(|u|^{2}\right) \in L^{\infty}(\mathcal{A})$, and in this case $\|T\|=\left\|E\left(|w|^{2}\right) E\left(|u|^{2}\right)\right\|_{\infty}^{1 / 2}$.
(ii) Let $T \in B\left(L^{2}(\Sigma)\right), 0 \leqslant u \in L^{0}(\Sigma)$ and $v=u\left(E\left(|w|^{2}\right)\right)^{\frac{1}{2}}$. If $E(v) \geqslant$
δ on $\sigma(v)$, then T has closed range.
Put

$$
\begin{equation*}
A(f)=\frac{u \chi_{G}}{E\left(u^{2}\right) E\left(w^{2}\right)} E(w f), \quad f \in L^{2}(\Sigma), G=\sigma(E(w)) \tag{3}
\end{equation*}
$$

Then by Proposition 3.1, $A \in B\left(L^{2}(\Sigma)\right)$. Also, it is easy to check that

$$
T A T=T, \quad A T A=A, \quad(T A)^{*}=T A, \quad(A T)^{*}=A T
$$

Thus, $A=T^{\dagger}$. We now turn to the computation of $T^{\dagger}, \widetilde{T},(\widetilde{T})^{\dagger}$ and $\widetilde{T^{\dagger}}$. Direct computations give the following proposition.
Proposition 3.2. Let $T, \widetilde{T} \in C R\left(L^{2}(\Sigma)\right)$ with $u, w \geqslant 0$. Then
(a) $T^{\dagger}=M_{\frac{u \chi_{\sigma(E(w))}}{E\left(u^{2}\right) E\left(w^{2}\right)}} E M_{w}$.
(b) $\widetilde{T}=M_{\frac{u E(u w)}{E\left(u^{2}\right)}} E M_{u}$.
(c) $(\widetilde{T})^{\dagger}=M_{\frac{u \chi_{\sigma(E(u w))}}{E\left(u^{2}\right) E(u w)}} E M_{u}$.
(d) $\widetilde{T^{\dagger}}=M_{\frac{\chi_{S} w E(u w)}{E\left(u^{2}\right)\left(E\left(w^{2}\right)\right)^{2}}} E M_{w}$.

Note that, if w or u is not \mathcal{A}-measurable, then $(\widetilde{T})^{\dagger} \neq \widetilde{T^{\dagger}}$. Moreover, if $T \in C R\left(L^{2}(\Sigma)\right)$, then by Proposition 3.1(ii), $\widetilde{T} \in C R\left(L^{2}(\Sigma)\right)$ whenever $(E(u w))^{2} \geqslant E\left(u^{2}\right) E\left(w^{2}\right)$.
Proposition 3.3. Let for $i=1,2, T_{i}=M_{w_{i}} E M_{u_{i}} \in B\left(L^{2}(\Sigma)\right)$ and $\left(E\left(w_{i}^{2}\right)\right)^{\frac{1}{2}} w_{i}=u_{i}\left(E\left(u_{i}^{2}\right)\right)^{\frac{1}{2}}$. Then $\left(T_{1}, T_{2}\right)$ has the FP-property.
Proof. We know that if T_{1} and T_{2} are normal, then $\left(T_{1}, T_{2}\right)$ has the FPproperty. Thus it is sufficient to prove that T_{1} and T_{2} are normal. Since $T_{i}^{*}=M_{u_{i}} E M_{w_{i}}$, it is easy to check that $T_{i}^{*} T_{i}=M_{u_{i} E\left(w_{i}^{2}\right)} E M_{u_{i}}$ and $T_{i} T_{i}^{*}=M_{w_{i} E\left(u_{i}^{2}\right)} E M_{w_{i}}$. So $T_{i}^{*} T_{i}-T_{i} T_{i}^{*}=M_{u_{i} E\left(w_{i}^{2}\right)} E M_{u_{i}}-M_{w_{i} E\left(u_{i}^{2}\right)} E M_{w_{i}}$. Then by hypothesis we obtain

$$
\begin{aligned}
\left\langle\left(T_{i}^{*} T_{i}-T_{i} T_{i}^{*}\right) f, f\right\rangle & =\int_{X}\left\{\left(E\left(w_{i}^{2}\right) E\left(u_{i} f\right) u f-E\left(u_{i}^{2}\right) E\left(w_{i} f\right) w f\right\} d \mu\right. \\
& =\int_{X}\left\{\left(E\left(u_{i}\left(E\left(w_{i}^{2}\right)\right)^{\frac{1}{2}} f\right)\right)^{2}-\left(E\left(\left(E\left(u_{i}^{2}\right)\right)^{\frac{1}{2}} w_{i} f\right)\right)^{2}\right\} d \mu=0
\end{aligned}
$$

for each $f \in L^{2}(\Sigma)$. This implies that T_{i} are normal.

In [5], Estaremi show that the Aluthge transform of $M_{w} E M_{u}$ is always normal. So we have the following corollary.
Corollary 3.4. Let $T, \widetilde{T} \in C R\left(L^{2}(\Sigma)\right)$ with $u, w \geqslant 0$. Then
(a) $\left(\widetilde{T_{1}}, \widetilde{T_{2}}\right)$ has the FP-property.
(b) $\left(\left(\widetilde{T_{1}}\right)^{\dagger},\left(\widetilde{T_{2}}\right)^{\dagger}\right)$ has the FP-property.
(b) $\left.\widetilde{\left(T_{1}^{\dagger}\right.}, \widetilde{T_{2}^{\dagger}}\right)$ has the FP-property.

Let $\mathcal{A}=\varphi^{-1}(\Sigma), 0 \leqslant u \in L^{0}(\Sigma)$ and $\varphi: X \rightarrow X$ be a measurable transformation such that $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ. The weighted composition operator W on $L^{2}(\Sigma)$ induced by the pair (u, φ) is given by $W=M_{u} \circ C_{\varphi}$, where C_{φ} is the composition operator defined by $C_{\varphi} f=f \circ \varphi$. It is a classical fact that W is a bounded linear operator on $L^{2}(\Sigma)$, if and only if $J:=h E\left(u^{2}\right) \circ \varphi^{-1} \in L^{\infty}(\Sigma)$. Also, $W \in C R\left(L^{2}(\Sigma)\right)$ if and only if J is bounded away from zero on $\sigma(J)$ (see [10]). From now on, we assume that W has closed range. It is easy to check that $W^{\dagger}=M_{\frac{\chi_{\sigma(J)}}{J}} W^{*}$ and $\left(W^{\dagger}\right)^{*}=M_{\frac{\chi_{\sigma(J \circ \varphi)}^{J o \varphi}}{}} W$.
Now, we can compute the polar decomposition and Aluthge transformations of $W=U|W|$ and $W^{\dagger}=U^{*}\left|W^{\dagger}\right|$ as follows:

$$
\begin{aligned}
|W| & =M_{\sqrt{J}} ; \\
U & =M_{\frac{x_{\sigma(J \circ \varphi)}}{\sqrt{J o \varphi}}} W \\
U^{*} & =M_{\frac{x_{\sigma(J)}}{\sqrt{J}}} W^{*} ; \\
\left|W^{\dagger}\right| & =M_{\frac{u x_{J \circ \varphi}}{\sqrt{J o \varphi\left(E\left(u^{2}\right)\right)}}} E M_{u} ; \\
\left|W^{\dagger}\right|^{\frac{1}{2}} & =M_{(h \circ \varphi)^{\frac{1}{4}}\left(E\left(u^{2}\right)\right)^{\frac{5}{4}}} E M_{u} .
\end{aligned}
$$

Consequently, for each $f \in L^{2}(\Sigma)$ we get that

$$
\begin{aligned}
\widetilde{W}(f) & =u\left(\frac{J \chi_{\sigma(E(u))}}{(h \circ \varphi) E\left(u^{2}\right)}\right)^{\frac{1}{4}}(f \circ \varphi) \\
\widetilde{W^{\dagger}}(f) & =\left(\frac{1}{(h \circ \varphi)\left(E\left(u^{2}\right)\right)^{5}}\right)^{\frac{1}{4}} u E\left(\frac{u \sqrt[4]{h} \chi_{C}}{\left(E\left(u^{2}\right) \circ \varphi^{-1}\right)^{\frac{3}{4}}} E(u f) \circ \varphi^{-1}\right) \\
(\widetilde{W})^{\dagger}(f) & =\left(\frac{\left.\chi_{\sigma(J)}^{\sqrt[5]{h} E\left(u^{2}\right) \circ \varphi^{-1}}\right)^{\frac{5}{4}} E(u \sqrt[4]{J} f) \circ \varphi^{-1}}{}\right. \\
\left(\widetilde{W^{*}}\right)^{\dagger}(f) & =\left(\frac{\chi_{C}}{E\left(u^{2}\right) \circ \varphi^{-1}}\right)^{\frac{5}{2}} E(u f) \circ \varphi^{-1}
\end{aligned}
$$

where $C=\chi_{\sigma\left(E\left(u^{2}\right) \circ \varphi^{-1}\right)}$.

Acknowledgements

The authors would like to thank the anonymous referee(s) for their helpful comments and valuable suggestions.

References

[1] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, 1974.
[2] D. S. Djordjević and N. C. Dinčić, Reverse order law for the MoorePenrose inverse, J. Math. Anal. Appl., 361 (2010), 252-261.
[3] D. S. Djordjević, Further results on the reverse order law for generalized inverses, SIAM J. Matrix Anal. Appl., 29 (2007), 1242-1246.
[4] Y. Estaremi and M. R. Jabbarzadeh, Weighted lambert type operators on Lp-spaces, Oper. Matrices., 7 (2013), 101116.
[5] Y. Estaremi, On a class of operators with normal Aluthge transformations, Filomat, 29 (2015), 969975.
[6] Y. Estaremi, Some classes of weighted conditional type operators and their spectra, Positivity, 19 (2015), 83-93.
[7] T. Furuta, On the polar decomposition of an operator, Acta Sci. Math. (Szeged), 46 (1983), 261-268.
[8] J. J. Grobler and B. De Pagter, Operators representable as multiplicationconditional expectation operators, J. Oper. Theory, 48 (2002), 15-40.
[9] J. Herron, Weighted conditional expectation operators, Oper. Matrices, 5 (2011), 107-118.
[10] T. Hoover, A. Lambert, and J. Queen, The Markov process determined by a weighted composition operator, Studia Math., (Poland) (1982), 225-235.
[11] M. R. Jabbarzadeh, A conditional expectation type operator on L^{p} spaces, Oper. Matrices, 4 (2010), 445-453.
[12] M. R. Jabbarzadeh and M. Jafari Bakhshkandi, Centered operators via Moore-Penrose inverse and Aluthge transformations, submitted.
[13] F. Kimura, Analysis of non-normal operators via Aluthge transformation, Integral Equations Operator Theory, 50 (2004), 375-384.
[14] C. S. Kubrusly, Hilbert Space Operators: A Problem Solving Approach, Birkhuser, Boston, 2003.
[15] S. H. Kulkarni, M. T. Nair, and G. Ramesh, Some properties of unbounded operators with closed range. Proc. Indian Acad. Sci. Math. Sci., 118 (4) (2008), 613-625.
[16] M. H. M. Rashid, Fuglede-Putnam type theorems via the generalized Aluthge transform, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 108 (2014), 1021-1034.
[17] M. M. Rao, Conditional Measure and Applications, Marcel Dekker, New York, 1993.
[18] K. Takahashi, On the converse of Fuglede-Putnam theorem, Acta Sci. Math., 43 (1981), 123-125.
[19] T. Yamazaki, Parallelisms between Aluthge transformation and powers of operators, Acta Sci. Math., 67 (2001), 809-820.

Morteza Sohrabi Chegeni
Department of Mathematics
Assistant Professor of Mathematics
Lorestan University
Khoramabad, Iran
E-mail: mortezasohrabi021@gmail.com

Naser Abbasi

Department of Mathematics
Associate Professor of Mathematics
Lorestan University
Khoramabad, Iran
E-mail: abasi.n@lu.ac.ir

Hossein Emamalipour

Faculty of Mathematical Sciences
Assistant Professor of Mathematics
University of Tabriz
Tabriz, Iran
E-mail: hemamali@tabrizu.ac.ir

[^0]: Received: June 2016; Accepted: December 2016

 * Corresponding author

