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Abstract. Let A, B € B(H), where H is a Hilbert space. Let T and
T denote the Aluthge transform and the Moore-Penrose inverse of T,
respectively. We show that (i) if A* is quasinormal, then ((4)T,(B)")
has the F'P-property; (i) if (AT, BY) has the F'P-property, then so has
(A, (B)1). In general, (T) # T1. Finally, we give some applications
to the Lambert multiplication operator M,, E M, on LQ(Z)7 where E is
the conditional expectation operator.
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1. Introduction

In this section our purpose is to investigate some Fuglede-Putnam prop-
erties (shortened to F' P-properties) for operators acting on Hilbert spaces.
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The classical Fuglede-Putnam commutativity theorem says that if A, B
are normal (see, e.g., [14, p. 84]), then the pair (A4, B) has the FP-
property.

Given a complex separable Hilbert space H, let B(H) denotes the lin-
ear space of all bounded linear operators on H. Let T" = U|T| be
the polar decomposition of 1. An operator 1" is said to be binormal, if
[|T|,|T*|] = 0, where [A, B] = AB— BA for operators A and B. T is said
to be quasinormal, if (T*T)T = T(T*T). Associated with T € B(H),
there is a useful related operator T = |T|'/2U|T|'/2, called the Aluthge
transform of T'. Let CR(H ) be the set of all bounded linear operators
on H with closed range. For T' € CR(H ), the Moore-Penrose inverse of
T, denoted by T, is the unique operator Tt € CR(H) which satisfies

TT'T =T, T'TT' =T", (TT")* =TT, (T'"T)* =T'T. (1)

We recall that T exists if and only if 7' € CR(H). The Moore-Penrose
inverse is designed as a measure for the invertibility of an operator. If
T = U|T| is invertible, then U is unitary and so |T| = (T*T)"/? is
invertible. It is a classical fact that the polar decomposition of T is
U*|T*|. Tt is easy to check that U*|T*|" and |TT|%U*]TT|% are the polar
decomposition and Aluthge transform of T, respectively. It is sufficient
to show that (7*)' = |T*|TU, because TT = ((T*)")*.

T ()17 = U (17U U |17
— U*|T* |||
— U = T,

(T)'TH(T") = |T*fUTT || T U
= T*|"|T*||T* U
= |T*'U = (T*)1.
Since T* = U*|T*| is polar decomposition for 7%, so N(T™*) = N(U*).
But N(T*) = N(TT). HenceN (U*) = N(TT). Also it is easy to check that

T*(T*)" and (T*)IT* are self-adjoint operators. Therefore, we have TT =
1 1
U*|T*|" is polar decomposition. Similarly it can be shown |TT|2U*|TT|2
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is Aluthge transform of T'T. We shall make use of the following general
properties of T, T, T*, parts of their projections and polar decompo-
sitions. For proofs and discussions of some of these facts see [1, 2, 3, 7,
12, 13, 15, 19].

P(1) Tt = [TT2U*|Tf|2, (T = T

P(2) If T is binormal then 7T = (\T]T)%U*(\T]T)%;

P(3) If T is binormal, then so is TT and (T%)* = (ﬁ)T;

P(4) 77| = 77" and ||z = (|T*]2)T;

P(5) U*(IT*|")z = (|T]h)2U™;

P(6) |(T*)1] = T

P(7) U*|T*| and U*|T*|' are the polar decompositions of 7* and 7T,
respectively;

P(8) UU*|T*|" = |T*|1;

P(9) (T = |T*|'U.

The next lemmas are concerned with the Fuglede-Putnam theorem and
we need them in the future.

Lemma 1.1. [18, 16] Let A, B € B(H). Then the following assertions
are equivalent:

(i) The pair (A, B) has the F P-property.

(i) If X € Com(A, B), then R(X) reduces A , (kerX)* reduces B and

I B are unitarily equivalent normal operators.
R(X) (kerX)L

Lemma 1.2. If A, B € B(H) are invertible, then
(i) X € Com(AT, BY) & |A*|T X (|B*|") " = UXV*,
(i1) X € Com(At, BYYn Com((A")*, (B)*) & |A* |1 X(|1B*|)) "' = UXV* = X.

Proof.

(i). It is clear by definition.

(ii) Let X € Com(A', B)NCom((A")*, (B")*). Then ATX = X BT, (AT)*X =
X(B")*, thus we get that U*|A*[TX = XV*|B*|I,|A*|/VX = X|B*|'V.
Hence, UXV* = |A*[T X (|B*|[1) 71, (JA*[1)2X = (AT)*ATX = (AN)*(XBT) =
X(BY)*B' = X(|B*|")2. Then (|A*|1)2X = X(|B*|")2. Utilizing a se-
quence of polynomials uniformly converging to f(¢) = v/# on SP((|A*|")?)u
SP((|B*|")?) and the functional calculus we get |A*|TX = X|B*|T, that
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is |A*|TX(|B*|")~" = X. Hence from (i) we have UXV* = X. The
reverse direction is trivial. [J

In the following, we try to provide some results concerning this problem
that we call it the Fuglede-Putnam-Moore-Penrose problem. More pre-
cisely, we prove that if (Af, BY) has the FP-property, then Com(A, B) C
Com(A', BY) and if, moreover, A is invertible operator then, Com(Af, BY) =
Com((A)T, (B)!). Note that if A = U|A| is invertible then U is unltary
and |A| is also invertible.

2. Fuglede-Putnam Theorem for Moore-Penrose
Inverse and Aluthge Transforms

As mentioned above, in this section we present some results concerning
the Fuglede-Putnam-Moore-Penrose problem.

Lemma 2.1. If A, B € CR(H) are binormal, then
(i) X € Com(Af, B) (\A\T)%U*XQByT)% e Com((A),(B)N).
(it) X € Com((AT)*, (BN)") & (|A[")2 XV (|B[")z € Com(((A)N)*, (B))*).

Proof. (i) If AT = U*|A*|',BT = V*|B*|T be polar decompositions, since
U*(|T*[") = (JT|")U* then we have,

X € Com(Af, BY) = U*|A*|TX = XV*|B*[1
= |A|'U*X = X|B|'V*.
Hence,
~ 1 1 1 1
(AN (AU X|BIT?) = |APU*(|A]'UX|B|?)
1 1
= [Al"*U*(x|B|'V")| B|T?
1 1
= (lAP U x|B|"*)(B)f
The converse obviously holds.
(ii) It could be proved in a similar way (i). O

Corollary 2.2. If A, B, A,B € CR(H) and A, B are binormal. Then
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(]AT|)%XV(|BT|)2 € C’om(AJr BT) if and only if (|AN2U*X(|B|N)? €
Com((A)T, (B)T).
Proof. It follows from P(3) and Lemma 2.1. O

Theorem 2.3. Let A, B, A, B € CR(H) and A, B are binormal, A" is
quasinormal. Then the pair ((A)T, (B)1) has the F P-property.

Proof. Let A = U|A[ and B = V|[B]| be the polar decompositions. We
show that Com((A)T, (B)") € Com(((A)1)*, ((B)")*) if and only if U2X =
XV?2, for any X € Com(AT, BY). First, we prove that the FP-property
for Com((A)T, (B)1) is equivalent to following requirement,

U*XV* € Com((Ah*, (BYY), (X € Com(Af, BY).  (2)

Let ((A)f,(B)) have the FP- property and (X € NCom(AT,BT)). By
mMm2mxwqu*ummeCm«mmxwm»

Since Com((A)T, (B) ) has the F'P-property then, (|A*|")2U*X (|B|f)z €
Com(((A)D), ((B)1)). By Lemma 2.1(ii),

(1A= (AN U x (B2 (|BIN)2 (1B[) 7 V* € Com((AT)*, (BT)).

=

Then, U*XV* € Com((A")*, (BT)*).

To prove the revers, assume that (2.1) holds and let X € Com((A)T, (B)1).
It follows from Lemma 2.1(i), that U(;A\T)?X(\BH)% € Com(Af, BY).
Then by (2.1)we have U*U(|A[")2 X(|B[")2V* € Com((A")*, (B")*)
and by Lemma 2.1(ii), implies that X € Com((A!)*, (B1)*), therefor
Com(A', BT) has the FP-property.

Let (2.1) hold, then by Lemma 2.1(i) for any X € Com(A, BY), it fol-
lows that the |A*|TX (|B*|")~' = UXV*. By using (2.1), we obtain

(ANV'U*XV* =U*XV* (BN = |A*|TXV* = U*XV*|B*|'V =
(U2UXV*|B*|'V.

Then by lemma 2.1(i) we get that, |A*|TX(V*)? = (U*)?|A*|TX. Since
A* is quasinormal then, X (V*)? = (U*)2X. Thus XV? = U?X. The
converse can be proved in the same way. [
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Corollary 2.4. If (At, BY) has the F P-property, then so has ((A)1, (B)T).

Proof. If (Af, BY) has the FP-property, then by Lemma 2.1(ii), UX =
XV for any X € (AT, B). Thus U?X = U(XV) = (UX)V = (XV)V =
X V2. Therefore by the theorem 2.3, ((A)', (B)!) has the F P-property. [

Corollary 2.5. If (A, B) has the F P-property, then so has (E(T), E(T)).
Proof. By corollary 2.4 and P(1) the proof is completes. O

Corollary 2.6. If A, B be binormal,(A, B) has the FP-property, then

s0 has (A®), BM),
Proof. By corollary 2.4 and P(3) the proof is completes. O

Theorem 2.7. Let A, B € CR(H) and let (AT, BY) have the FP-

property. Then Com(At, BT C Com((A)T, (B)1).

Proof. Let AT = U*|A*|!,BT = V*|B*|' be the polar decomposition and
let {f,} be a sequence of polynomials with no constant term such that
{fn®)} — t2 as t — o0o. Now let X € Com(AT, BY), then by the hypoth-
esis, (AN X = X(BT),(A")*X = X(B")*, thus (|A|")2X = X(|B|")? then
Ffn(JAIN2X = X f,,(|B|')?. Using the same argument we get (|A|T)%X =
X(|BH)2. Also U*|A*['X = XV*|B*|t, then |AlU*X = X|B|IV*,
and the same argument above show that, (|A[T)%U*X = X(\B]T)%V*.
Therefore,

(A x = (AHzU*(|A])z X = (AU X (|B[')?
= x(IBI"=v*(B|")z = x(B). O
Lemma 2.8. Let A € CR(H), then

(i) (|A]1)7 = U*(JA* )10
(i) At is quasinormal if and only if U*|A*|f = |A*|TU*.

Proof. (i) By P(4), P(7), P(8) and P(9) we have
(JAI")? = (AP = |(AT)*]? = AT(AT)" = Ur|a*[f|Af|fU
= U*|A*|TUU*|A*|TU = (U*|A*|TU)2.
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Let {p,} be a sequence of polynomials with no constant term such that
pn(t) — V/t uniformly on a certain compact subset of R as n — oo. It
follows that p,((|A|")?) = p,((U*|A*|TU)?), and so |A|l = U*|A*|TU.
By induction, (JA|")% = U*(JA*|")% U holds for each m,n € N. Now,
by using of the functional calculus, (|A|1)? = U*(|A*|")9U.

(ii) It is a classical fact that A is quasinormal if and only if U|A| = |A|U
(see [7, Theorem 3]. Now, the desired conclusion follows from this and
P(7). O

Theorem 2.9. Let A € B(H) be onto. Then the following statements
are equivalent:

(i) A* is quasinormal.

(ii) AT is quasinormal.

Proof. (i)<(ii) By (1.1) we have |A*||A*|T|A*| = |A*|, then we get that

A*is quasinormal <= U*|A*| = |A*|U*

= U*|A*||A*|T|A*| = |A*||A*|T| AU

= |A*|U*|A*[T|A*| = |A*[|A*[U*| A%

— |A*|(U*|A*|T — |A*[TU™)| A% = 0.
By hypothesis, N'(|A*|) = N (A*) = {0}. Hence (U*|A*|T—|A*|TU*)|A*| =
0, and so U*|A*|t = |A*|TU* on R(]A*|). On the other hand, U*|A*|T =
|A*|TU* on N(|T*|T) = N(U*). Thus, U*|A*|! = |A*|TU* on H. Conse-
quently, by Lemma 2.8, (i)<(ii) holds. O

Theorem 2.10. Let A, B € CR(H) be onto and A*, B* be quasinormal.
If (AT, BY) has the FP-property then Com (AT, BY) = Com((A)T, (B)").

Proof. According to Theorem 2.7, it is sufficient to prove Com(Af, BT) D
Com((A)!,(B)). Let X € Com((A),(B)), A = (|A[)Z Xx(|B|")z.

Since (A)X = X(B)' Then,

-1 1 =1 = 1
(141> (DX (BN = (A1H = X(B)(1BI):2.
= U(| A2 X(|BIN)z = (|A[)= X (B2 V(B
= U*(l4]H(AlH) = X(|B])?2 = AV*|Bf,
= U*|A|TA = AV*|B|T.
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= U*(U*|A*|TU)A = AV*(V*|B*|TV). by Lemma 2.8(i)

= U*(|A*['U*U)A = AV*(|B*|'V*V). by Lemma 2.8(ii) and Theorem 2.9
= U*|A*['A = AV*|B*|T = ATA = ABT.

Therefor A € Com(At, BY). Also by the Lemma 1.1, and hypothesis,

R(A) reduces AT | (kerA)* reduces BT and A;(T) , B ‘J(rk;erA)L are uni-

tarily equivalent normal operators. Thus,

At = Al @ Al on R(A) @ R(A)*,
and

B' = B} @ Bl on N(A)* & N(A),

where AI,BI are unitarily equivalent normal operators. Since A is in-
vertible and AJ{,BI are unitarily equivalent then, BI is invertible. Let,

X1 Xy
(% %)

(A O
N

It follows from A = (]A\T)%X(\B]T)%, that,

and

A:<A1 o)z (14D X2(1Bif)2 (A1) = Xa(|Baf')
00 (142D X3(1B1[1)? (1 4a]) 7 Xa(|Bal)2 )

Therefore, XQ(‘BlD% =0, X3 = O,~X4(\BQ|T)%~: 0, then as the result,
Xo(B2)T =0, X4(Bs)" = 0. Thus (A)TX = X(B)', implies that,

Alxy AlX, \ _ ( XiB] 0
0 Alx, 0o 0)°
Then, X5 =0, X4 =0, Al X; = X, B!, and since

X—(Xl 0)—X1@0.

(SIS

0 0
Therefore, A'X = X BT and the proof is completed. O
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Corollary 2.11. Let A*, B* be quasinormal. If (A, B) have the FP-
property. Then Com(A, B) = Com(A(®), B().

3. Moore-Penrose Inverse of Lambert Multipli-
cation Operators

Let (X,X, ) be a o-finite measure space. For any o-finite subalgebra
A C ¥ the Hilbert space L?(X, A, yy) is abbreviated to L?(A). The
support of a measurable function f is defined by o(f) = {z € X :
f(z) # 0}. All sets and functions statements are to be interpreted as
being valid almost everywhere with respect to p. For each f € L?(X),
by the Radon-Nikodym theorem, there exists a unique A-measurable
function EA(f) such that [, fdu = [, EA(f)du, where A is any A-
measurable set for which | 4 Jdp exists. Put B = EA. The mapping E
is a linear orthogonal projection. For more details on the properties of
E see [9, 17].

Let w,u € L%(X), the linear space of all complex-valued Y-measurable
functions on X. The mapping T : L?(X) — L*(X) defined by T(f) =
MyEM,(f) = wE(uf) is called Lambert multiplication operator. It
is easy to check that for each f € L*(%), ||Tf| = |[EM,f||, where
U= u(E(\wP))% Thus, M, EM, is bounded (has closed range) if and
only EM, is bounded (has closed range). Interesting articles related
to this topic are [5, 6, 9]. A combination of conditional expectation
operators and multiplication operators appears more often in the service
of the study of other operators, such as operators generated by random
measures and Markov operators. A good article related to the conditional
type operators is [8].

Here we recall some results of [11] that state our results is valid for
T=My,EM,.

Proposition 3.1. Let T : L*(X) — L°(X) defined by T = M,EM,, is a

Lambert multiplication operator.

(i) T € B(L*(X)) if and only if E(jw|*)E(Jul?) € L*(A), and in this
1/2

case |7 = [ E(lw[?) E(jul?)]|*. )

(ii) Let T € B(L3(%)), 0 < u € LY(X) and v = w(E(|w|?))2. If E(v) >
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0 on o(v), then T has closed range.
Put

A(f) = an fe}S), G=0(BEw). (3

Then by Proposition 3.1, A € B(L?(X)). Also, it is easy to check that
TAT =T, ATA=A, (TA)*=TA, (AT)" = AT.
Thus, A = TT. We now turn to the computation of 77, T, (f)T and

Tt. Direct computations give the following proposition.

Proposition 3.2. Let T,T € CR(L*(X)) with u,w > 0. Then

(a’) TT = MuXo'(E(w)) EMU)

B(u?)B(w?)

(b) T = Mupw EM,.
u2)

E(u2

(c) (TV)T = MuXO‘(E(uw)) EM,.

E(u2)E(uw)
(d) TT =M \ ws@e EM,.
Eu?)(Bw?)? ~ —

Note that, if w or u is not .A-measurable, then (T)T # Tt. Moreover, if
T € CR(L?*(X)), then by Proposition 3.1(ii), T € CR(L*(X)) whenever
(B(uw))? > E(u?)B(w?).

Proposition 3.3. Let for i = 1,2, T; = M,,EM,, € B(L*(X)) and
(E(wf))%wZ = ul(E(uZQ))% Then (T1,T>) has the FP-property.

Proof. We know that if 77 and 75 are normal, then (77, T%) has the FP-
property. Thus it is sufficient to prove that 77 and 75 are normal. Since
7 = M,,EM,,, it is easy to check that T 'T; = MuiE(w%)EMui and

Then by hypothesis we obtain
(T =TTL) = [ A Busf)uf = B3 B f o

— [ (BB ~ BB ) =0,

for each f € L*(X). This implies that 7; are normal. [
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In [5], Estaremi show that the Aluthge transform of M, EM, is always
normal. So we have the following corollary.

Corollary 3.4. Let T, T € CR(L2()) with u,w > 0. Then

(a) (Ty,Ts) has the FP-property.

(b) (T, (T2)1) has the FP-property.

(b) (T{r,TZT) has the FP-property.

Let A= ¢ 1(X),0<ue LX) and ¢ : X — X be a measurable trans-
formation such that p o ¢~! is absolutely continuous with respect to .
The weighted composition operator W on L?(X) induced by the pair
(u, @) is given by W = M, o C,,, where C,, is the composition operator
defined by C,f = foe. It is a classical fact that W is a bounded linear
operator on L?(X), if and only if J := hE(u?) o ¢! € L*®(X). Also,
W € CR(L?*(Y)) if and only if J is bounded away from zero on o(J)
(see [10]). From now on, we assume that W has closed range. It is easy
to check that W1 = Mx,,, W* and (WT)* = Mxy(00m W.
J

Jop
Now, we can compute the polar decomposition and Aluthge transforma-

tions of W = U|W| and W = U*|WT| as follows:

W| =M /7
U :Mx(,(',w) W;
VJop

U* =Mxoy W5
VT

W =M wx,,, EM,;
VTow(B(u?))
Wiz =M___« _EM,.

(hop) T (E(u2))4d

Consequently, for each f € L?(X) we get that

D= TXoEew) \* ,
W (f)_u<(ho<p)E(u2) (fop);

ey _ U\FXC uf oo 1]
WT(f)_((hO(p 5) ( o )% (f) 4 )a

(W)T(f):(fEX;;Jo¢ ) E(uVJf)oe™h;

M\u\

Y () = (m&) B(uf) oo,
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where C = Xa(E(uQ)ocp—l)'
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