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The classical Fuglede-Putnam commutativity theorem says that if A,B
are normal (see, e.g., [14, p. 84]), then the pair (A,B) has the FP -
property.
Given a complex separable Hilbert space H, let B(H) denotes the lin-
ear space of all bounded linear operators on H. Let T = U |T | be
the polar decomposition of T . An operator T is said to be binormal, if
[|T |, |T ∗|] = 0, where [A,B] = AB−BA for operators A and B. T is said
to be quasinormal, if (T ∗T )T = T (T ∗T ). Associated with T ∈ B(H),
there is a useful related operator T = |T |1/2U |T |1/2, called the Aluthge
transform of T . Let CR(H) be the set of all bounded linear operators
on H with closed range. For T ∈ CR(H), the Moore-Penrose inverse of
T , denoted by T †, is the unique operator T † ∈ CR(H) which satisfies

TT †T = T, T †TT † = T †, (TT †)∗ = TT †, (T †T )∗ = T †T. (1)

We recall that T † exists if and only if T ∈ CR(H). The Moore-Penrose
inverse is designed as a measure for the invertibility of an operator. If
T = U |T | is invertible, then U is unitary and so |T | = (T ∗T )1/2 is
invertible. It is a classical fact that the polar decomposition of T ∗ is
U∗|T ∗|. It is easy to check that U∗|T ∗|† and |T †| 12U∗|T †| 12 are the polar
decomposition and Aluthge transform of T †, respectively. It is sufficient
to show that (T ∗)† = |T ∗|†U , because T † = ((T ∗)†)∗.

T ∗(T ∗)†T ∗ = U∗|T ∗|(|T ∗|†U)U∗|T ∗|
= U∗|T ∗||T ∗|†|T ∗|
= U∗|T ∗| = T ∗,

(T ∗)†T ∗(T ∗)† = |T ∗|†UU∗|T ∗||T ∗|†U
= |T ∗|†|T ∗||T ∗|†U
= |T ∗|†U = (T ∗)†.

Since T ∗ = U∗|T ∗| is polar decomposition for T ∗, so N(T ∗) = N(U∗).
ButN(T ∗) = N(T †). HenceN(U∗) = N(T †). Also it is easy to check that
T ∗(T ∗)† and (T ∗)†T ∗ are self-adjoint operators. Therefore, we have T † =
U∗|T ∗|† is polar decomposition. Similarly it can be shown |T †| 12U∗|T †| 12
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is Aluthge transform of T †. We shall make use of the following general
properties of T ∗, T , T †, parts of their projections and polar decompo-
sitions. For proofs and discussions of some of these facts see [1, 2, 3, 7,
12, 13, 15, 19].

P(1) T † = |T †| 12U∗|T †| 12 , (T †)† = T (†);
P(2) If T is binormal then T † = (|T |†) 1

2U∗(|T |†) 1
2 ;

P(3) If T is binormal, then so is T † and (T ∗)∗ = (T †)†;
P(4) |T †| = |T ∗|† and |T †| 12 = (|T ∗| 12 )†;
P(5) U∗(|T ∗|†) 1

2 = (|T |†) 1
2U∗;

P(6) |(T ∗)†| = |T |†;
P(7) U∗|T ∗| and U∗|T ∗|† are the polar decompositions of T ∗ and T †,
respectively;
P(8) UU∗|T ∗|† = |T ∗|†;
P(9) (T †)∗ = |T ∗|†U .

The next lemmas are concerned with the Fuglede-Putnam theorem and
we need them in the future.

Lemma 1.1. [18, 16] Let A,B ∈ B(H). Then the following assertions
are equivalent:
(i) The pair (A, B) has the FP -property.
(ii) If X ∈ Com(A,B), then R(X) reduces A , (kerX)⊥ reduces B and
A|

R(X)
, B|

(kerX)⊥
are unitarily equivalent normal operators.

Lemma 1.2. If A,B ∈ B(H) are invertible, then
(i) X ∈ Com(A†, B†) ⇔ |A∗|†X(|B∗|†)−1 = UXV ∗.
(ii) X ∈ Com(A†, B†)∩Com((A†)∗, (B†)∗) ⇔ |A∗|†X(|B∗|†)−1 = UXV ∗ = X.

Proof.
(i). It is clear by definition.
(ii) LetX ∈ Com(A†, B†)∩Com((A†)∗, (B†)∗). ThenA†X = XB†, (A†)∗X =
X(B†)∗, thus we get that U∗|A∗|†X = XV ∗|B∗|†, |A∗|†V X = X|B∗|†V.
Hence, UXV ∗ = |A∗|†X(|B∗|†)−1, (|A∗|†)2X = (A†)∗A†X = (A†)∗(XB†) =
X(B†)∗B† = X(|B∗|†)2. Then (|A∗|†)2X = X(|B∗|†)2. Utilizing a se-
quence of polynomials uniformly converging to f(t) =

√
t on SP ((|A∗|†)2)∪

SP ((|B∗|†)2) and the functional calculus we get |A∗|†X = X|B∗|†, that
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is |A∗|†X(|B∗|†)−1 = X. Hence from (i) we have UXV ∗ = X. The
reverse direction is trivial. 

In the following, we try to provide some results concerning this problem
that we call it the Fuglede-Putnam-Moore-Penrose problem. More pre-
cisely, we prove that if (A†, B†) has the FP-property, then Com(A,B) ⊆
Com(A†, B†) and if, moreover, A is invertible operator then, Com(A†, B†) =
Com(( A)†, ( B)†). Note that if A = U |A| is invertible then U is unitary
and |A| is also invertible.

2. Fuglede-Putnam Theorem for Moore-Penrose
Inverse and Aluthge Transforms

As mentioned above, in this section we present some results concerning
the Fuglede-Putnam-Moore-Penrose problem.

Lemma 2.1. If A,B ∈ CR(H) are binormal, then
(i) X ∈ Com(A†, B†)⇔ (|A|†) 1

2U∗X(|B|†) 1
2 ∈ Com(( A)†, ( B)†).

(ii) X ∈ Com((A†)∗, (B†)∗)⇔ (|A|†) 1
2XV (|B|†) 1

2 ∈ Com((( A)†)∗, (( B)†)∗).

Proof. (i) If A† = U∗|A∗|†,B† = V ∗|B∗|† be polar decompositions, since
U∗(|T ∗|†) = (|T |†)U∗ then we have,

X ∈ Com(A†, B†)⇒ U∗|A∗|†X = XV ∗|B∗|†

⇒ |A|†U∗X = X|B|†V ∗.

Hence,

( A)†(|A|†
1
2U∗X|B|†

1
2 ) = |A|†

1
2U∗(|A|†U∗X|B|†

1
2 )

= |A|†
1
2U∗(X|B|†V ∗)|B|†

1
2

= (|A|†
1
2U∗X|B|†

1
2 )( B)†.

The converse obviously holds.
(ii) It could be proved in a similar way (i). 

Corollary 2.2. If A,B, A, B ∈ CR(H) and A, B are binormal. Then
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(|A†|) 1
2XV (|B†|) 1

2 ∈ Com(A†,B†) if and only if (|A|†) 1
2U∗X(|B|†) 1

2 ∈
Com(( A)†, ( B)†).
Proof. It follows from P(3) and Lemma 2.1. 

Theorem 2.3. Let A,B, A, B ∈ CR(H) and A, B are binormal, A∗ is
quasinormal. Then the pair (( A)†, ( B)†) has the FP -property.

Proof. Let A = U |A| and B = V |B| be the polar decompositions. We
show that Com(( A)†, ( B)†) ⊆ Com((( A)†)∗, (( B)†)∗) if and only if U2X =
XV 2, for any X ∈ Com(A†, B†). First, we prove that the FP -property
for Com(( A)†, ( B)†) is equivalent to following requirement,

U∗XV ∗ ∈ Com((A†)∗, (B†)∗), (X ∈ Com(A†, B†)). (2)

Let (( A)†, ( B)†) have the FP -property and (X ∈ Com(A†, B†)). By
Lemma 2.1(i), (|A∗|†) 1

2U∗X(|B|†) 1
2 ∈ Com((( A)†), (( B)†)).

Since Com(( A)†, ( B)†) has the FP -property then, (|A∗|†) 1
2U∗X(|B|†) 1

2 ∈
Com((( A)†), (( B)†)). By Lemma 2.1(ii),

(|A|†)
−1
2 (|A|†)

1
2U∗X(|B|†)

1
2 (|B|†)

1
2 (|B|†)

−1
2 V ∗ ∈ Com((A†)∗, (B†)∗).

Then, U∗XV ∗ ∈ Com((A†)∗, (B†)∗).
To prove the revers, assume that (2.1) holds and letX ∈ Com(( A)†, ( B)†).
It follows from Lemma 2.1(i), that U(|A|†)

−1
2 X(|B|†) 1

2 ∈ Com(A†, B†).
Then by (2.1)we have U∗U(|A|†)

−1
2 X(|B|†) 1

2V ∗ ∈ Com((A†)∗, (B†)∗)
and by Lemma 2.1(ii), implies that X ∈ Com(( A†)∗, ( B†)∗), therefor
Com(A†, B†) has the FP -property.
Let (2.1) hold, then by Lemma 2.1(i) for any X ∈ Com(A†, B†), it fol-
lows that the |A∗|†X(|B∗|†)−1 = UXV ∗. By using (2.1), we obtain

(A†)∗U∗XV ∗ = U∗XV ∗(B†)∗ ⇒ |A∗|†XV ∗ = U∗XV ∗|B∗|†V =

(U∗)2UXV ∗|B∗|†V.

Then by lemma 2.1(i) we get that, |A∗|†X(V ∗)2 = (U∗)2|A∗|†X. Since
A∗ is quasinormal then, X(V ∗)2 = (U∗)2X. Thus XV 2 = U2X. The
converse can be proved in the same way. 
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Corollary 2.4. If (A†, B†) has the FP -property, then so has (( A)†, ( B)†).

Proof. If (A†, B†) has the FP -property, then by Lemma 2.1(ii), UX =
XV for any X ∈ (A†, B†). Thus U2X = U(XV ) = (UX)V = (XV )V =
XV 2. Therefore by the theorem 2.3, (( A)†, ( B)†) has the FP -property. 

Corollary 2.5. If (A,B) has the FP -property, then so has ( A(†), B(†)).

Proof. By corollary 2.4 and P(1) the proof is completes. 

Corollary 2.6. If A,B be binormal,(A,B) has the FP -property, then
so has ( A(∗), B(∗)).

Proof. By corollary 2.4 and P(3) the proof is completes. 

Theorem 2.7. Let A,B ∈ CR(H) and let (A†, B†) have the FP -
property. Then Com(A†, B†) ⊆ Com(( A)†, ( B)†).

Proof. Let A† = U∗|A∗|†,B† = V ∗|B∗|† be the polar decomposition and
let {fn} be a sequence of polynomials with no constant term such that
{fn(t)} → t

1
2 as t→∞. Now let X ∈ Com(A†, B†), then by the hypoth-

esis, (A†)X = X(B†),(A†)∗X = X(B†)∗, thus (|A|†)2X = X(|B|†)2 then
fn(|A|†)2X = Xfn(|B|†)2. Using the same argument we get (|A|†)

1
2X =

X(|B|†) 1
2 . Also U∗|A∗|†X = XV ∗|B∗|†, then |A|†U∗X = X|B|†V ∗,

and the same argument above show that, (|A|†) 1
2U∗X = X(|B|†) 1

2V ∗.
Therefore,

( A)†X = (|A|†)
1
2U∗(|A|†)

1
2X = (|A|†)

1
2U∗X(|B|†)

1
2

= X(|B|†)
1
2V ∗(|B|†)

1
2 = X( B)†. 

Lemma 2.8. Let A ∈ CR(H), then
(i) (|A|†)q = U∗(|A∗|†)qU .
(ii) A† is quasinormal if and only if U∗|A∗|† = |A∗|†U∗.

Proof. (i) By P(4), P(7), P(8) and P(9) we have

(|A|†)2 = |(A∗)†|2 = |(A†)∗|2 = A†(A†)∗ = U∗|A∗|†|A∗|†U

= U∗|A∗|†UU∗|A∗|†U = (U∗|A∗|†U)2.
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fn(|A|†)2X = Xfn(|B|†)2. Using the same argument we get (|A|†)

1
2X =

X(|B|†) 1
2 . Also U∗|A∗|†X = XV ∗|B∗|†, then |A|†U∗X = X|B|†V ∗,

and the same argument above show that, (|A|†) 1
2U∗X = X(|B|†) 1

2V ∗.
Therefore,

( A)†X = (|A|†)
1
2U∗(|A|†)

1
2X = (|A|†)

1
2U∗X(|B|†)

1
2

= X(|B|†)
1
2V ∗(|B|†)

1
2 = X( B)†. 

Lemma 2.8. Let A ∈ CR(H), then
(i) (|A|†)q = U∗(|A∗|†)qU .
(ii) A† is quasinormal if and only if U∗|A∗|† = |A∗|†U∗.

Proof. (i) By P(4), P(7), P(8) and P(9) we have

(|A|†)2 = |(A∗)†|2 = |(A†)∗|2 = A†(A†)∗ = U∗|A∗|†|A∗|†U

= U∗|A∗|†UU∗|A∗|†U = (U∗|A∗|†U)2.
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Let {pn} be a sequence of polynomials with no constant term such that
pn(t)→

√
t uniformly on a certain compact subset of R+ as n→∞. It

follows that pn((|A|†)2) = pn((U∗|A∗|†U)2), and so |A|† = U∗|A∗|†U .
By induction, (|A|†)mn = U∗(|A∗|†)mn U holds for each m,n ∈ N. Now,
by using of the functional calculus, (|A|†)q = U∗(|A∗|†)qU .
(ii) It is a classical fact that A is quasinormal if and only if U |A| = |A|U
(see [7, Theorem 3]. Now, the desired conclusion follows from this and
P(7). 

Theorem 2.9. Let A ∈ B(H) be onto. Then the following statements
are equivalent:
(i) A∗ is quasinormal.
(ii) A† is quasinormal.

Proof. (i)⇔(ii) By (1.1) we have |A∗||A∗|†|A∗| = |A∗|, then we get that

A∗is quasinormal⇐⇒ U∗|A∗| = |A∗|U∗

⇐⇒ U∗|A∗||A∗|†|A∗| = |A∗||A∗|†|A∗|U∗

⇐⇒ |A∗|U∗|A∗|†|A∗| = |A∗||A∗|†U∗|A∗|
⇐⇒ |A∗|(U∗|A∗|† − |A∗|†U∗)|A∗| = 0.

By hypothesis,N (|A∗|) = N (A∗) = {0}. Hence (U∗|A∗|†−|A∗|†U∗)|A∗| =
0, and so U∗|A∗|† = |A∗|†U∗ on R(|A∗|†). On the other hand, U∗|A∗|† =
|A∗|†U∗ on N(|T ∗|†) = N(U∗). Thus, U∗|A∗|† = |A∗|†U∗ on H. Conse-
quently, by Lemma 2.8, (i)⇔(ii) holds. 

Theorem 2.10. Let A,B ∈ CR(H) be onto and A∗, B∗ be quasinormal.
If (A†, B†) has the FP -property then Com(A†, B†) = Com(( A)†, ( B)†).

Proof.According to Theorem 2.7, it is sufficient to prove Com(A†, B†) ⊇
Com(( A)†, ( B)†). Let X ∈ Com(( A)†, ( B)†), Λ = (|A|†)

−1
2 X(|B|†) 1

2 .

Since ( A)†X = X( B)† Then,

(|A|†)
−1
2 ( A)†X(|B|†) 1

2 = (|A|†)
−1
2 X( B)†(|B|†) 1

2 .

⇒ U∗(|A|†) 1
2X(|B|†) 1

2 = (|A|†)
−1
2 X(|B|†) 1

2V ∗|B|†.
⇒ U∗(|A|†)(|A|†)

−1
2 X(|B|†) 1

2 = ΛV ∗|B|†.
⇒ U∗|A|†Λ = ΛV ∗|B|†.
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⇒ U∗(U∗|A∗|†U)Λ = ΛV ∗(V ∗|B∗|†V ). by Lemma 2.8(i)
⇒ U∗(|A∗|†U∗U)Λ = ΛV ∗(|B∗|†V ∗V ). by Lemma 2.8(ii) and Theorem 2.9
⇒ U∗|A∗|†Λ = ΛV ∗|B∗|† ⇒ A†Λ = ΛB†.

Therefor Λ ∈ Com(A†, B†). Also by the Lemma 1.1, and hypothesis,
R(Λ) reduces A† , (kerΛ)⊥ reduces B† and A†

R(Λ)
, B |†

(kerΛ)⊥
are uni-

tarily equivalent normal operators. Thus,

A† = A†1 ⊕A†2 on R(Λ)⊕R(Λ)⊥,

and

B† = B†1 ⊕B†2 on N(Λ)⊥ ⊕N(Λ),

where A†1,B
†
1 are unitarily equivalent normal operators. Since A is in-

vertible and A†1,B
†
1 are unitarily equivalent then, B

†
1 is invertible. Let,

X =

X1 X2

X3 X4



and

Λ =

Λ1 0
0 0


.

It follows from Λ = (|A|†)
−1
2 X(|B|†) 1

2 , that,

Λ =

Λ1 0
0 0


=


(|A1|†)

−1
2 X1(|B1|†)

1
2 (|A1|†)

−1
2 X2(|B1|†)

1
2

(|A2|†)
−1
2 X3(|B1|†)

1
2 (|A2|†)

−1
2 X4(|B2|†)

1
2


.

Therefore, X2(|B1|†)
1
2 = 0, X3 = 0, X4(|B2|†)

1
2 = 0, then as the result,

X2(B2)† = 0, X4(B2)† = 0. Thus ( A)†X = X( B)†, implies that,

A†1X1 A†1X2

0 A†2X4


=


X1B

†
1 0

0 0


.

Then, X2 = 0, X4 = 0, A†1X1 = X1B
†
1, and since

X =

X1 0
0 0


= X1 ⊕ 0.

Therefore, A†X = XB† and the proof is completed. 
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Corollary 2.11. Let A∗, B∗ be quasinormal. If (A,B) have the FP -
property. Then Com(A,B) = Com( A(†), B(†)).

3. Moore-Penrose Inverse of Lambert Multipli-
cation Operators

Let (X,Σ, µ) be a σ-finite measure space. For any σ-finite subalgebra
A ⊆ Σ the Hilbert space L2(X,A, µ|A) is abbreviated to L2(A). The
support of a measurable function f is defined by σ(f) = {x ∈ X :
f(x) = 0}. All sets and functions statements are to be interpreted as
being valid almost everywhere with respect to µ. For each f ∈ L2(Σ),
by the Radon-Nikodym theorem, there exists a unique A-measurable
function EA(f) such that


A fdµ =


AE

A(f)dµ, where A is any A-
measurable set for which


A fdµ exists. Put E = EA. The mapping E

is a linear orthogonal projection. For more details on the properties of
E see [9, 17].
Let w, u ∈ L0(Σ), the linear space of all complex-valued Σ-measurable
functions on X. The mapping T : L2(Σ) → L2(Σ) defined by T (f) =
MwEMu(f) = wE(uf) is called Lambert multiplication operator. It
is easy to check that for each f ∈ L2(Σ), Tf = EMυf, where
υ := u(E(|w|2)) 1

2 . Thus, MwEMu is bounded (has closed range) if and
only EMυ is bounded (has closed range). Interesting articles related
to this topic are [5, 6, 9]. A combination of conditional expectation
operators and multiplication operators appears more often in the service
of the study of other operators, such as operators generated by random
measures and Markov operators. A good article related to the conditional
type operators is [8].
Here we recall some results of [11] that state our results is valid for
T =MwEMu.

Proposition 3.1. Let T : L2(Σ)→ L0(Σ) defined by T =MwEMu is a
Lambert multiplication operator.
(i) T ∈ B(L2(Σ)) if and only if E(|w|2)E(|u|2) ∈ L∞(A), and in this
case T = E(|w|2)E(|u|2)1/2∞ .
(ii) Let T ∈ B(L2(Σ)), 0  u ∈ L0(Σ) and υ = u(E(|w|2)) 1

2 . If E(υ) 
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δ on σ(υ), then T has closed range.
Put

A(f) =
uχG

E(u2)E(w2)
E(wf), f ∈ L2(Σ), G = σ(E(w)). (3)

Then by Proposition 3.1, A ∈ B(L2(Σ)). Also, it is easy to check that

TAT = T, ATA = A, (TA)∗ = TA, (AT )∗ = AT.

Thus, A = T †. We now turn to the computation of T †, T , ( T )† and
T †. Direct computations give the following proposition.

Proposition 3.2. Let T, T ∈ CR(L2(Σ)) with u,w  0. Then

(a) T † =M uχ
σ(E(w))

E(u2)E(w2)

EMw.

(b) T =MuE(uw)

E(u2)

EMu.

(c) ( T )† =Muχ
σ(E(uw))

E(u2)E(uw)

EMu.

(d) T † =M χ
S
wE(uw)

E(u2)(E(w2))2

EMw.

Note that, if w or u is not A-measurable, then ( T )† = T †. Moreover, if
T ∈ CR(L2(Σ)), then by Proposition 3.1(ii), T ∈ CR(L2(Σ)) whenever
(E(uw))2  E(u2)E(w2).

Proposition 3.3. Let for i = 1, 2, Ti = MwiEMui ∈ B(L2(Σ)) and
(E(w2i ))

1
2wi = ui(E(u2i ))

1
2 . Then (T1, T2) has the FP-property.

Proof.We know that if T1 and T2 are normal, then (T1, T2) has the FP-
property. Thus it is sufficient to prove that T1 and T2 are normal. Since
T ∗i = MuiEMwi , it is easy to check that T ∗i Ti = MuiE(w2

i )
EMui and

TiT
∗
i =MwiE(u2

i )
EMwi . So T

∗
i Ti−TiT ∗i =MuiE(w2

i )
EMui−MwiE(u2

i )
EMwi .

Then by hypothesis we obtain

(T ∗i Ti − TiT
∗
i )f, f =



X
{(E(w2i )E(uif)uf − E(u2i )E(wif)wf}dµ

=


X
{(E(ui(E(w2i ))

1
2 f))2 − (E((E(u2i ))

1
2wif))2}dµ = 0,

for each f ∈ L2(Σ). This implies that Ti are normal. 
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i )
EMui and

TiT
∗
i =MwiE(u2

i )
EMwi . So T

∗
i Ti−TiT ∗i =MuiE(w2

i )
EMui−MwiE(u2

i )
EMwi .

Then by hypothesis we obtain

(T ∗i Ti − TiT
∗
i )f, f =



X
{(E(w2i )E(uif)uf − E(u2i )E(wif)wf}dµ

=


X
{(E(ui(E(w2i ))

1
2 f))2 − (E((E(u2i ))

1
2wif))2}dµ = 0,

for each f ∈ L2(Σ). This implies that Ti are normal. 
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δ on σ(υ), then T has closed range.
Put

A(f) =
uχG

E(u2)E(w2)
E(wf), f ∈ L2(Σ), G = σ(E(w)). (3)

Then by Proposition 3.1, A ∈ B(L2(Σ)). Also, it is easy to check that

TAT = T, ATA = A, (TA)∗ = TA, (AT )∗ = AT.

Thus, A = T †. We now turn to the computation of T †, T , ( T )† and
T †. Direct computations give the following proposition.

Proposition 3.2. Let T, T ∈ CR(L2(Σ)) with u,w  0. Then

(a) T † =M uχ
σ(E(w))

E(u2)E(w2)

EMw.

(b) T =MuE(uw)

E(u2)

EMu.

(c) ( T )† =Muχ
σ(E(uw))

E(u2)E(uw)

EMu.

(d) T † =M χ
S
wE(uw)

E(u2)(E(w2))2

EMw.

Note that, if w or u is not A-measurable, then ( T )† = T †. Moreover, if
T ∈ CR(L2(Σ)), then by Proposition 3.1(ii), T ∈ CR(L2(Σ)) whenever
(E(uw))2  E(u2)E(w2).

Proposition 3.3. Let for i = 1, 2, Ti = MwiEMui ∈ B(L2(Σ)) and
(E(w2i ))

1
2wi = ui(E(u2i ))

1
2 . Then (T1, T2) has the FP-property.

Proof.We know that if T1 and T2 are normal, then (T1, T2) has the FP-
property. Thus it is sufficient to prove that T1 and T2 are normal. Since
T ∗i = MuiEMwi , it is easy to check that T ∗i Ti = MuiE(w2

i )
EMui and

TiT
∗
i =MwiE(u2

i )
EMwi . So T

∗
i Ti−TiT ∗i =MuiE(w2

i )
EMui−MwiE(u2

i )
EMwi .

Then by hypothesis we obtain

(T ∗i Ti − TiT
∗
i )f, f =



X
{(E(w2i )E(uif)uf − E(u2i )E(wif)wf}dµ

=


X
{(E(ui(E(w2i ))

1
2 f))2 − (E((E(u2i ))

1
2wif))2}dµ = 0,

for each f ∈ L2(Σ). This implies that Ti are normal. 
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In [5], Estaremi show that the Aluthge transform of MwEMu is always
normal. So we have the following corollary.
Corollary 3.4. Let T, T ∈ CR(L2(Σ)) with u,w  0. Then
(a) (T1,T2) has the FP-property.
(b) ((T1)†, (T2)†) has the FP-property.
(b) (T †1 ,


T †2 ) has the FP-property.

Let A = ϕ−1(Σ), 0  u ∈ L0(Σ) and ϕ : X → X be a measurable trans-
formation such that µ ◦ ϕ−1 is absolutely continuous with respect to µ.
The weighted composition operator W on L2(Σ) induced by the pair
(u, ϕ) is given by W = Mu ◦ Cϕ, where Cϕ is the composition operator
defined by Cϕf = f ◦ϕ. It is a classical fact that W is a bounded linear
operator on L2(Σ), if and only if J := hE(u2) ◦ ϕ−1 ∈ L∞(Σ). Also,
W ∈ CR(L2(Σ)) if and only if J is bounded away from zero on σ(J)
(see [10]). From now on, we assume that W has closed range. It is easy
to check that W † = Mχσ(J)

J

W ∗ and (W †)∗ = Mχσ(J◦ϕ)
J◦ϕ

W .

Now, we can compute the polar decomposition and Aluthge transforma-
tions of W = U |W | and W † = U∗|W †| as follows:

|W | =M√
J ;

U =Mχ
σ(J◦ϕ)√
J◦ϕ

W ;

U∗ =Mχσ(J)√
J

W ∗;

|W †| =M uχ
J◦ϕ√

J◦ϕ(E(u2))

EMu;

|W †| 12 =M u

(h◦ϕ)
1
4 (E(u2))

5
4

EMu.

Consequently, for each f ∈ L2(Σ) we get that

W (f) = u


Jχσ(E(u))

(h ◦ ϕ)E(u2)

 1
4

(f ◦ ϕ);

W † (f) =


1
(h ◦ ϕ)(E(u2))5

 1
4

uE


u 4
√
hχC

(E(u2) ◦ ϕ−1)
3
4
E(uf) ◦ ϕ−1


;

(W )†(f) =


χσ(J)
5
√
hE(u2) ◦ ϕ−1

 5
4

E(u 4
√
Jf) ◦ ϕ−1;

(W ∗)†(f) =


χC
E(u2) ◦ ϕ−1

 5
2

E(uf) ◦ ϕ−1,
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where C = χσ(E(u2)◦ϕ−1).
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