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Some Digraphs Attached with the
Congruence 2° = y (mod n)
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Abstract. In this paper, we associate to each natural number n a
digraph I'(n) whose set of vertices is H = {0,1,---,n — 1} and for
which there is a directed edge from a € H to b € H if a® = b(modn).
We determine the number of the fixed points of I'(n). We also give the
structure of I'(n) for n = 2* and n = 5%, where k is a natural number.
Making use of the Carmichael’s Theorem, we present a simple condition
for the existence of cycles in I'(n). Let I'1 (n) be the subdigraph induced
by the vertices which are coprime to n. We discuss when I'; (n) is regular
or semiregular.
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1. Introduction

Let n be a natural number and H = {0,1,...,n — 1}. We consider the
directed graph I'(n) whose vertices are the elements of H such that there
exists exactly one directed edge from a to b if and only if a® = b (mod n).
If a1, a9,...,a, are distinct elements of H and

a3 = ag (modn), a3 = az (modn),..., aj = a; (modn),

then the elements aq, ao, ..., ay; constitute a cycle of length £. We call a
cycle of length 1 a fized point. A component of a digraph is a subdigraph
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which is a maximal connected subgraph of the associated nondirected
graph (see for example [4], page 13). For a € H, denote the number of
directed edges coming to a by indeg(a) and denote the number of directed
edges leaving the vertex a by outdeg(a). The outdegree for every vertex
of the digraph I'(n) is equal to 1. Therefore, the number of component of
I'(n) is equal to the number of all cycles. The digraph I'(13) is presented
in Figure 1.

O
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Figure 1. The digraph I'(13)

We call a digraph regular if the indegree of each vertex is equal to 1. A
digraph is semiregular if there exists a positive integer d such that each
vertex either has indegree d or 0.

We consider two subdigraphs of I'(n). Let I';(n) be the subdigraph
induced by the vertices which are coprime to n and I's(n) be the sub-
digraph induced by the vertices which are not coprime to n. It is easy
to see that I';(n) and T's(n) are disjoint and I'(n) = I';(n) UT'2(n). For
this reason the main aim of this paper is to study the structure of these
subdigraphs.

We give some connections between graph theory, group theory and num-
ber theory motivated by results of [1], [3], [6], [10], [8], and [12] as well
as by the results of [9] which have considered a similar digraphs corre-
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sponding to the congruence relations:

2* =y (modn) and z* = y (modn).

The reader should be aware that some properties of the digraph corre-
sponding to the general congruence relation z* = y (mod n) are given in
the interesting article [11].

In this paper, the conditions for regularity and semiregularity of the
subdigraph I'i(n) are presented (see Theorem 2.1). We give a formula
for the number of fixed points of the digraph I'(n) (see Theorem 2.2).
Finally, we illustrate the structure of T'(2¥) and T'(5%), where k is a
natural number (see Theorems 2.6 and 2.7).

2. Main results

Let
= { 1T B,
Lt if 25 1 n,

where t be the number of distinct primes divided n which are congruent
to 1 modulo 5. As an application of group theory and number theory,
we have the following theorems:

Theorem 2.1. The digraph I'1(n) is semiregular if and only if 5|p(n).
Moreover, if a is a vertex of I'1(n), then

indeg(a) =0 orindeg(a) = 5°.

Proof. Since the residues coprime to n form a group under multiplica-
tion modulo n, it is easy to see that indeg(a) = indeg(1) if indeg(a) > 0
and ged(a,n) = 1, where ged(a,n) is the greatest common divisor of the
numbers a and n. Therefore it suffices to determine only indeg(1). Let
p(n) be the number of solutions of the congruence z° = 1 (modn). Now
we find p(n). Consider the following cases:

(1) Let n = 5% and o > 2. In this case, p(n) = 5. In fact, the set of solu-
tions of #° = 1 (modn) is {1,5% 1 +1,2.547 1 41,3591 41,459 L +1}.

(2) Let n = p®, where a > 1 and p is congruent to 1 modulo 5. In this
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case, p(n) =5 by [7, Corollary 2.42].

In the other case, p(n) = 1 again by [7, Corollary 2.42]. Since p(n)
is a multiplicative function (see [5, Theorem 3.11]), indeg(a) = 0 or
indeg(a) = 55",

Let I'1(n) be a semiregular graph and let a € I'1(n) such that indeg(a) =
5e(m). If

H={0<m<n—1|(mmn)=1,m"=1(modn)},

then H is a subgroup of I';(n) and hence |H| = 55 divides ¢(n). Con-
versely, suppose that 51 ¢(n). Then every vertex in I'1(n) has indegree
equal to 1. This completes the proof. [

Let n be an arbitrary natural number and f be a polynomial with integer
coefficients. Then the function py(n) = {0 < m < n—1: f(m) =
0 (modn)}| is a multiplicative function (see [5, Theorem 3.11]).

The following theorem gives a formula for the number of fixed points of
the digraph I'(n).

a1, o0 as B1 B2 Bt

Theorem 2.2. Let n = 29p{"'py* - - p3eq)' q5° - -q; ", where p; and g;
are distinct odd prime numbers and p; = —1 (mod4) and q; = 1 (mod4).
Then the number L(n) of fized points of I'(n) is equal to

a+1 ifae{0,1,2}
L(n)=3"x5"x{ 5 if =3
32 if a >4

Proof. Let f(z) = z° — x. It is easy to see that pf(2) = 2, ps(2?) = 3
and pf(23) = 5. For n = 2% «a > 4, the zeros of f are in the set

{0,1,2971 41,2972 +£1,322 £ 1,n — 1}.

Hence p(2%) = 32

For n = p®, where p is odd prime number such that p = —1 (mod 4) and
a > 1, the zeros of f are in the set {0,1,n — 1}. Hence p(p®) = 3.

If n = ¢, where ¢ is odd prime number such that ¢ = 1 (mod4) and
B> 1, then p(¢”) = 5, by [7, Corollary 2.42]. O
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Let n be a positive integer. The Carmichael A-function A\(n) is defined
as follows (see [2, page 232]):

A1) =9(1), A(2) = ¢(2), AM4) = ¢(4),
A(2F) = ; (2%) fork >
A(p®) = p(p*) for any odd prime p and k > 1

Let t = ord,g denote the multiplicative order of g modulo n. The fol-
lowing theorem generalizes the well-known Euler’s Theorem:

Theorem 2.3. (Carmichael’s Theorem) Let a,n € N. Then
Aln) —

= 1 (modn)

if and only if ged(a,n) = 1. Moreover, there exists an integer g such
that

ord,g = A(n).
Proof. See [2, page 233]. O

Theorem 2.4. Let n > 2 be a natural number. Then there exists a cycle
of length ¢ in the digraph T'(n) if and only if £ = ordy5 for some positive
divisor d of A\(n).

Proof. Assume that a is a vertex of a ¢-cycle in I'(n). Then ¢ is the
least positive integer such that

& =a (modn),
which implies that ¢ is the least positive integer for which
o —a= a(a5£_1 —1) =0 (modn).

Since ged(a, a1t - 1) = 1, it follows that if ny = ged(a,n) and ng =
n/ny, then ¢ is the least positive integer such that

a =0 (modny),
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=1 (mod ny).

Therefore ged(ni,n2) = 1. Hence, by the Chinese reminder theorem
there exits an integer b such that

b=1(modn,),

b = a(modny).

Therefore ¢ is the least positive integer such that
B l=1 (modny),

P l=g""1=1 (mod ng).

And consequently
Bl =1 (modn).

Let d = ord,b. Then (¢ is the least positive integer such that 5¢ =
1 (mod d). Therefore ¢ = ordy5. Since d = ord,b and ged(b,n) = 1, then
by Carmichael’s Theorem, we have d | A(n).
Conversely, suppose that d is a positive divisor of A(n) and let £ = ordg5.
by Carmichael’s Theorem there exists a residue g modulo n such that
ord,g = \(n). Let h = g*"/4_ Then ord,h = d. Since d|5* — 1 but
d 15 — 1 whenever 1 <t </, we see that ¢ is the least positive integer
for which

Rl =1 (modn).

Therefore
AR L =0 =1 (modn).
It follows that h is a vertex in a ¢-cycle of I'(n). O

Theorem 2.5. The number of components of I'(n) is 5 if n = 8 or
n = q¢*, where k is a natural number and q is a prime number such that
qg=1(mod4).

Proof. If n = 8, then we have clearly 5 components. If n = ¢*, where k
is a natural number and ¢ is a prime number such that ¢ = 1 (mod4),
then we have exactly 5 fixed points. In the case that we have more
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than 5 components, there exists a cycle of length ¢t > 1 and ¢t = ordyb
for some even positive divisor d of A\(n). Then ¢ is the least positive
number such that 5° = 1 (modd) and d|5' — 1. Since also d|\(n), we
have d = 4|5' — 1, which is a contradiction by minimality of ¢. Thus
I'(n) has 5 components. [

For an arbitrary real number z, denote by [z]| the smallest natural
number greater than or equal to x. In the rest of this paper, we show that
the digraphs I'(2¥) and I'(5%) have interesting structures (see Figures 2
and 3).

Theorem 2.6. Let k be a natural number. The digraph T'1(2%) contains
(except for 8 fized points) only the cycles of lengths which are the powers

of 2 and T9(2%) is a tree with the root in 0. Moreover, indeg(0) =
ok—[k/5]

Proof. Let n = 2¥. Then every digraph I';(2¥) and TI'y(2¥) contains
exactly n = 2¥=1 vertices. Of course 5 { ¢(n) and hence, ' (2¥) contains
only cycles. It is easy to see that 1,28 141,282 41, 2F-234 1 2F 1
are all fixed points of T'1(2¥). We know that there is a cycle of length ¢
if and only if £ = ordy5, for some divisor d of A(n) = 2572, On the other
hand, the order ¢ of 5 in the multiplicative group of vertices of I'y(2¥)

= 2F=1. Hence, ¢ is

must be a divisor of the group order equal to ¢(n)
the power of 2.

It is not hard to check that we have exactly 2F~[#/5] elements in T'y(2*)
namely 2/5/51 9 2[k/51 3 olk/51 ... ok=[k/5] 9lk/5] — ( which are mapped

into 0. O

N/ 3U N 7/
YO e
9@ e/ 136 v/
2 0
4 \\
0 8 1!01214

Figure 2. The digraph I'(2%)
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We end this paper by the following theorem.

Theorem 2.7. Let k be a natural number and n = 5*. Then the digraph
I'1(n) consists of four isomorphic trees. Moreover, I'y(n) is a tree with
the root in 0 and indeg(0) = 5F~1/51,

proof. Theorem 2.5 implies that the graph I'(n) has exactly five compo-
nents with five fix points. It is easy to see that we have 5%~ #/5] elements
in Ty(n), namely 5%/51 2.5[k/51 3 51k/51 ... 5k=[k/5]1 5[k/51 = (0 which
are mapped into 0. Since 5|p(n) = 4.5*71, we have I';(n) is a semireg-
ular and every vertex either has degree 0 or 5. Therefore I'1(n) consists
of four trees. Now let {1,n — 1,a,n — a} be the set of all fix points of
I'i(n). Let Th,T,-1,T, and T,_, be the trees that contain the num-
bers 1,n — 1,a and n — a, respectively. By definition of I'(n), we have
Ty =2 T,—1 and T, = T, 4. Since ged(a,n) = 1, if we multiply each
vertex of the tree 77 by the number a, we reach the tree T,. Hence
T1 =2 T, and so the proof is complete. [

Figure 3. The digraph I'(5%)
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